
Introduction

Air pollution, driven by industrialization, 
transportation, and rapid economic growth, has become 

one of the most severe environmental challenges 
worldwide. The World Health Organization (WHO) 
reports that air pollution continues to pose a major 
threat to public health, contributing to millions of 
premature deaths annually and deteriorating the quality 
of life in urban areas (WHO, 2021). Industrial zones, in 
particular, are significant sources of harmful pollutants, 
including sulfur dioxide (SO2), nitrogen dioxide (NO2), 
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Abstract

Air pollution in industrial zones poses significant threats to environmental and public health, 
especially in developing regions, highlighting the necessity for accurate forecasting to guide pollution 
management. This study presents an Optuna-enhanced hybrid Transformer-TimesNet model aimed 
at improving time series forecasting of six critical pollutants (SO2, NO2, CO, O3, PM10, and PM2.5) 
in Xinyang Industrial Zone, Xiamen, China. Utilizing air quality data from 2019 to 2023, the model 
combines the Transformer’s strength in capturing long-range dependencies with TimesNet’s expertise 
in handling complex temporal patterns. Advanced preprocessing techniques were employed to 
address both linear and non-linear data components, and Optuna was used for hyperparameter tuning, 
enhancing model stability and predictive accuracy. Comparative experiments demonstrated the hybrid 
model’s superior performance against traditional statistical methods, machine learning models, and deep 
learning approaches, evaluated through metrics such as MAE, RMSE, SMAPE, and R2. The model’s 
capability to accurately capture long-term pollutant trends underscores its reliability and validity  
as a predictive tool for policymakers and environmental managers. These results contribute to theoretical 
advancements in environmental monitoring and offer practical solutions for public health protection and 
pollution mitigation, demonstrating the potential of hybrid deep learning models in addressing complex 
forecasting challenges.
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carbon monoxide (CO), ozone (O3), and particulate 
matter (PM10, PM2.5), all of which are linked to severe 
health conditions such as respiratory and cardiovascular 
diseases (WHO, 2018). In developing countries like 
China, industrial activities are often concentrated in 
specific areas, exacerbating local air quality issues 
(AirVisual, 2020). As urbanization and industrial 
expansion continue, particularly in emerging economies 
like China, effective air quality monitoring and pollutant 
forecasting have become increasingly urgent.

Over the past three decades, China’s rapid 
industrialization has led to severe air pollution in 
numerous cities [1]. For instance, industrial areas in 
Xiamen, such as the Xinyang Industrial Zone, are 
economic hubs but also major sources of pollution.  
The high pollution levels in Xinyang have raised 
concerns about the impact on the environment 
and community health impact. Although stricter 
emissions controls and industrial regulations have been 
implemented in recent years, achieving accurate and 
real-time pollutant forecasting remains essential for 
effective environmental management.

Accurate forecasting of industrial pollutants is crucial 
for guiding environmental policies, protecting public 
health, and reducing pollution. Time series forecasting 
is a valuable tool for predicting pollutant concentrations, 
enabling proactive air quality management [2]. However, 
conventional statistical methods like Autoregressive 
Integrated Moving Average (ARIMA) models and 
machine learning models such as Categorical Boosting 
(CatBoost) often fail to capture the complex temporal 
dynamics and non-linear characteristics inherent in 
industrial pollution data [3]. These limitations highlight 
the need for advanced methods to manage long-sequence 
data and adapt to rapidly changing environmental 
conditions.

This study addresses these challenges by proposing 
a hybrid model that combines the Transformer 
architecture with the TimesNet framework. The 
objective is to enhance the accuracy and robustness 
of time series forecasting for industrial pollutants. By 
leveraging the strengths of both models, the hybrid 
Transformer-TimesNet model can effectively capture 
long-range dependencies and complex temporal patterns 
in industrial pollution data. The model was applied to 
data collected from monitoring stations in Xinyang 
Industrial Zone between 2019 and 2024, covering six 
key pollutants (SO2, NO2, CO, O3, PM10, and PM2.5) 
monitored on an hourly basis.

The significance of this research lies in its potential 
to improve the accuracy of environmental time 
series forecasting, offering a more reliable tool for 
predicting pollutant concentrations in industrialized 
regions. This hybrid model can provide policymakers 
and environmental agencies with actionable insights 
to mitigate the adverse impacts of air pollution, 
facilitating more informed decision-making in air 
quality management and public health protection.  
The findings of this study contribute to advancing the 

field of environmental monitoring and offer practical 
solutions for pollution reduction, with implications for 
other industrialized regions globally.

The remaining structure of this paper is as follows: 
Section 2 provides a literature review, Section 3 
details the model architecture and methods, Section 4 
introduces the dataset and experimental setup, Section 
5 discusses the research results, and Section 6 presents 
conclusions and future research directions.

Literature Review 

Accurate and timely pollutant concentration 
predictions are crucial for environmental protection 
agencies, policymakers, and urban planners. Time 
series forecasting techniques have proven valuable for 
predicting future pollutant levels based on historical 
data [4]. However, despite significant advancements in 
this field, many existing models struggle to handle the 
unique challenges posed by industrial pollutant data, 
particularly in capturing long-term trends in highly 
industrialized areas.

Traditional statistical models, widely applied in 
pollutant concentration prediction, primarily rely on 
time series analysis and linear regression. A classic 
time series approach, autoregressive Integrated Moving 
Average (ARIMA) models are frequently used to capture 
linear trends and seasonal patterns. While ARIMA is 
advantageous in terms of simplicity and interpretability, 
it is less adaptable to industrial pollutants’ high 
variability and non-linear characteristics [5]. Croston’s 
method, which is specialized for intermittent time series 
forecasting, has shown strong performance in specific 
industrial scenarios with sporadic pollution patterns, 
although it is less commonly applied [6].

Other regression models such as Linear Regression 
(LR), Ridge Regression, Bayesian Ridge, and Elastic Net 
are also commonly employed in pollutant forecasting. 
These models are generally suited to low-dimensional, 
linearly characterized data; however, the non-linear 
relationships often observed in industrial environments 
can reduce predictive accuracy [7]. Lasso Regression, 
Least Angle Regression, and Elastic Net models  
improve overfitting resistance by incorporating 
regularization terms. Lasso models, for example, 
are commonly used in feature selection for pollutant 
prediction, while Elastic Net, which combines L1 and 
L2 regularization, is effective in multi-variable, sparse 
data settings [8]. Orthogonal Matching Pursuit (OMP), 
a greedy algorithm used for sparse signal recovery, 
effectively extracts key features from sparse time 
series data, making it well-suited for certain industrial 
pollutant scenarios with high-dimensional data [9]. 
Huber Regression improves robustness by reducing 
sensitivity to outliers, though it still faces limitations 
in complex industrial pollutant forecasting [10].  
While these models can perform short-term forecasting 
under relatively stable conditions, they lack flexibility 
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in handling the non-linear, highly variable conditions 
typical of industrial pollution [11].

As data dimensions and scale increase, the limitations 
of traditional statistical models have led researchers to 
adopt non-linear machine learning methods [12]. Tree-
based models, such as Random Forest (RF) and Extra 
Trees (ET), have demonstrated exceptional performance 
in handling high-dimensional, non-linear data related to 
industrial pollutants [13]. These models are particularly 
effective in managing diverse pollutant characteristics 
and exhibit strong adaptability in contexts with complex 
variable interactions. However, their ability to model 
long-term dependencies is limited. Boosting-based 
models, including Gradient Boosting Regressor (GBR), 
Extreme Gradient Boosting (XGBoost), Light Gradient 
Boosting Machine (LightGBM), and CatBoost, are 
widely used for pollutant forecasting. They enhance 
prediction accuracy by sequentially refining multiple 
weak learners [14]. LightGBM, which uses a histogram-
based decision tree algorithm, performs exceptionally 
well with high-dimensional and large datasets [15]. 
CatBoost, designed for categorical feature encoding 
and balanced gradient handling, is particularly suitable 
for complex industrial pollutant data with non-linear 
characteristics [16]. XGBoost, an extension of gradient 
boosting optimized with second-order derivatives, 
achieves high speed and accuracy, making it suitable for 
complex pollutant forecasting tasks [17]. AdaBoost, a 
classic boosting method, enhances short-term pollutant 
fluctuation forecasting performance by aggregating 
weak classifiers [18]. Yet, these models often face 
challenges when dealing with long sequences of 
pollutant data and complex temporal dependencies. The 
k-Nearest Neighbors (KNN) algorithm is advantageous 
in capturing spatial similarities among pollutant 
features, though it faces limitations when applied to 
long time-series data [19].

With their robust feature extraction capabilities, 
deep learning models have brought breakthroughs 
in time series forecasting. Convolutional Neural 
Networks (CNN), Long Short-Term Memory (LSTM), 
and Recurrent Neural Networks (RNN) are prominent 
architectures that excel in capturing temporal 
dependencies and spatial features [20]. CNNs are 
particularly effective for identifying local patterns in 
industrial pollutant data, making them well-suited 
for air pollution forecasting [21]. LSTM networks are 
capable of modeling non-linear time series data with 
long-term dependencies and have shown remarkable 
success in air pollution forecasting [22]. For example, 
Aggarwal & Toshniwal (2021) employed LSTM to 
predict air quality in 15 regions in India, achieving high 
accuracy and showcasing LSTM’s strength in handling 
complex time dependencies [23]. However, these models 
struggle with handling multiple scales of temporal 
patterns and long-range dependencies, which are critical 
for accurately predicting the volatile pollution levels  
in industrial zones. RNN variants like BiLSTM and 
GRU further enhance sequence modeling but remain 

limited in capturing multi-scale temporal information 
[24].

Given the increasing demand for complex time 
series forecasting, researchers have explored hybrid 
deep learning models for improved prediction 
accuracy. Luo et al. (2021) combined LSTM with 
XGBoost to effectively predict COVID-19 transmission, 
demonstrating deep learning’s capability for capturing 
complex time series patterns [25]. Ahmed et al. (2024) 
developed a hybrid model combining ConvLSTM, 
SVM, and BiGRU for air quality prediction, achieving 
precise Air Quality Index (AQI) forecasts [26]. Liang 
et al. (2020) applied AdaBoost, ANN, Random 
Forest, Stacking Ensemble, and SVM for AQI-level 
forecasting with strong results [27]. Tsokov et al. (2022) 
used a CNN-LSTM hybrid model for spatiotemporal 
forecasting of PM2.5 and air pollution levels at specific 
sites [28], while Wu et al. (2023) introduced a deep 
learning-based Res-GCN-BiLSTM hybrid model, 
integrating Residual Neural Networks (ResNet), Graph 
Convolutional Networks (GCN), and Bidirectional 
LSTM (BiLSTM) for short-term regional NO2 and O3 
forecasting [29]. Kim et al. (2021) combined 3D-CNN 
with BiLSTM for atmospheric pollutant forecasting, 
proving deep learning’s effectiveness in capturing 
spatial and temporal trends of air pollutants [30]. Their 
findings highlighted the effectiveness of deep learning 
in capturing both temporal and spatial variations in 
air pollutant dynamics, surpassing traditional methods 
in performance. However, despite these significant 
advancements, challenges remain in improving the deep 
learning models’ predictive accuracy and generalization 
capability in time series forecasting, particularly for 
diverse and complex datasets.

Initially designed for natural language processing 
tasks, the Transformer model has recently gained 
increasing attention in time series forecasting due to 
its self-attention mechanism [31]. This mechanism 
enables the model to effectively capture long-term 
dependencies, offering significant advantages over 
RNN-based models [32]. For example, Wu et al. (2020) 
employed a Transformer-based machine learning model 
to predict influenza trends [33], while Zeng et al. (2023) 
demonstrated that Transformer models can effectively 
handle long-span time series data, leveraging their self-
attention mechanism to simultaneously focus on multiple 
critical points in the series, thereby improving prediction 
accuracy [34]. Furthermore, Liang et al. (2023) 
introduced AirFormer, an innovative Transformer model 
designed to predict national air quality in China with 
unprecedented spatial granularity, covering thousands 
of locations, thereby enhancing forecasting performance 
for complex pollutant time series [35]. Zhang and Zhang 
(2023) utilized a Sparse Attention Transformer Network 
(STN) to model air quality by learning long-term 
dependencies and intricate relationships from PM2.5 time 
series data [36]. Unlike traditional sequential models, 
Transformers can simultaneously process all points  
in a sequence, making them particularly well-suited  
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for handling long-sequence data. This capability 
provides distinct advantages in addressing the 
complexity of industrial pollution patterns [37].

Building on the success of Transformers, TimesNet 
further optimizes time feature processing by capturing 
multi-scale temporal patterns [38]. By incorporating 
multi-scale processing, TimesNet is particularly 
effective at modeling the fluctuating pollutant levels in 
industrial zones, where both gradual trends and sudden 
peaks must be considered. This model is a significant 
improvement over the traditional Transformer model, as 
it enhances its ability to handle the volatility inherent in 
industrial pollutant forecasting.

Our hybrid model, combining Transformer and 
TimesNet architectures, offers enhanced accuracy in 
pollutant forecasting. This hybrid model leverages 
the Transformer’s self-attention mechanism to handle 
long-term dependencies, while TimesNet captures fine-
grained, multi-scale temporal variations. In industrial 
zones like Xinyang, pollutant levels are affected by 
both large-scale industrial activity and short-term 
events (e.g., equipment failures or production surges), 
for which the hybrid model provides a robust predictive 
solution. The hybrid model has demonstrated significant 
improvements in predictive accuracy on complex 
datasets, effectively addressing both long- and short-
term temporal dependencies, which is crucial for 
accurate forecasting in dynamic industrial environments 
[39]. In Xinyang, where pollutant levels exhibit both 
gradual trends and sudden peaks, this hybrid model 
surpasses traditional models in predictive capability.

This study proposes a hybrid Transformer-TimesNet 
model that leverages the strengths of both architectures 
to overcome the limitations of previous approaches. 
The Transformer model’s self-attention mechanism 
is ideal for handling long-term dependencies and 
capturing global patterns in pollutant data, while 
TimesNet’s multi-scale temporal processing enhances 
the model’s ability to capture both gradual trends and 
sudden spikes in pollutant concentrations. The hybrid 
model effectively manages long-term dependencies 
and short-term fluctuations in industrial pollutant data, 
a challenge that traditional statistical and machine 
learning models cannot solve. Combining Transformer’s 
global attention mechanism with TimesNet’s multi-
scale temporal processing allows for more accurate 
modeling of both long-term trends and short-term 
events, such as production surges or equipment failures.  
The hybrid model is tailored to handle real-world 
industrial pollution data’s complex and noisy nature, 
particularly in zones like Xinyang, where both large-
scale industrial activities and transient events influence 
pollutant levels.

While existing models have made significant 
strides in air quality forecasting, they often struggle 
to capture the complexities of industrial pollutant 
data. By combining the strengths of the Transformer 
and TimesNet architectures, this hybrid model offers 
a more robust solution to the unique challenges posed 

by industrial zones. This approach is particularly 
well-suited for areas like Xinyang, where pollutant 
levels exhibit both long-term trends and sudden peaks. 
Through this innovation, this study aims to improve the 
accuracy and reliability of pollutant forecasting, offering 
a powerful tool for environmental monitoring and public 
health protection.

Methods

Transformer Mode

The Transformer model is built on key components, 
including Self-Attention, Multi-Head Attention, and 
Positional Encoding. The self-attention mechanism 
captures dependencies between any positions in a 
sequence, while the multi-head attention mechanism 
enhances feature representation by attending to different 
subspaces of the data in parallel. Positional encoding 
introduces sequential information to the model, 
addressing the inherent lack of temporal or positional 
awareness in Transformer architectures. The standard 
Transformer framework consists of an encoder and a 
decoder, though only the encoder is typically employed 
in time series forecasting tasks. The encoder leverages 
self-attention mechanisms and feed-forward neural 
networks to extract features from temporal data [40].

To clarify the functionality of the Transformer in 
time series forecasting, the following sections detail its 
core mechanisms and mathematical formulations:

Input Representation

For time series data, assume we have an input 
sequence X∈RT∙D, where T is the number of time steps, 
and D is the feature dimension. The input sequence is 
projected into a higher-dimensional space through a 
linear transformation:

  (1)

where  and  are 

trainable weight and bias parameters and dmodel  
represents the model dimension.

Positional Encoding

Since the Transformer lacks inherent sequence order 
information, positional encoding is added to introduce 
position awareness to the input sequence. The positional 
encoding is typically implemented using sine and cosine 
functions:

  (2)
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Residual Connections and Layer Normalization

Each sublayer (such as the self-attention layer and 
the feed-forward neural network) is followed by residual 
connections and layer normalization:

  (12)

where the SubLayer(x) could be either the self-attention 
layer or the feed-forward neural network and LayerNorm 
refers to the layer normalization operation.

Model Output

For time series forecasting, the output of the 
Transformer model represents the predicted sequence, 
indicating the values for future time steps. Let the final 
output of the Transformer be Zout. The forecasted values 
are obtained by projecting this output through a linear 
layer:

  (13)

This comprehensive mechanism enables the 
Transformer to excel in capturing long-term 
dependencies, making it well-suited for complex time 
series forecasting tasks.

TimesNet Model

TimesNet is a deep learning model specifically 
designed for time series forecasting, focusing on 
efficiently handling complex and long-sequence time 
series data. This model integrates multiple deep learning 
techniques to enhance learning capacity and prediction 
accuracy. Key components of TimesNet include the 
Temporal Convolutional Block, Global Average Pooling, 
and a Fully Connected Layer [41].

Input Segmentation

TimesNet decomposes the time series into different 
temporal blocks, where each block represents a periodic 
segment of the time series. Suppose the sequence is 
divided into K blocks, each of length L, then the input 
can be represented as:

  (14)

Where L is the length of each block, and d is the 
feature dimension of the time series.

Temporal Convolutional Blocks 

The temporal convolutional block uses multiple 
one-dimensional convolutional layers to capture 
dependencies across different time steps. For a single 
convolutional layer, the output feature H can be 
represented as:

  (3)

where t denotes the position index and i represents the 
dimension index. The positional encoding vector PE is 
added to the embedded input data:

  (4)

Self-Attention Mechanism

In the self-attention mechanism, the input Z is 
projected into three vectors: Query (Q), Key (K), and 
Value (V):

  (5)

  (6)

  (7)

where WQ, WK, and WV are trainable projection 
matrices. The attention scores are computed by taking 
the dot product of the query and key vectors, followed 
by scaling and applying the softmax function:

 (8)

where dK is the dimension of the key vector.

Multi-Head Attention

The multi-head attention mechanism allows for 
parallel computation across multiple self-attention 
heads, capturing different feature subspaces. For each 
head h, the output is:

  (9)

The outputs of all heads are concatenated and passed 
through a linear transformation:

  
(10)

where WO is the output projection matrix.

Feed-forward Neural Network

The output of the multi-head attention layer is 
passed through a feed-forward neural network, typically 
consisting of two linear layers with a ReLU activation 
function:

  
(11)
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  (15)

where Wconv is the convolutional kernel, bconv is the bias 
term, and ReLU is the activation function.

Global Average Pooling

After feature extraction by the temporal convolutional 
block, TimesNet applies global average pooling to 
aggregate information along the time dimension. Let 
the output from the temporal convolutional block be  
H∈RT×M, where T is the number of time steps after 
convolution, and M is the feature dimension. Global 
average pooling computes the mean along the time 
dimension, producing a global feature vector G:

  (16)

This reduces the temporal information into  
a single global feature vector while retaining important 
characteristics of the input sequence.

Fully Connected Layer

The global feature vector is then passed through  
a fully connected layer to map it to the final output 
layer, which generates the time series predictions. If the 
goal is to predict the next time step value, the output can 
be represented as:

  (17)

where Wfc and bfc are the weights and biases of the fully 
connected layer and ŷ represents the predicted value for 
the next time step.

Model Fusion Approach

This research proposes a feature-level fusion method 
to integrate Transformer and TimesNet, retaining and 
leveraging the unique features extracted by each model 
to maximize their strengths. Specifically, features from 
both models are concatenated, allowing the combined 
model to capture both local and global information and 
enhance predictive accuracy.

In this fusion process, TimesNet extracts local 
temporal features from the time series data, while 
the Transformer model provides global contextual 
information. The features are concatenated along the 
feature dimension. Assuming the feature vector output 
from TimesNet is ZTimesNet and from Transformer is  
ZTransformer, the fused feature vector Zfusion is represented 
as:

  
(18)

The concatenated feature vector Zfusion is then input 
into a fully connected layer Wfc to produce the final 
prediction:

  (19)

This feature fusion approach effectively combines 
the strengths of both models, capturing both local 
temporal patterns and global contextual information, 
thereby improving the prediction accuracy for pollutant 
concentration forecasting. Fig. 1 presents the architecture 
of the proposed model, including the Transformer 
processing module, the TimesNet processing module, 
and the model fusion process.

Fig. 1. Mechanism and Workflow of the Transformer-TimesNet Hybrid Model.
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Architecture Optimization

The core architecture design of the model is as 
follows:

TimesNet: Defined with a TimesBlock component, 
which includes a 1D convolutional layer to extract local 
features from time series data and introduces non-
linearity through a ReLU activation function. It then 
applies global average pooling to reduce dimensionality, 
followed by a fully connected layer to generate the final 
output.

Transformer Model: The Transformer first embeds 
the input into a higher-dimensional space, then processes 
these embedded features through multiple encoder-
decoder layers, ultimately producing predictions via a 
fully connected layer.

Fusion Model: This uses a concatenation fusion 
approach, where the outputs of the two models are 
concatenated along the feature dimension to form a new 
feature vector. This vector is then passed through a fully 
connected layer to yield the final prediction [42].

To optimize model performance, hyperparameters 
for both sub-models are tuned to ensure structural 
and functional harmony. Table 1 outlines the key 
hyperparameters and their search ranges. Specifically, 
TimesNet hyperparameters include hidden_size and 
num_blocks, which determine hidden layer size and 
convolutional block count, which are critical for 
enhancing their ability to handle time series data. 
Transformer hyperparameters include hidden_size 
(kept consistent with TimesNet for feature dimension 
alignment) and num_heads, which determine the 
parallelism of the multi-head attention mechanism. The 
learning rate is also optimized for the overall model’s 
training effectiveness.

This study employs the AdamW optimizer, an Adam 
optimization algorithm variant that independently 
controls weight decay to mitigate overfitting, making 
it particularly suited for complex models like the 
Transformer-TimesNet fusion. Unlike the traditional 
Adam optimizer, which applies L2 regularization 
coupled with Adam’s adaptive learning rates, AdamW 
decouples weight decay from the gradient update, 
which can significantly enhance generalization in large, 
complex models [43, 44].

The Optuna framework is used to further enhance 
model performance and optimize hyperparameters. 
Optuna is an efficient, automated optimization 

framework that uses Bayesian optimization to search the 
hyperparameter space by building a probabilistic model 
and selecting new hyperparameter combinations in each 
iteration based on an acquisition function, typically 
Expected Improvement (EI) or Upper Confidence Bound 
(UCB) [45].

Within Optuna, each hyperparameter combination 
generates an objective function value to minimize (or 
maximize) the function to optimize model performance. 
To speed up the search, Optuna implements an early 
stopping mechanism that halts optimization if the 
objective function shows no significant improvement 
over a set number of iterations [46].

For multi-objective optimization, since various 
hyperparameter combinations may impact multiple 
performance metrics, Optuna applies the Pareto 
optimality concept to find a balance among the 
objectives, optimizing each while maintaining 
overall performance. We defined the target objective 
function through extensive experiments based on 
hyperparameters such as hidden layer size, convolution 
block count, attention headcount, and learning rate. We 
selected the optimal configuration to minimize test set 
loss [47].

This architecture and hyperparameter optimization 
strategy successfully built an efficient hybrid model 
that leverages Transformer and TimesNet for accurate 
forecasting. The hyperparameter tuning improved the 
model’s accuracy in long-term predictions and allowed it 
to excel in pollutant concentration forecasting. Optuna’s 
effective hyperparameter optimization, combined 
with the weight decay mechanism of AdamW, further 
enhanced the model’s robustness and generalization 
ability. Future studies could explore other optimization 
algorithms and model fusion strategies to further 
enhance industrial pollutant forecasting performance. 

Materials

Spatial Scope and Time Span

This study focuses on the Xinyang Industrial Zone 
in Xiamen City as the research area. The zone is situated 
south of Maluan Bay, north of Caijianwei Mountain, 
extending east to Wengcuo and west to Haixin Highway, 
approximately 11.3 km from downtown Xiamen.  
The terrain slopes downward from south to north,  
with a slightly elevated central east-west corridor 
flanked by lower-lying areas on both sides, as shown in 
Fig. 2.

The pollutant concentration data used in this 
research, including SO2, NO2, CO, O3, PM10, and 
PM2.5, were obtained from the air quality monitoring 
data center of the environmental monitoring station 
in Xinyang Industrial Zone. The data, with an hourly 
granularity, spans the period from September 1, 2020, 
to January 7, 2024, encompassing a total of 26586 air 
quality records.

Table 1. Potential Hyperparameter Ranges.

Hyperparameter Search Range

Hidden_size 32 to 128

Num_blocks (TimesNet) 1 to 5

Num_heads (Transformer) 2, 4, 8

Learning_rate 0.0005 to 0.01
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This study aims to predict the concentrations of these 
pollutants and evaluate the performance of the proposed 
Transformer-TimesNet hybrid model by comparing it 
against other models. To ensure comparability across 
models, a consistent training and testing dataset split 
was used: the first 80% of the data was utilized for 
model training, while the remaining 20% was reserved 
for testing.

Data Preprocessing

Environmental data is highly susceptible to 
external factors, such as weather conditions, equipment 
malfunctions, or sudden pollution events, which can 
introduce anomalies. Table 2 presents an overview of 
the anomalous values identified in the dataset. In this 
dataset, a value of -1 indicates missing data, which 
is clearly inconsistent with real-world conditions. 
Therefore, missing values were replaced with 0,  
and a descriptive statistical analysis was conducted.  
The results are summarized in Table 3.

Table 3 presents each variable’s sample size, mean, 
standard deviation, minimum, maximum, and quartiles. 
The descriptive statistical analysis reveals significant 
outliers in the dataset. For instance, while the mean 
of CO is 3.04, the maximum value reaches 11059.8, 
which is clearly an anomaly. To mitigate the impact of 
these outliers on model training, this study employs 
Support Vector Machine (SVM) methods to address 
them by replacing the outliers with the mean value. 
SVM effectively identifies and isolates outliers by 

Fig. 2. Geographic Location of Xinyang Industrial Zone.

Table 2. Summary of anomalous values in the dataset.

Feature Missing Values Negative Values

SO2 0 310

NO2 8 405

CO 15 1248

O3 0 160

PM10 0 139

PM2.5 0 246

Table 3. Descriptive Statistics of the Dataset.

Pollutant SO2 NO2 CO O3 PM10 PM2.5

Count 26586 26586 26586 26586 26586 26586

Mean 4.04645 21.76 3.03572 52.0312 40.6862 18.3441

Std 2.16587 13.4463 137.342 32.7039 22.5754 9.94619

Min 0 0 0 0 0 0

25% 3 12 0.4 26 25 11

50% 4 19 0.5 49 36 17

75% 5 28 0.6 73 53 24

Max 97 116 11059.8 218 222 153
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constructing a maximized boundary, preventing these 
anomalies from negatively affecting the model. This 
approach is particularly suitable for datasets with long-
tailed distributions or outliers, as it helps smooth the 
data and reduce the interference of outliers on model 
performance. The core principle of SVM for outlier 

detection is constructing a boundary (hyperplane 
or dividing surface in higher-dimensional space) to 
separate normal data from anomalies [48]. 

During the anomaly detection process, we employed 
the One-Class Support Vector Machine (One-Class 
SVM) algorithm and applied data normalization to 

Fig. 3. SVM-Based Anomaly Detection Results and Time Series Plot of Pollutant Concentrations.
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ensure consistency. The radial basis function (RBF) 
was used as the kernel, where the gamma parameter, 
which controls the influence range of the kernel, was set 
to 0.1. The nu parameter, which defines the proportion 
of data points classified as anomalies, was set to 0.05. 
After training the model, we predicted the status of 
each data point, classifying them as either normal (1) or 
anomalous (-1). The data were then inverse-transformed 
to restore the original scale [49]. Based on the SVM 
detection results, anomalous values were replaced with 
the mean of the normal data points, thereby minimizing 
the impact of anomalies on subsequent analyses and 
ensuring data consistency.

Since descriptive statistics show that only the CO 
column contains significant outliers, the SVM outlier 
detection method is applied to this column, and outliers 
are replaced with the mean value, as shown in Fig. 3.

Due to the large volume of data, directly plotting 
all time series data would result in overly dense charts 

that are difficult to interpret. Therefore, we applied 
downsampling to reduce the number of plotted data 
points, preserving the main trends and patterns in 
the time series and making the charts clearer. The 
downsampled data retains key long-term trends, 
seasonal changes, and periodic patterns. Reducing the 
noise and detail helps better identify long-term trends 
and seasonal fluctuations. Fig. 3 displays the time series 
graphs of the concentrations of various pollutants. It can 
be observed that some pollutants exhibit similar trends 
within the industrial zone, such as NO2 and PM2.5, as 
well as PM10 and PM2.5. 

Seasonal Fluctuation Study

A detailed annual seasonal analysis of pollutant 
concentrations was conducted, and the results are 
presented in Fig. 4. The SO2 concentration exhibits a 
relatively stable annual average, but its seasonal averages 

Fig. 4. Annual Mean Seasonal Analysis of Pollutant Concentrations, Monthly Average Concentrations, and Seasonal Fluctuation Rates 
(2023).
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are higher in spring and winter. NO2 concentrations 
are higher in spring and summer, with a lower peak 
value in summer. PM10’s distribution of annual mean 
values is similar to that of NO2, but its peak values are 
mainly concentrated in the autumn. CO concentrations 
show a decreasing trend in peak values over time. O3 
concentrations have higher mean values in summer and 
winter, with peak values concentrated in autumn. The 
maximum concentration of PM2.5 occurs in the summer.

The observed patterns suggest that pollutant 
concentrations exhibit consistent periodic fluctuations 
throughout the year. Since the fluctuation trends across 
different years are similar, this study focuses on the 
2023 pollutant concentration data for detailed volatility 
analysis, as shown in Fig. 4. SO2 and CO show low 
volatility and remain relatively stable, indicating that the 
concentration changes for these pollutants are minimal 
throughout the year. In contrast, other pollutants exhibit 
varying degrees of volatility, with PM10 and O3 showing 
more significant fluctuations. Furthermore, NO2 exhibits 
substantial fluctuations in early to mid-August, likely 
related to increased industrial activity during that 
period.

Table 4 displays the concentration limits for 
various pollutants set by the Ministry of Ecology and 
Environment of China. These limits reflect the country’s 
air quality management policies and emphasize the 
strict monitoring of major pollutants (Ministry of 
Ecology and Environment of China, 2016). These limits 
provide important reference points for further analysis 
of pollution levels in this study area.

Based on the concentration limits in Table 4 and 
the frequency distribution histogram in Fig. 5, it is 
clear to discern the pollution levels of each pollutant. 
SO2 concentrations mostly fall within the 0-25 μg/m3 
range, not reaching the Level 1 pollution threshold. NO2 
concentrations predominantly range from 0-100 μg/m3, 
staying below the Level 1 pollution warning level. 
PM10 and PM2.5, evaluated based on 24-hour average 
concentrations, show relatively high levels in the 
industrial zone, with concentrations meeting the Level 1 
pollution threshold. CO concentrations are mostly within 
the 0-2 mg/m3 range, with few instances exceeding 
3 mg/m3, indicating that CO concentrations are well-
controlled. O3 concentrations primarily fall within  
the 0-200 μg/m3 range, with some instances exceeding 
the Level 1 pollution threshold.

Results and Discussion

Evaluation Metrics

This study adopted a series of commonly used 
evaluation metrics, including MAE, MASE, R2, RMSE, 
RMSSE, and SMAPE [50]. These metrics provide a 
comprehensive quantitative basis for evaluating the 
model’s prediction performance, ensuring the scientific 
rigor and reliability of the results. Each metric performs 
differently across various pollutants. To present a clearer 
comparison of model performance, both quantitative 
results and fitting graphs are provided to visually 
illustrate the prediction accuracy of the models.

Table 4. Environmental Air Pollutant Concentration Limits.

Pollutant Average Time
Concentration Limit

Unit
Level 1 Level 2

SO2

Annual Average 20 60

μg/m3

24-hour Average 50 150

1-hour Average 150 500

NO2

Annual Average 40 40

24-hour Average 80 80

1-hour Average 200 200

CO
24-hour Average 4 4

mg/m3

1-hour Average 10 10

O3

Daily Max 8-hour Average 100 160

μg/m3

1-hour Average 160 200

PM10

Annual Average 40 70

24-hour Average 50 150

PM2.5

Annual Average 15 35

24-hour Average 35 75
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Mean Absolute Error (MAE): The average absolute 
difference between the actual observed values and the 
predicted values across n samples are calculated as:

  (20)

Where yi represents the actual values and ŷi  
represents the predicted values.

Mean Absolute Scaled Error (MASE): This is 
a normalized version of MAE used to compare the 
forecasting performance across different time series. 
The lower the MASE, the better the improvement in 
prediction relative to a baseline model:

  (21)

Coefficient of Determination (R2): R2 measures the 
proportion of variance in the dependent variable that is 
predictable from the independent variables. The value of 
R2 ranges between 0 and 1, where a value closer to 1 
indicates a stronger explanatory ability of the model:

  (22)

Root Mean Squared Error (RMSE): RMSE is the 
square root of the mean squared error, which quantifies 
the standard deviation of prediction errors:

  (23)

Root Mean Squared Scaled Error (RMSSE): This 
scaled version of RMSE is used to compare prediction 
performance across different datasets. A smaller RMSSE 
indicates a greater improvement in prediction accuracy 
compared to a baseline model. Its advantage lies  

in standardizing comparisons across varying dataset 
sizes and variability. The formula is:

  (24)

Symmetric Mean Absolute Percentage Error 
(SMAPE): SMAPE measures the relative error between 
the predicted and observed values, which is particularly 
effective when observed values are near zero. Lower 
values indicate better predictive accuracy. SMAPE 
performs well in time series forecasting and scenarios 
requiring relative error assessments. The formula is:

  (25)

Model Training

The specific steps of the training process are as 
follows:

Epoch Setup: Set the training cycles to 30 epochs to 
ensure the model converges after sufficient iterations.

Model Training Mode: Enable the model’s training 
mode to prepare it for the training process.

Loss Accumulation: Use epoch_loss to accumulate 
the loss from each batch and continuously monitor the 
training progress.

Data Format Conversion: Convert each batch of data 
into a format suitable for the TimesNet and Transformer 
models.

Gradient Zeroing: Clear the gradients in the 
optimizer before each optimization step to avoid 
cumulative effects.

Forward Propagation: Pass the input data through 
the hybrid model to compute the predicted output.

Loss Calculation: Compute the loss function value 
based on the predicted output and true labels.

Fig. 5. Frequency Histogram of Pollutant Concentrations.
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Backward Propagation: Use loss.backward() to 
calculate the gradients for updating the model weights.

Parameter Update: Use optimizer.step() to adjust the 
model parameters based on the computed gradients.

The optimal hyperparameters obtained from training 
are shown in Table 5. This parameter configuration 
effectively balances the model’s learning capacity and 
stability, improving prediction accuracy.

Model Comparison

To improve the accuracy of pollutant concentration 
prediction, this study constructs separate TimesNet, 
Transformer, and RNN models and uses the PyCaret 
library to incorporate various traditional statistical and 
machine learning models for comparison and evaluation. 
This helps highlight the hybrid model’s predictive 
advantages.

RNN is a deep learning model for handling 
sequential data and capturing temporal dependencies 
in air quality monitoring data. The hourly pollutant 
concentration depends on the previous values, so RNN 
effectively identifies these sequential dependencies. The 
Transformer model can capture long-term dependencies 
and global features from different time points in the 
sequence. TimesNet, a deep learning model designed 
specifically for time series forecasting, further optimizes 
time feature processing by extracting multi-scale 
temporal patterns and is suitable for complex time series 
data, capturing dependencies at different time scales.

Multiple statistical and machine learning models 
were constructed using PyCaret for benchmarking 
to comprehensively evaluate model performance.  
This comparative approach between deep learning 
models, traditional statistical methods, and machine 

learning frameworks provides a robust basis for 
assessing the proposed hybrid model’s superior 
performance.

Performance of the Transformer-TimesNet  
Hybrid Model

Table 6 shows the evaluation metrics of the 
Transformer-TimesNet hybrid model for predicting 
pollutant concentrations.

SO2: R
2 is 0.6057, indicating that the model captures 

the main trend of SO2 changes. The MAE is 0.5703, and 
the SMAPE is 0.1233, indicating low prediction errors.

NO2: R
2 is 0.7239, showing a good fit for NO2. The 

MAE is 4.3955, and the RMSE is 6.5545, with relatively 
low error.

CO: R2 is 0.7136, indicating good model performance 
with low error.

O3: R2 is 0.8635, indicating the model’s high 
adaptability to complex time series data.

PM10: R
2 is 0.7815, which reflects a good prediction 

of PM10 variation, although errors (MAE: 7.6261, RMSE: 
10.9775) are relatively high.

PM2.5: R2 is 0.7970, and SMAPE is 0.1891, showing 
good performance with minimal error.

Performance of Deep Learning Models

Table 7 presents the evaluation results of RNN, 
Transformer, and TimesNet models for pollutant 
concentration prediction. The following is a detailed 
analysis of each model’s performance:

RNN Model Performance

The RNN model demonstrates stable performance 
in predicting most pollutant concentrations, effectively 
capturing short-term trends in time series data. The R2 
values for most pollutants are above 0.6, indicating that 
the model explains a substantial portion of the variance 
in the data and exhibits strong fitting capabilities.

SO2: With an R2 of 0.6123, the model explains 
61.23% of the variance in SO2 concentration, with 
MAE = 0.6585, RMSE = 0.8731, and SMAPE = 0.1208, 
indicating high prediction accuracy.

Table 5. Optimal Hyperparameter Settings.

Hyperparameter Search Result

Hidden_size (hidden layer size) 64

Num_blocks (TimesNet blocks) 3

Num_heads (attention heads) 2

Learning_rate (learning rate) 0.001058

Table 6. Evaluation of the Transformer-TimesNet Hybrid Model on Pollutant Concentration Prediction.

Model: Transformer-TimesNet MAE MASE R2 RMSE RMSSE SMAPE

SO2 0.57028 1.13629 0.60565 0.88054 0.94343 0.12325

NO2 4.39547 0.99247 0.7239 6.55454 0.9173 0.1851

CO 0.05998 1.26037 0.71358 0.10551 0.9042 0.1415

O3 8.13991 0.90167 0.86352 12.5324 0.88607 0.23398

PM10 7.62612 0.97896 0.78153 10.9775 0.93629 0.18719

PM2.5 3.09063 1.03604 0.79704 4.4887 0.97472 0.18907
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NO2: An R2 of 0.7111 shows strong prediction 
performance, with a low SMAPE of 0.1842, 
demonstrating effective forecasting.

CO: With R2 = 0.7141, the model accurately predicts 
CO concentrations, as indicated by the low MAE 
(0.0556) and RMSE (0.1054).

O3: The model’s R2 value of 0.8438 reflects its strong 
ability to explain O3 concentration variations.

PM10 & PM2.5: The R2 values of 0.7924 and 0.7925 
indicate satisfactory prediction performance with 
relatively low error metrics.

Transformer Model Performance

Despite its theoretical advantages with self-attention 
mechanisms, the Transformer model performs relatively 
poorly in this task. Most pollutants have negative R2 
values, suggesting that the model fails to effectively 
capture time series dependencies, even under ideal 
conditions.

SO2 & NO2: The Transformer model struggles to 
predict SO2 and NO2, with R2 values of -2.0445 and 
-0.2976 and very high SMAPE values (0.5996 and 
0.4248), indicating large prediction errors.

CO: The model performs slightly better for CO, with 
R2 = 0.1840 and SMAPE = 0.2863, but still lags behind 
RNN in performance.

O3 & PM10: The Transformer model shows poor 
results in predicting O3 and PM10, with R2 values of 
-0.7136 and -1.9268, respectively, and very high SMAPE 
scores.

PM2.5: Similarly, the prediction of PM₂.₅ also 
underperforms, with R2 = -2.5311 and SMAPE = 1.4292.

TimesNet Model Performance

TimesNet performs well for some pollutants, 
especially CO, but struggles with others, such as NO2 
and O3. Its advantage lies in extracting local time series 
features, though it faces limitations when capturing 
long-term dependencies.

SO2: The model’s R2 of 0.2119 can explain only 
21.19% of SO2 variations. However, it demonstrates 
moderate prediction accuracy with MAE = 0.8853 and 
SMAPE = 0.1962.

NO2 & O3: The model’s performance is weaker for 
NO2 (R

2 = 0.3242, SMAPE = 0.3338) and O3 (R
2 = 0.2213, 

SMAPE = 0.5283).

Table 7. Evaluation of RNN, Transformer, and TimesNet Models for Pollutant Concentration Prediction.

Model: RNN MAE MASE R2 RMSE RMSSE SMAPE

SO2 0.65852 1.11285 0.61229 0.8731 0.93546 0.12083

NO2 4.31879 0.97516 0.71108 6.70499 0.93835 0.18415

CO 0.05557 1.16756 0.71405 0.10542 0.90345 0.13639

O3 9.46619 0.93782 0.84382 13.4068 0.94789 0.24252

PM10 9.25754 0.93165 0.79244 10.6998 0.91261 0.17716

PM2.5 6.10028 1.03928 0.79254 4.53816 0.98546 0.18903

Model: Transformer MAE MASE R2 RMSE RMSSE SMAPE

SO2 2.09265 4.16962 -2.0445 2.44661 2.62136 0.59956

NO2 9.78553 2.20952 -0.2976 14.2097 1.98863 0.42479

CO 0.13557 2.84856 0.18399 0.17809 1.52618 0.28627

O3 33.5959 3.72148 -0.7136 44.4085 3.13976 0.78687

PM10 34.3017 4.40331 -1.9268 40.1791 3.42694 1.22049

PM2.5 16.3477 5.48007 -2.5311 18.7226 4.0656 1.42923

Model: TimesNet MAE MASE R2 RMSE RMSSE SMAPE

SO2 0.88525 1.76385 0.21193 1.24477 1.33368 0.19618

NO2 7.83147 1.7683 0.32417 10.2548 1.43514 0.33383

CO 0.08804 1.84978 0.55744 0.13115 1.12394 0.19157

O3 23.7157 2.62703 0.22133 29.9352 2.11648 0.52825

PM10 12.2553 1.57321 0.51568 16.3444 1.39404 0.29654

PM2.5 5.36558 1.79865 0.48922 7.12078 1.54628 0.30583
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CO: The model performs well for CO, with  
R2 = 0.5574, MAE = 0.0880, and SMAPE = 0.1916, 
indicating a good fit and minimal prediction error.

PM10 & PM2.5: The model’s performance for PM10 
(R2 = 0.5157, SMAPE = 0.2965) and PM2.5 (R

2 = 0.4892, 
SMAPE = 0.3058) is moderate but still reflects some 
prediction errors.

(1) Comparison of Transformer-TimesNet Hybrid 
Model

The RNN model performs well in predicting PM10, 
CO, and PM2.5, effectively capturing these pollutants’ 
temporal trends and short-term dependencies. 
Particularly in short-term forecasting, RNN handles 
the concentration variations of these pollutants well, 
with relatively high R2 values, indicating good model 
fit. However, the RNN model exhibits larger errors 
when predicting pollutants like O3. This is especially 
evident when attempting to capture complex long-
term dependencies, limiting its prediction accuracy 
for long-term time series data. Despite this, RNN’s 
performance remains acceptable in multi-feature time 
series forecasting, especially for pollutants with short-
term concentration fluctuations, where it successfully 
captures most pollutant concentration changes.

The Transformer model, which employs the self-
attention mechanism, is theoretically capable of 
capturing global information, making it suitable for 
handling time series data with complex dependencies. 
Transformer excels in learning long-term dependencies 
and global patterns. However, its performance is 
suboptimal when used alone for pollutant concentration 
forecasting. The model underperforms in predicting 
most pollutants, such as SO2 and PM10, suggesting that 
Transformer has limitations in capturing local temporal 
dependencies. While the self-attention mechanism 
allows for long-distance dependencies, it struggles with 
local dependencies in time series data, which hampers 
its effectiveness in pollutant concentration prediction 
compared to other models.

TimesNet focuses on extracting local temporal 
features, which results in a strong performance for 
data with significant local dependencies, such as CO, 
providing a good fit and low error. However, TimesNet’s 
performance is moderate when predicting pollutants 
like NO2 and PM10, particularly poor for NO2, where 
the model’s fit is inadequate. Additionally, TimesNet 
struggles with long-term predictions, especially on 
larger datasets. Its ability to extract local features 
makes it highly effective for short-term predictions of 
certain pollutants, but its performance is constrained 
when dealing with complex temporal relationships, 
particularly long-term dependencies.

Although the individual performances of Transformer 
and TimesNet are subpar, the Transformer-TimesNet 
hybrid model combines TimesNet’s local temporal 
feature extraction with the Transformer’s ability to 
capture global information, effectively compensating for 
the weaknesses of both models. TimesNet first processes 
the input data to extract local temporal features, and 

Transformer further captures global patterns and long-
term dependencies. This synergy allows TimesNet to 
provide local modeling capabilities, while Transformer’s 
self-attention mechanism enhances the model’s 
understanding of long-term dependencies and global 
patterns, achieving a complementary relationship 
between local and global features. This hybrid approach 
is better equipped to handle complex time series data, 
particularly pollutants with both local and long-term 
dependencies. The hybrid model demonstrates excellent 
performance in pollutant concentration forecasting, 
particularly for O3 and PM2.5. Compared to Transformer 
or TimesNet alone, the hybrid model captures key 
patterns in the time series data more effectively through 
multi-level feature processing. By integrating the 
strengths of both models, the Transformer-TimesNet 
hybrid model improves prediction accuracy for 
pollutant concentrations. When compared to individual 
deep learning models, the hybrid model offers a more 
comprehensive ability to capture both local and global 
patterns, providing greater adaptability.

Performance of Traditional Statistical 
Models and Machine Learning Models

The PyCaret library was used to automatically 
construct multiple traditional statistical methods and 
machine learning prediction models compared to 
traditional statistical methods and machine learning 
models. Traditional statistical methods generally require 
stationary data, so we first tested the stationarity of the 
data. Using unit root tests (such as the ADF test), we 
checked the stationarity of the data. The p-value in the 
ADF test indicates the likelihood of the null hypothesis 
being true, where the null hypothesis states that the 
data series contains a unit root, meaning the data is 
non-stationary. By plotting the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) for 
each indicator (shown in Fig. 6), and based on the test 
results, the p-values for all statistical indicators were 
less than 0.05, rejecting the null hypothesis, indicating 
that the data is stationary [51]. Therefore, we proceeded 
with modeling based on stationary time series data, and 
the results were as follows, with the best models selected 
for comparison.

During the model construction process, we 
compared the prediction performance of multiple 
models, including deseasonalized and detrended 
models. The concentrations of SO2, NO2, CO, O3, 
PM10, and PM2.5 were predicted, and the prediction 
accuracy of the models was evaluated. The models 
tested include Decision Tree, Light Gradient Boosting 
Machine (LightGBM), Gradient Boosting Machine 
(GBR), Orthogonal Matching Pursuit (OMP), CatBoost 
Regressor, Random Forest (RF), Linear Regression 
(LR), Ridge Regression, Extreme Random Trees (ET), 
Bayesian Ridge Regression (BR), AdaBoost, Lasso 
Regression, Lasso Least Angle Regression (LLAR), 
Croston method, Elastic Net (EN), Extreme Gradient 



Siyuan He, et al.16

Boosting (XGBoost), K-Nearest Neighbors (KNN), 
Huber Regression, and ARIMA time series model. 
Ultimately, we selected the best-performing models 
from the multiple models for comparison. The specific 
results are shown in Table 8, with the optimal indicators 
highlighted in bold.

Based on the results of PyCaret’s multi-model 
construction and selection, the performance of the 
best models for different pollutants varies significantly. 
The optimal model for SO2 is Linear Regression, 
but its R2 value is only 0.0011, indicating limited 
explanatory power. The optimal model for NO2 was 
the Croston model, with MAE, MASE, R2, and RMSE 
values of 4.382, 0.572, -0.0001, and 5.37, respectively. 
However, the negative R2 suggests poor generalization 
ability. For CO, the best model was KNN, with MAE, 
MASE, R2, and RMSE values of 0.11, 1.301, -0.515, 
and 0.1228, respectively, performing well in MAE 
and SMAPE but with a low R2. The best model for O3 
was LightGBM, with MAE, MASE, R2, and RMSE 
values of 6.834, 0.364, 0.812, and 7.791, respectively, 

indicating good performance in capturing the variation 
in O3 concentration. For PM10, the best model was the 
CatBoost Regressor, with MAE, MASE, R2, and RMSE 
values of 12.869, 0.899, -0.144, and 16.3046, showing 
poor performance with a negative R2. For PM2.5, the best 
model was the Decision Tree, with MAE, MASE, R2, and 
RMSE values of 9.069, 1.38, -0.96, and 11.915, indicating 
poor performance with a negative R2.

The study results show that compared to the 
models selected by PyCaret, the hybrid model based 
on Transformer and TimesNet outperforms key 
evaluation metrics like R2. While certain traditional 
statistical methods and machine learning models (such 
as CatBoost and LightGBM) perform well in specific 
metrics (e.g., the Croston model for NO2 outperforms the 
hybrid model in MASE and RMSSE), their low R2 values 
indicate poor generalization. In contrast, the hybrid 
model demonstrates stronger trend-capturing ability and 
generalization performance in forecasting CO, PM10, 
and PM2.5 concentrations. For O3 prediction, although 
traditional models perform well in MAE and RMSE,  

Fig. 6. ACF and PACF Plots of Various Prediction Indicators.
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Table 8. Predictive Indicator Evaluation of Pollutant Concentrations After Model Selection Using PyCaret.
Predictive 
Indicator Model MAE MASE R2 RMSE RMSSE SMAPE

SO2

LR 1.1832 1.2389 0.0011 1.4472 0.9911 0.2198

Ridge Regression 1.1832 1.2389 0.0011 1.4472 0.9911 0.2198

BR 1.1834 1.2391 0.0003 1.4478 0.9915 0.2199

ET 1.1909 1.2469 -0.0444 1.4825 1.0152 0.219

NO2 Croston 4.3823 0.5723 -0.0001 5.37 0.4944 0.1807

CO

KNN 0.1101 1.301 -0.5153 0.1228 0.9786 0.1779

CatBoost Regressor 0.111 1.3124 -0.5528 0.1243 0.9912 0.1769

Decision Tree 0.113 1.3356 -1.0764 0.1377 1.0979 0.1782

EN 0.1175 1.3889 -1.3775 0.1534 1.2232 0.1897

O3

LightGBM 6.834 0.3647 0.8124 7.971 0.3057 0.9911

CatBoost Regressor 8.4341 0.4501 0.6973 10.1192 0.3881 1.0742

PM10

CatBoost Regressor 12.8691 0.8996 -0.1441 16.3046 0.8217 0.2018

LightGBM 12.8924 0.9012 -0.1065 16.0682 0.8098 0.2008

PM2.5

Decision Tree 9.0692 1.3869 -0.9615 11.9156 1.3196 0.3239

GBR 9.4498 1.4451 -0.3939 10.2785 1.1384 0.3522

Fig. 7. Visualization of the predictive performance of different models.
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the hybrid model excels in R2, offering a better 
explanation of the complex variations in O3, especially 
in long-term fluctuations.

Furthermore, while PyCaret provides automated 
modeling and optimization tools, it requires 
constructing multiple models and selecting the best, 
which can be time-consuming, especially for large 
datasets. In comparison, the hybrid model achieves 
a better balance between time cost and performance. 
Specifically, the hybrid model improves R2 by 21.6%, 
2%, 29.06%, and 40% for SO2, PM10, CO, and PM2.5 
predictions, respectively. Although traditional models 
for NO2 and O3 slightly outperform the hybrid model in 
some metrics, the hybrid model stands out in terms of 
R2, offering superior performance overall.

Fig. 7 presents multiple visualizations illustrating 
the overall performance of various models in predicting 

pollutant concentrations, including SO2, NO2, CO, O3 
PM10, and PM2.5. Based on multiple evaluation metrics 
such as MAE, MASE, R2, RMSE, RMSSE, and SMAPE, 
the Transformer-TimesNet hybrid model consistently 
demonstrates lower prediction errors across most 
pollutants, particularly excelling in MAE and RMSE. 
This highlights its superior accuracy and stability 
in pollutant concentration forecasting. In contrast, 
standalone models such as RNN, Transformer, and 
machine learning approaches (e.g., CatBoost and 
LightGBM) exhibit suboptimal performance for certain 
pollutants, such as PM10 and PM2.5. The heatmap and 
radar chart further illustrate the disparities in model 
performance across different evaluation metrics, 
reinforcing the advantages of the Transformer-TimesNet 
model in multi-pollutant forecasting.

Fig. 8. Performance of Pollutant Concentrations on Test Set.
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Model Prediction Results

The model demonstrates overall excellent 
performance, particularly in predicting NO2 and PM10 
concentrations (as shown in Fig. 8). The results for SO2, 
NO2, CO, and PM10 show that the model effectively 
captures the trends and seasonality of the data with 
high accuracy in predicting peak values. In particular, 
the model exhibits strong trend-capturing ability in 
the long-term predictions of NO2 and PM10, accurately 
reflecting the fluctuations of these pollutants at different 
time scales.

However, the prediction of SO2 concentration is 
slightly less accurate than other pollutants. While the 
model successfully captures the overall periodic changes 
of SO2, its accuracy in predicting extreme values 
is somewhat lacking. This may be due to the sharp 
fluctuations in SO2 levels and the sporadic industrial 
emissions, especially during peak periods, which cause 
significant volatility in the data, making the prediction 
more challenging. Additionally, SO2 concentrations are 
strongly influenced by short-term industrial activities, 
which often result in sudden variations that are 
challenging for traditional forecasting models to fully 
capture. These inherent characteristics of SO2 dynamics 
highlight the need for further refinement in the modeling 
approach to better address short-term and high-volatility 
scenarios.

For O3 and PM2.5 predictions, despite the influence of 
multiple external factors (e.g., photochemical reactions 
and atmospheric circulation), the model still exhibits 
strong trend-capturing capabilities. In particular,  
PM2.5 shows high robustness in capturing cyclical 
fluctuations, indicating that the model can handle 
complex time-series fluctuations and provide reliable 
predictions. Notably, for longer time scales, the model 
accurately reflects the changing trends of PM2.5, 
suggesting that it can effectively manage the complexity 
of pollutant concentrations impacted by multiple  
factors.

While the hybrid Transformer-TimesNet model 
demonstrates substantial accuracy and trend detection 
advantages, its generalizability to other regions and 
pollutants remains a critical concern. Differences in 
local emission sources, meteorological conditions, and 
regulatory frameworks may limit the model’s scalability 
without extensive retraining on region-specific datasets. 
Future research should explore transfer learning 
techniques to adapt the model to diverse environmental 
settings, ensuring broader applicability.

From a policy perspective, the predictive insights 
derived from this model have significant implications 
for urban air pollution mitigation strategies. In 
developing economies, where industrial emissions 
are a primary contributor to air pollution, targeted 
regulatory interventions – such as stricter emission 
standards and real-time monitoring – can leverage such 
forecasting models to implement proactive measures. 

For example, integrating predictive analytics with 
vertical decentralization in environmental governance 
(i.e., balancing local and central regulatory authority) 
can optimize pollution control policies, particularly in 
industrial zones where decentralized regulation has 
shown mixed effectiveness in reducing enterprise-level 
emissions [52].

Overall, while the Transformer-TimesNet model 
demonstrates superior performance in pollutant 
forecasting, addressing its scalability, volatility 
handling, and integration with policy-driven variables 
remains crucial. Future research should explore 
interdisciplinary approaches that combine predictive 
modeling, environmental economics, and regulatory 
frameworks to enhance air pollution management. 

Conclusions

This study developed and validated a hybrid 
Transformer-TimesNet model for predicting industrial 
pollutant levels in the Xinyang industrial zone. 
The model significantly outperforms widely used 
forecasting models (including standalone deep learning 
models, traditional statistical methods, and machine 
learning models) on various evaluation metrics. 
This demonstrates a superior ability to capture long-
term trends in pollutant concentrations. The model 
significantly improved prediction accuracy, with all 
performance metrics showing varying degrees of 
improvement compared to the baseline models.

Theoretical Implications

This research enhances time series forecasting in 
environmental monitoring by integrating Transformer 
and TimesNet models. Unlike traditional approaches 
that often struggle with capturing non-linear 
patterns, our hybrid model effectively learns multi-
scale dependencies in air pollution data. The model’s 
success underscores the transformative potential of 
advanced deep learning techniques in environmental 
monitoring and management, further contributing to the 
expanding body of research on AI-driven solutions in 
environmental science.

 Managerial and Policy Implications

The improved forecasting accuracy has significant 
implications for environmental regulation and urban 
planning. Accurate predictions enable policymakers to 
implement more effective pollution control measures, 
optimize industrial emission strategies, and enhance 
public health interventions [53]. The model’s application 
in early warning systems can help mitigate health risks 
associated with air pollution, especially in industrialized 
and developing regions.
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Research Limitations and Future Directions

While promising, this study has certain limitations. 
The model was tested exclusively in Xinyang, and its 
applicability to other industrial zones requires further 
investigation. Future research should focus on validating 
the model across diverse regions, incorporating real-
time monitoring data, and optimizing computational 
efficiency for practical deployment. Additionally, 
extending the model to predict a broader range of 
pollutants, such as volatile organic compounds (VOCs) 
and greenhouse gases (e.g., CO2 and CH4), would  
further enhance its effectiveness in environmental 
monitoring.

Additionally, incorporating external factors such as 
meteorological conditions and economic activities could 
improve prediction accuracy. Explainable AI techniques 
should also be explored to enhance model transparency 
for policymakers. Cross-regional validation and 
integration with geospatial analysis could support 
more data-driven urban planning and environmental 
management.

In summary, this study highlights the potential of 
advanced hybrid deep learning models for predicting 
industrial air pollutants, offering valuable insights for 
both theoretical research and practical applications. 
Future research should enhance the model’s adaptability, 
interpretability, and scalability, ensuring its broader 
application in environmental monitoring and public 
health management.
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