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Abstract

China’s residential energy consumption has been rising due to the country’s fast urbanization  
and economic development. As a result, the precise measurement of residential carbon dioxide emissions 
(CE) is crucial for reducing greenhouse gas emissions and can serve as a foundation for the adoption  
of carbon reduction laws in urban areas. The purpose of this work is to develop a method that integrates 
fine-grained features of land use on a grid and nighttime light intensity (NLI) to estimate urban 
residential CE. First, the population and nighttime lighting data are used to depict the fine-grained  
land use features; second, three different unmixing models are built to obtain the NLIs of various 
land use types as well as the lighting values of residential areas; and third, the residential CE was 
estimated using the method of integrating NLI with the fine-grained land use features of the grid,  
and a comparative test was conducted. The study’s findings indicate that (1) there is a strong positive 
linear association between the total amount of lights in residential areas and the residential CE  
of Guangzhou inhabitants, with a fitted R2 of 0.9318 at a 95% confidence probability. (2) From 2014  
to 2022, Guangzhou residents’ residential CE clearly displayed a growing tendency and a more 
pronounced clustering effect. (3) Residential CE can be estimated more accurately and precisely reflect 
the differences between different locations when it is based on fine-grained land use features and NLI.  
On the other hand, some residential regions’ residential CE may be overestimated in the contrasting 
spatial visualization results, which are less likely to accurately reflect the variability of high CE locations 
(CE more than 2131t). The research findings can provide a solid database for future investigations, 
assisting the departments in developing more detailed environmental management and differentiation 
plans.

Keywords: residential carbon emissions, unmixing model, fine-grained land use characteristics, nighttime 
light intensity, spatial visualization
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Introduction

The World Meteorological Organization (WMO) 
publishes the Global Greenhouse Gas Bulletin, which 
indicates that in 2022, the annual average global 
atmospheric concentration of major greenhouse 
gases reached a new high, with the concentration of 
carbon dioxide (CO2) at 417.9±0.2 ppm, 150% of the 
pre-industrial (before 1750) level. The environment 
in which humans live is seriously threatened by 
the greenhouse effect [1]. The primary source of 
anthropogenic greenhouse gas (GHG) emissions is the 
combustion of fossil fuels, which accounts for over 
70% of global GHG emissions [2]. Energy is typically 
used by a variety of consumer entities, such as retail, 
transportation, industry, agriculture, and residential 
use. Of these, residential energy use and carbon dioxide 
emissions make up a sizable portion of the global total 
for both energy consumption and emissions. According 
to statistics, residential direct energy consumption 
constituted 21% of global direct energy consumption 
[3]. As one of the greatest contributors to national 
CO2 emissions in China, the residential sector is 
responsible for over 12.95% of the country’s total energy 
consumption and is just behind the industrial sector 
(66.75%) [4]. However, if we divide energy consumption 
based on its final attribution, the proportion of energy 
consumption in the residential sector will far exceed 
that of other sectors. This is a critical area for China to 
meet its carbon peaking and carbon neutrality strategic 
goals. Additionally, it is anticipated that CO2 emissions 
from residential home consumption will continue to 
rise as urbanization and industrialization continue [5]. 
Consequently, in order to effectively manage carbon 
emissions and solve climate change challenges, research 
on carbon emissions from residential living energy use 
is crucial. 

Residential carbon emissions are the results of direct 
energy use, such as lighting, cooking, using electrical 
appliances, heating a home, and other activities that 
are directly associated with residential dwelling.  
The complexity of statistical data, variations in 
household energy consumption, and diversity in living 
energy consumption structures have made it harder 
to account for and restrict the spatial visualization of 
residents’ residential carbon emissions and direct living 
energy consumption. In the meantime, the majority 
of research that has been done so far has focused on 
accounting for and spatially visualizing residents’ 
carbon emissions at the provincial, municipal, county, 
functional area, and street block levels [6-10]. In terms 
of methodology, the input-output modeling approach, 
sectoral method, energy balance sheet method,  
and carbon emission coefficient method are frequently 
employed to account for residential carbon emissions 
[11-14].

The availability of spatial data, such as images from 
remote sensing, has given rise to fresh approaches to 
estimating carbon emissions. These include the use of 

remote sensing images of nighttime lights that depict 
human activity on Earth’s surface to measure a variety 
of socioeconomic statistics, and numerous studies have 
demonstrated a strong correlation between nighttime 
lights and carbon emissions [15-17]. These images can 
be utilized for carbon emission estimation analysis and 
spatial visualization [18-20], as well as for the high-
precision spatial pattern of carbon emissions at the 
grid scale using DMSP/OLS data. For instance, Ghosh 
et al. created global CO2 grid data from fossil fuel 
burning using DMSP/OLS evening lighting data [21].  
They precisely separated national-scale CO2 emissions 
into spatial grids of intermediate resolution by combining 
population grids with nighttime lighting images. In order 
to accurately define grid-scale CEs, Wu et al. suggested 
a technique for measuring CEs utilizing nighttime light 
data. Their method is more suited for long-term, large-
scale carbon emissions monitoring and successfully 
makes up for the drawbacks of the conventional 
“bottom-up” statistical methodology [22]. Nevertheless, 
research on calculating the carbon emissions from direct 
residence energy usage and its spatial distribution using 
data on night lighting is lacking. In the Pearl River Delta 
(PRD) urban agglomerations, Wang et al. estimated the 
carbon emissions from residential energy consumption 
in the PRD urban agglomerations based on the spatial 
distribution of the resident population, which they 
obtained using a linear relationship between the total 
value of nighttime lighting and the resident population 
[23]. Zhao simulated settlement density using spatial 
data (DNVI and DEM imagery, DMSP/OLS nighttime 
lighting data) and then used that data as a carbon 
emission weight to obtain the spatial distribution 
pattern of carbon emissions from residential dwellings 
at a resolution of 1 km×1 km [24]. The majority  
of the aforementioned studies concentrate on applying 
the total nighttime lighting values of larger regions 
independently. They then use linear correlation to 
derive the carbon emission lighting coefficients for these 
regions, enabling the realization of spatial visualization 
and carbon emission estimation at the provincial, city, 
county, and functional area scales. Broadly speaking, 
issues include inadequate fine-grained analysis 
of illumination and carbon emissions in the area, 
challenges in accurately measuring carbon emissions 
from residential regions, and a dearth of studies on the 
spatial depiction of carbon emissions from residential 
areas.

Land use is a major source of anthropogenic carbon 
emissions and a driver of climate change, and higher-
resolution land use data offer the possibility of refining 
carbon emissions within regions. Currently, there are 
more studies on carbon emissions from different land 
use types (e.g., forests, water, and wetlands) [25, 26], 
which have enriched the study of carbon emissions 
from land use at different spatial scales. In addition, 
some scholars have further studied the carbon emissions 
of all land use types. Zhang et al. analyzed the carbon 
emissions of the Yellow River Delta in 2000 based on  
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the data of land use types (farmland, forest land, 
grassland, wetland, watershed, construction land and 
unused land) and fossil energy consumption data during 
the same time period by constructing carbon emission 
models, carbon footprints, and Moran’s I indices, 
and analyzed the spatial and temporal distribution 
characteristics of carbon emissions in the Yellow River 
Delta from 2000-2019 spatial and temporal distribution 
characteristics of carbon emissions in the Yellow River 
Delta [27]. Wang et al. divided the city based on the 
main road network, then classified it into 14 effective 
land use categories (agriculture, transportation, retail 
trade, residential, etc.) based on land use functions 
and land cover composition, and finally measured the 
relationship between land use and carbon emissions [28]. 
In addition, land use is also an important determinant 
of nighttime light from a physical point of view [29]. 
Li et al. developed a model to quantify the contribution 
of land use to nighttime light using coarse-resolution 
nighttime light images and fine-resolution land use data 
[30]. In light of this, integrating land use and nighttime 
light data to achieve a fine-grained analysis of urban 
residential carbon emissions is an innovative exploration 
that holds significant value for Chinese cities seeking 
to accelerate the attainment of carbon neutrality and 
carbon peak by adopting appropriate carbon emission 
control measures that are tailored to community needs.

The objective of this paper is to develop a technique 
for calculating urban residential carbon emissions by 
incorporating fine-grained features of land use on a grid 
and nighttime light intensity (NLI). Additionally, the 
study aims to offer a high-resolution spatial visualization 
and an accurate estimate of Guangzhou City’s residential 
carbon emissions for the years 2014-2022. The main 
contributions of this paper are summarized as follows:  
(1) The average nighttime light intensities of different 
land use types estimated by three types of unmixing 
models (non-negative least squares model, non-negative 
spatial lag model, and non-negative spatial error model) 
are compared, and the evaluation standard is the 
reference NLI, which is computed from the nighttime 
light data of Luojia1-01. (2) To reflect the variations 
in NLI and minimize the error between the estimated 
and true NLI values for each grid, fine-grained 
characteristics based on population data and nighttime 
lighting were assigned to different grids within the same 
land use category. (3) The mixed light values of each grid 
were separated into residential and non-residential light 
values using an ideal unmixing model that integrated 
NLI and fine-grained land use features from the grid. 
(4) In order to determine the spatial distribution pattern 
of carbon emissions of residential areas in Guangzhou, 
a linear fitting model was developed between the light 
values of residential areas and the carbon emissions 
of residential areas derived from statistical data.  
The estimated carbon emissions were assigned to each 
500 m×500 m grid.

Framework

This paper proposes a method for estimating urban 
residential carbon emissions by integrating grid land use 
fine-grained features and NLI, and takes Guangzhou 
City as an example to refine the estimation and spatial 
visualization of its residential carbon emissions from 
2014 to 2022, and the research framework is shown in 
Fig. 1. The specific steps are as follows:

Step 1: Three models are built to fit the nighttime 
light and land use based on the unmixing technique. 
Using these models, it is achievable to determine  
the NLIs of various land use categories and to 
differentiate between residential and non-residential 
lights.

Step 2: To reduce the error produced by the 
unmixing model, which uses the NLIs as homogenous 
global variables to solve, combine the population data 
and nighttime light data to assign fine-grained features 
to the land use of each grid.

Step 3: Compare the estimation accuracies of the 
three unmixing models based on the reference NLIs 
calculated from the higher resolution lighting data.

Step 4: Using Guangzhou City as an example,  
the best unmixing model with integrated grid land 
use fine-grained features and NLIs is used to estimate  
the lighting values of its residential areas, and linearly 
fitted to the carbon accounting data, to obtain the 
estimated value of carbon emissions from residential 
dwellings as well as the spatial distribution pattern of 
carbon emissions.

Step 5: Without taking into account the specifics of 
the land use of the grid, compute the spatial distribution 
of carbon emissions from urban residential sources in 
greater detail and compare the results with the study 
findings presented in this paper.

Study Area

Guangzhou City (22°26′-23°56′N, 112°57′-114°3′E) 
is located in the southern part of Guangdong Province, 
with a total area of 7,434.40 km2, including Liwan, 
Yuexiu, Haizhu, Tianhe, Baiyun, Huangpu, Panyu, 
Huadu, Nansha, Conghua, and Zengcheng, a total 
of 11 administrative districts (Fig. 2). Guangzhou,  
the biggest city in southern China, has developed over 
the years into a major hub for foreign political, economic, 
and cultural contacts in southern China as well as  
an international business hub with significant worldwide 
radiation power. Estimating, analyzing, and spatially 
visualizing urban residents’ carbon emissions over time 
is theoretically significant. The study’s findings can 
help residents adopt low-carbon consumption and living 
practices, as well as serve as a theoretical foundation for 
Guangzhou’s low-carbon city’s development and related 
decision-making.
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Fig. 1. Research framework diagram.

Fig. 2. Geographic location of the study area.
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data were radiometrically corrected as well as denoised 
[32, 33], in which the radiometric correction formula for 
Luojia1-01 product is as follows:

	
3/2 1010L DN −= × 	 (1)

where L is the radiance brightness value after absolute 
radiance correction and DN is the image gray value. 
Finally, in order to ensure the uniformity of the 
resolution of remote sensing data, this paper uses the 
nearest neighbor method to resample the population 
raster data to 500m.

Spatial Weighting Matrix Setting

The non-negative spatial lag model (NSLM) and 
the non-negative spatial error model (NSEM) [34] 
will be built in the next section to represent the spatial 
autocorrelation effect between the grid’s lighting 
values. Furthermore, the regression outcomes for 
these two kinds of spatial autoregressive models are 
significantly impacted by the spatial weight matrix W 
that is established [35]. As illustrated in Fig. 3 below, 
two k values (k = 8 and k = 24) are ultimately chosen 

Data Sources

Table 1 below shows the details of the data used 
in this paper, including two types of NTL data: the 
Composite product of NPP/VIIRS and Luojia1-01, land 
use data (EULUC-China), population data, and energy 
consumption data for Guangzhou.

Data Processing

Remote Sensing Data Processing

The original Composite product of NPP/VIIRS 
nighttime images used in this paper is from the 
annual global nighttime product produced by the 
Earth Observation Group (EOG) based on nighttime 
Diurnal Night Band (DNB) microluminescence imaging 
data collected by the NASA/NOAA Visible Infrared 
Imaging Radiometer Suite (VIIRS). Its data provider 
radiometrically corrects the nighttime images and 
removes background noise [31]. Therefore, the projection 
transformation and resampling of this nighttime image 
was performed directly to avoid distortion of the image 
grid with latitude. Secondly, the Luojia1-01 night light 

Table 1. Details of the data used in this study.

Data name Data description Time Sources

Composite product 
of NPP/VIIRS

Nighttime light data with a spatial resolution 
of 500 m

2014-2022
EOG, Colorado School of Mines

26/10/2018

Luojia1-01 Nighttime light data with a spatial resolution 
of 130 m 26/10/2018 High Resolution Earth Observation System,

http://www.hbeos.org.cn/

EULUC-China Data on basic urban land-use types in China 
with a spatial resolution of 30 m 2018 Department of Earth System Science, 

Tsinghua University

Demographic data Raster data on the distribution of the resident 
population with a spatial resolution of 1 km 2014-2022

LandScan platform developed by the U.S. 
Department of Energy’s Oak Ridge National 

Laboratory (ORNL)
Guangzhou Energy 
Consumption Data

Domestic Energy Consumption Data by 
Species in Guangzhou 2014-2022 Guangzhou Municipal Bureau of Statistics

Fig. 3. Spatial weight matrix setup.
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as the influence range of spatial autocorrelation affecting 
features, which correspond to the thresholds of 1.5 and 
3 image elements, respectively, based on the studies that 
have already been conducted [34]. The weights of the 
grids in the adjacent area of the center grid are set to the 
inverse of their distances, and the weights of the rest of 
the grids are set to zero.

Land Use Type Area Ratio Statistics

The majority of grids contain mixed land types 
because of the resolution difference between land use 
maps and images of nighttime light. However, only  
a small number of land types exist in a given grid 
because of the geographic autocorrelation of land 
use. The unmixing technique assumes that each 
grid’s nighttime light may be represented as a linear 
combination of land use areas, and each land use 
type’s average nighttime light intensity is utilized as  
a coefficient [30]. Consequently, this study computes  
the proportion of each land use type’s area in each grid.

Accounting for Residential Carbon Emissions

This paper utilizes the carbon emission coefficient 
method to carry out a preliminary accounting of 
residential carbon emissions in Guangzhou from 2014 
to 2022, and the carbon emission coefficients of each 
energy source refer to the Greenhouse Gas Emission 
Inventory 2006 issued by IPCC, as shown in Table 2 
below. The calculation formula of the reference method 
is as follows:

	
( )i i

i
C AD EF= ×∑

	 (2)

Where C denotes carbon emissions, ADi denotes the 
total amount of energy consumed by sub-species in the 
residential sector, kg of standard coal, and EFi denotes 
the emission factor of sub-species of energy in the 
residential sector, kg/kg of standard coal.

Method

Unmixing Model

Land use is a significant physical factor that 
influences nighttime light [29]. On the other hand, 
nighttime light images have a coarser spatial resolution 
than regular land use maps. Because different land use 
types are mixed in the coarse resolution grid of the 

nighttime light imagery, making it difficult to determine 
the light intensity in residential areas, the resolution gap 
makes it more difficult to use land use maps (EULUC-
China) to obtain accurate nighttime light values for land 
use types in residential areas. Hence, this paper will 
build three types of unmixing models to obtain the NLIs 
of different land use types as well as the light values for 
residential areas. This will help to distinguish between 
residential and non-residential lights that are mixed in 
the same grid and to obtain more accurate nighttime 
light values for residential areas.

Nonnegative Least Squares Model (NLSM)

Based on the unmixing strategy, it is assumed that 
the nighttime light of each grid can be expressed as a 
linear combination of land use areas, and the average 
nighttime luminescence of land use type i is used as a 
coefficient denoted as ai, i.e., nighttime light intensity 
(NLI). For the land area representable by the available 
grid j, there are n potential land use types with area 
proportions {xj1, ..., xjm}, and the satellite-recorded 
nighttime light values for this grid are denoted as yj. 
Therefore, the following linear model is constructed to 
fit the nighttime light and land use [30]:

	

1 1 11 1 1

2 1 21 2 2

1 1

...
...

...
...

m m

m m

n n m nm n

y a x a x
y a x a x

y a x a x

ε
ε

ε

= + + +
 = + + +


 = + + + 	 (3)

where εj denotes the model error for grid j and n denotes 
the total number of grids, i.e., the number of observations 
of the model. The model can also be rewritten in the 
following matrix form:

	 Y Xa ε= + 	 (4)

According to the physical meaning, the land use 
brightness coefficient ai should be non-negative, 
therefore, the model can be solved by the constrained 
least squares algorithm [36].

Nonnegative Spatial Autoregressive Model

The aforementioned non-negative least squares 
model models each grid’s light brightness using the 
land use area share, but it ignores the impact of the 
neighboring grids. Furthermore, multispectral remote 
sensing images and nighttime light remote sensing data 

Table 2. Carbon emission factors by energy source.

Raw coal Gasoline Kerosene Diesel Electrical power Petroleum

Carbon emission factor/(kgC/kgce) 0.75590 0.55380 0.57140 0.59210 0.27200 0.44830
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will show spectral dependency between neighboring 
pixels, or spatial autocorrelation, as a result of sensor 
resolution and terrain heterogeneity [37]. Thus, while 
examining the relationship between night light data and 
land use data, the spatial autocorrelation effect between 
light data should be taken into account. Using previous 
research as a guide, two different kinds of spatial 
autoregressive models are built in this work [34].

Nonnegative Spatial Lag Model (NSLM)

The light emitted from objects inside the pixel may 
affect the brightness of the surrounding pixels through 
photorefraction and reflection, reflecting the fact that the 
lighting value of a particular grid is not only affected by 
its own explanatory variables, but also by the lights of 
the other surrounding grids, and thus a spatial lag model 
(SLM) can be constructed as follows:

	
2, ~ 0,Y WY X N Iρ β ε ε σ = + +    	 (5)

where Y is the matrix of nighttime light values, X 
is the matrix of area proportions, β is the vector of 
average nighttime light intensities, and β is assumed 
to be non-negative based on physical significance. ρ is 
the coefficient of the WY term of the spatial lag model, 
which takes a value in the range of (0, 1). W is the spatial 
weight matrix, which denotes the influence between 
all grid pairs in the space, and ε denotes the vector of 
normally distributed random errors.

For the above SLM model, the known data is (X, Y), 
and the unknown parameter is θ = (β, ρ, σ2), deforming 
the model by

	 ( )nI W Y Xρ β ε− − = 	 (6)

The log-likelihood function of the vector θ can be 
obtained based on the condition that ε follows a normal 
distribution:

	
( ) ( ) ( )'2

2

1ln ln ln 2
2 2n n n
nL I W I W Y X I W Y Xε

ε

ρ πσ ρ β ρ β
σ

= − − − − − − −      
		

	( ) ( ) ( )'2
2

1ln ln ln 2
2 2n n n
nL I W I W Y X I W Y Xε

ε

ρ πσ ρ β ρ β
σ

= − − − − − − −       	 (7)

The estimation method of the traditional spatial lag 
model is to use the first-order condition of β, σ2 to get 
the log-likelihood function of parameter ρ, and then use 
various optimization methods to solve the great value of 
the log-likelihood function of parameter ρ, so as to get 
the estimated values of the coefficients. The SLM model 
set in this paper adds a non-negative constraint on 
parameter β, so the estimation method of the traditional 
spatial lag model is not applicable. Considering the scale 
of the data and the boundary constraint requirement  
in this paper, the log-likelihood function of Eq. (7)  

is optimized using the L-BFGS-B algorithm to obtain 
the estimated value of β under the non-negative 
constraint. Numerical experiments have demonstrated 
the effectiveness of the L-BFGS-B algorithm [38] 
in solving large-scale variable bounded constraint 
optimization problems. The algorithm was developed 
from the BFGS algorithm, a proposed Newtonian 
algorithm with constraints. The objective function 
and its gradient g vector are all that are required to be 
provided throughout the optimization solution process; 
the Hessian matrix need not be computed.

Nonnegative Spatial Error Model (NSEM)

Spatial autocorrelation is also caused by the effects 
of climatic and atmospheric conditions, positive 
correlations caused by imaging systems, etc., which 
suggests that there are spatial perturbation terms and 
overall spatial correlations in addition to the effects of 
the dependent variable, and that perturbations in a given 
space affect other spaces with spatial effects, and thus  
a spatial error model (SEM) can be constructed as 
follows:

	
2, ~ 0,

Y X

W u u N I

β ε

ε λ ε σ

= +

 = +   	 (8)

where λ is the spatial error correlation coefficient with  
a value in the range of (0, 1). W is the spatial weight 
matrix indicating the effect of residuals in the space, and 
u is the normally distributed random error vector.

Similarly, for the above SEM model, the unknown 
parameter is τ = (β, λ, σ2)', and the known data is (X, Y). 
Appropriate deformations of the model have:

	  ( )
,

,
Y X Wu
Y WY X WX

β λ ε
λ λ β ε

= + +

− = − + 	 (9)

Let Yλ = Y – λWY, Xλ = X – λWX, then Yλ – Xλ β = ε,  
so the log-likelihood function of the vector τ is:

	
( ) ( ) ( )'2

2

1ln log ln 2
2 2n
nL I W Y X Y Xλ λ λ λλ πσ β β

σ
= − − − − −

		

	( ) ( ) ( )'2
2

1ln log ln 2
2 2n
nL I W Y X Y Xλ λ λ λλ πσ β β

σ
= − − − − −

	 (10)

The traditional estimation method of the spatial 
error model is to use the first-order condition of β, σ2 to 
write Eq. (10) as an explicit expression about λ, and then 
solve  λ to maximize the log-likelihood function about λ. 
In this paper, the model requires the parameter β to be 
non-negative, and the traditional estimation method is 
not applicable, so the L-BFGS-B algorithm is also used 
to optimize Eq. (10) to obtain the optimal non-negative 
estimation value of the parameter β.
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Fine-Grained Features

The aforementioned unmixing models all solve for 
NLIs as homogeneous global variables, which raises 
the risk of significant errors in both the residential 
nighttime lighting values computed from NLIs and 
the true values for each grid, as well as between the 
estimated and true NLIs. The NLIs of different land 
use types and socioeconomic characteristics are closely 
related, and there are some variances in the NLIs of the 
same land use type in different grids [39]. To assign 
fine-grained land use characteristics to each grid, this 
article, therefore, integrates the population data with the 
nighttime light data.

Due to its straightforward premise and great 
interpretability, the K-means algorithm is a classic 
clustering technique that has seen extensive use [40]. 
It can realize the grouping of geographic areas and 
effectively identify the fine-grained features of each 
group, so in this paper, the nighttime lighting data 
and population data are used as the input features 
of K-means clustering, and the clustering categories 
obtained from K-means clustering are used as the fine-
grained features of the grid land use. The basic idea of 
the K-means clustering algorithm is to randomly select 
K data objects from a dataset as the initial centers, 
calculate the distance of each data object to each center, 
divide all data objects into clusters located in the center 
closest to it according to the nearest neighbor principle, 
and then recalculate the data mean value in each cluster 
as the new clustering center for the next iteration. 
The sum of squared errors (SSE) within the clusters 
is continuously reduced until the clustering center no 
longer changes or the objective function converges when 
the clustering stops [41]. The determination of the K 
value in the K-means clustering algorithm has a large 
impact on the clustering results, and in this paper, we 
choose the elbow method to select the optimal number 
of clusters. In order to find the optimal number of 
clusters, this paper combines the K value obtained by the 
elbow method to complete the first clustering, and then 
according to the situation in the group after clustering to 
determine whether to carry out fine clustering on certain 
subsets to improve the accuracy of the clustering results.

Estimation of Carbon Emissions

This paper is able to create the unmixing model for 
each clustering category independently by taking into 
account the fine-grained characteristics of the grid’s 
land use. It is well known that the total brightness values 
of all land use types, which are obtained by multiplying 
the NLI of each land use type by its proportion of 
area in the center grid, can be used to indicate the 
nighttime lighting value of a grid within each clustering 
subregion. Consequently, each grid’s lighting values on 
each clustered sub-area are precisely assigned to the 
residential areas on it using the unmixing model and the 
following formula:

	
Re j j jsDN P NLI= ×

	 (11)

Where ResDNj refers to the residential area light 
value of grid j, Pj is the residential area proportion 
of grid j, and NLIj is the residential area nighttime 
light intensity of grid j. As a result, the residential 
area light value of each 500 m×500 m grid can be 
obtained. Next, a fitting model of carbon emissions 
from urban residents’ domestic energy consumption 
and total nighttime lighting values of residential areas 
is established. Numerous methods have been used to 
model the spatial pattern of socioeconomic data using 
nighttime light data, such as linear regression models, 
log-log regression models, and second-order regression 
models. Among these methods, linear regression models 
are relatively accurate and easy to implement [42]. 
Therefore, this study still uses a linear regression model 
to estimate residential carbon emission [43]:

	 0 0 0C a TDN b= × +   	 (12)

	
0C

TDN
α =

	 (13)

Where C0 is the corrected residential carbon 
emission, a0 and b0 are the regression coefficient and 
intercept, TDN is the total value of residential lights, 
and α is the carbon emission allocation factor. Finally, 
based on the allocation principle that carbon emissions 
are positively correlated with the DN values of lights 
at night, the carbon emissions from residential housing  
in each grid can be obtained by multiplying ResDNj  
by the coefficient α, and the spatial distribution pattern 
of carbon emissions from residential housing with  
a resolution of 500 m×500 m is obtained.

Results and Discussion

Comparison of Unmixing Model Performance

This research uses linear regression to evaluate 
the relationship between the estimated values of NLI 
for land use types in Guangzhou generated from the 
aforementioned three models and the reference NLI 
values in order to assess the estimation accuracy of the 
three unmixing models. The data used in the unmixing 
model is the Composite product of NPP/VIIRS nighttime 
lighting data on the day of 2018.10.26, and the reference 
data is the 130m resolution Luojia1-01 nighttime lighting 
data on the same day. To guarantee the correctness 
of the reference NLI data, a lower resolution land use 
scale map is first created from the original land use 
map because the resolution of the reference nighttime 
light data is still lower than that of the land use data.  
The average nighttime light for each land use type is 
then obtained as the reference NLI value by gathering all 
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of the grids that are fully occupied by a specific land use 
type, which are referred to as pure grids. The results of 
the three models’ linear regression fitting are displayed 
in the Table 3. A higher goodness of fit indicates 
improved estimation accuracy and a better capacity 
to capture the relationship between land use type and 
NLI [26]. As can be observed, the best accuracy of the 
estimated value of NLI derived from the building of 
the non-negative spatial error model is achieved when 
the threshold value of the spatial weight matrix is set 
to 3 pixels, and the fitted model’s R2 reaches 0.93659. 
Therefore, in order to estimate the value of the lights 
in Guangzhou City’s residential area, a non-negative 
spatial error model will be built in the next part.

Estimation of Residential Carbon 
Emissions in Guangzhou

The accurate nighttime lighting values of residential 
areas in Guangzhou City from 2014 to 2022 were 
obtained using the non-negative spatial error model 
with integrated grid land use granularity and nighttime 
lighting intensity. These values were then linearly 
fitted to the carbon emission accounting data above.  
The fitting equations are displayed in the following 
equation, and the fitting relationship is displayed  
in Fig. 4 below:

	 0 0.00528 138.76881C TDN= × + 	 (14)

The results show that the carbon emissions from the 
domestic energy consumption of Guangzhou residents 
have a good positive linear correlation with the total 
value of lighting in residential areas, with a goodness of 
fit of 0.9318 at 95% confidence probability.

Spatial Visualization of Residential 
Carbon Emissions in Guangzhou City

Based on the fitting coefficients of the above linear 
model and the nighttime lighting values of the grid 
residential areas, the corrected total residential carbon 
emissions of Guangzhou City for the calendar year are 
assigned to each grid, which is calculated as follows:

	 ( )( ) ( )( )Reii j i jC sDNα= ×
	 (15)

where C(i)( j) is the carbon emission from domestic energy 
consumption of the jth grid in year i, αi is the carbon 
emission allocation factor in year i, and ResDN(i)( j) is the lighting value of the residential area of the jth  
grid in year i. The spatial distribution pattern of 
residential carbon emissions in Guangzhou City is 
derived through the use of ArcGIS’s spatial analysis  
and statistics. Fig. 5 displays the spatial distribution 
maps of carbon emissions in the years 2015, 2018,  
and 2021. The findings can be used to display 
Guangzhou’s residential carbon emissions’ temporal 

Table 3. R2 of linearly fitted NLI values for the three models at different distance thresholds.

Study area Distance threshold

Guangzhou City

/ 7.5 km 1.5 km

NLS NSLM NSEM NSLM NSEM

0.93626 0.93634 0.93633 0.93652 0.93659

Fig. 4. Fitted relationship between residential carbon emissions and total value of lights in residential areas.
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and spatial distribution characteristics: (i) From 2014 to 
2022, there was a clear upward trend in Guangzhou’s 
residential carbon emissions. The city’s main urban 
areas, including the districts of Baiyun, Tianhe, 
Yuexiu, Liwan, and Haizhu, as well as the peripheral 
districts of Zengcheng and Panyu, had greater growth 
and eventually became the center of the city’s high 
residential carbon emissions. (ii) From 2014 to 2022, 
Guangzhou’s residential carbon emissions gap both 
within and between districts progressively widened, 
demonstrating a more pronounced aggregation effect. 
There could be a number of reasons for this, including 
the unequal development of regional livelihoods, the 
absence of population and industrial agglomeration 
potential in periphery urban regions, and the uneven 
level of regional economic development in Guangzhou. 
(iii) Guangzhou City’s residential carbon emissions 
gradually exhibit a geographical pattern that stretches 
along the eastward direction from the heart of the main 
metropolitan region as the city actively responds to the 
“eastward” plan. In particular, the eastern regions of 
Guangzhou-Huangpu District and Zengcheng District  
– have much higher residential carbon emissions in 2021 
compared to 2015.

This research further explores the spatial distribution 
of household carbon emissions in Guangzhou in 2021, 
as shown in Fig. 6 below, in order to better explore the 
spatial distribution of residential carbon emissions in 
Guangzhou. Overall, it appears that there is a dispersed 
pattern of residential carbon emissions decreasing 
from the inner city to the outlying area. Residential 
carbon emissions in the central city of Guangzhou are 
all at a high level, among which, the residential areas 
in Baiyun and Tianhe districts generally have higher 
carbon emissions due to the fact that their resident 

populations are among the top, with obvious population 
aggregation effects, and their young people account  
for a higher proportion of the population, with more 
frequent economic activities. Yuexiu District has the 
highest degree of population aging, and its residential 
carbon emissions are generally only at a medium level, 
which is lower than those of the remaining major urban 
areas. After many years of construction, the eastern  
part of the district, with Huangpu and Zengcheng  
District as the main parts, has already become the 
industrial core agglomeration of Guangzhou. This is 
closely related to Guangzhou’s urban spatial development 
strategy of developing along the Pearl River to the 
east. Among the peripheral urban areas, the residential 
areas in Huangpu District and the southwestern part  
of Zengcheng District also have high carbon  
emissions.

Spatial Visualization Data Analysis  
and Examination of Carbon Emissions

In order to reflect the influence of grid land use fine-
grained features on the results of spatial visualization of 
residential carbon emissions in Guangzhou, this paper 
further calculates the results of the spatial distribution 
of residential carbon emissions in Guangzhou in 2018 
without clustering, and compares and tests the results 
of the above studies in this paper with the same year. 
In contrast, this paper combines the grid land use 
fine-grained features to more effectively reflect the 
differences between different geographic regions and 
more finely reflect the pattern of residential carbon 
emissions within the city, as shown in Fig. 7 – Fig. 
10. There is a discrepancy in the residential carbon 
emissions of residents in residential districts even in 

Fig. 5. Spatial distribution of residential carbon emissions in Guangzhou City. 
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neighboring regions because factors like the income, 
consumption, and energy structures of residents 
have specific effects on residential carbon emissions.  
As can be seen from Fig. 7, the spatial visualization 
results of (a) are more difficult to reflect the differences 
in high carbon emission areas (carbon emissions greater 
than 2131t), in contrast, the spatial visualization results 

of (b) reflect the differences and contrasts at a finer 
scale, thus better reflecting the specific influence of 
specific factors on residential carbon emissions, and 
helping the relevant departments to formulate a fine-
grained environmental management and control strategy 
and establish differentiated low-carbon consumption 
patterns.

Fig. 6. Spatial distribution of residential carbon emissions in Guangzhou in 2021.

Fig. 7. Comparison of the results of spatial distribution of residential carbon emissions in Guangzhou City in 2018.
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Fig. 8. Comparison of the results of spatial distribution of residential carbon emissions in Shenglong Community.

Fig. 9. Comparison of the results of the spatial distribution of residential carbon emissions of Qingyiju residents. 

Fig. 10. Comparison of the results of spatial distribution of carbon emissions from residential housing on Tianhe Road.
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Specifically, Fig. 8 shows the results of the 
comparison of the spatial distribution of residential 
carbon emissions in Shenglong Community, which is 
located in Hualong Town, Panyu District, Guangzhou 
City, and is a multi-year-old community, with an overall 
more dilapidated community environment and various 
basic facilities and lower housing prices. Secondly, 
the residential buildings in Shenglong Community 
are lower in height and more sparsely distributed, and 
there are few recreational facilities around it. Shenglong 
Community is located in a large industrial town in the 
Panyu District, and the population density of residential 
areas in the community is low. As a result, the level of 
its residential carbon emissions is generally low. Fig. 8a) 
overestimates its residential carbon emissions, while Fig. 
8(b) captures the differentiated characteristics of carbon 
emissions from residential areas in the Shenglong 
Community well. Fig. 9 shows the comparative results 
of the carbon emission distribution of the residents of 
Qingyiju, which is located in Panyu District, Guangzhou 
City, in the new village of Qifu. The village is known as 
“the first village in China” for its international cultural 
community with a large environment, large facilities 
and large transportation. Qingyiju is located in the 
vicinity of the commercial plaza, and its residential 
buildings are of medium height, with a large base 
area, dense distribution, and high population density. 
Therefore, the residential carbon emission level of 
Qingyiju is generally higher. Compared with Fig. 9(a), 
the residential carbon emission level of Qingyiju in Fig. 
9(b) is higher than 3200t, which accurately identifies 
the residential area with high residential carbon 
emission. Fig. 10 shows the comparative results of the 
distribution of carbon emissions from residential areas 
near Tianhe Road, which is located on the new central 
axis of Guangzhou and is the core business district of 
Guangzhou, with the reputation of “the first golden 
business belt in South China”. As the leading consumer 
in Guangzhou, the Tianhe Road business district has 
frequent economic activities and high population density 
and is one of the areas with high carbon emissions in the 
center of Guangzhou. As a result, the residential carbon 
emissions from the residential areas in its neighborhood 
are generally at a high level, and the carbon emission 
results in Fig. 10(b) accurately reflect the high level of 
residential carbon emissions from the residential areas in 
the neighborhood of the Tianhe Road business district. 
The aforementioned findings demonstrate how this 
paper’s research method of estimating urban residential 
carbon emissions by integrating fine-grained land 
use and nighttime light intensity can more accurately 
simulate the spatial distribution of carbon emissions in 
residential areas and highlight variations in residential 
carbon emissions in small-scale areas. This information 
can then be used to inform decisions about land use, 
resource allocation, and urban management that relate to 
the control of carbon emissions from urban residential 
areas.

Conclusion

Numerous studies have demonstrated that nighttime 
light images captured by remote sensing technology can 
offer distinctive viewpoints and methods for observing 
and analyzing nocturnal human activity. This paper 
integrates fine-grained features of land use on a grid and 
nighttime light intensity to study the carbon emissions 
and spatial distribution of residential carbon emissions 
in urban residential areas. Compared with previous 
studies on carbon emissions based on nighttime 
lighting data, this paper focuses on land use, which is 
an important factor in determining nighttime lighting.  
Despite the fact that prior studies have mostly shown 
that combining data from many remote sensing 
sources (including land use, POI, population density, 
and nighttime lights) has a high ability to estimate 
carbon dioxide emissions [44, 45], they are frequently 
concentrated at bigger scales, including the national, 
provincial, municipal, and street block levels, and 
primarily concentrate on total carbon emissions 
[6, 46, 47]. However, the findings of this paper’s 
spatial distribution of carbon emissions can serve 
as a crucial foundation for breaking down urban 
emission reduction targets into residential sub-regions.  
This makes it easier to develop and execute targeted 
emission reduction strategies in each area based 
on the local circumstances. Furthermore, it is very 
difficult to estimate the emissions of different forms 
of carbon dioxide and visualize them visually because 
of the unequal spatial distribution of these emissions. 
While several studies have produced high-resolution 
residential carbon emission maps using nighttime light 
data [48, 43], they failed to take into account the mixed 
presence of various carbon emission types inside the 
pixels. However, the model developed in this paper 
effectively allocated household carbon emissions to finer 
spatial units (500 m×500 m) using multi-source data, 
and our methods significantly improved the timeliness 
and accuracy of CE simulation (R2 = 0.9318), with 
results better than those reported in previous studies of  
the same type (R2 = 0.7668) [43]. 

In particular, Guangzhou City’s example study was 
started by this work. First, the unmixing model was 
built to quantify the contribution of land features to the 
nighttime lighting, taking into account the resolution 
gap between the land use data and the nighttime lighting 
data. Next, the mixed lighting values of the grids were 
classified into residential and non-residential lighting. 
Second, the light and population data are used to 
provide a fine-grained characterization of the variations 
in NLIs within the same land use type across grids, 
hence improving the limits of the unmixing model 
to solve for NLIs as a homogenous global variable. 
Finally, the fitting model between the residential carbon 
emissions accounted for by the statistical data and 
the total value of residential lighting is established to 
obtain the corrected total residential carbon emissions 
and the spatial distribution map of carbon emissions 
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in Guangzhou City, which is analyzed and examined,  
and the main conclusions are as follows:

(1) Comparing the estimates of NLIs obtained from 
the three unmixing models with the reference NLIs 
values, it was concluded that the estimates of NLIs 
obtained from the construction of the non-negative 
spatial error model had the highest accuracy when the 
threshold of the spatial weight matrix was set to 3 pixels, 
and the fitted model R2 reached 0.93659.

(2) The results of the constructed linear fitting  
model indicate a good positive linear correlation  
between residential carbon emissions and the total 
lighting value of residential areas in Guangzhou,  
with a goodness-of-fit of 0.9318 at 95% confidence 
probability.

(3) The findings from the spatial visualization of 
Guangzhou’s residential carbon emissions indicate that, 
between 2014 and 2022, the city’s residential carbon 
emissions showed a significant growth trend, with the 
main urban areas and the peripheral districts’ Zengcheng 
and Panyu districts showing the greatest growth. In 
addition, the gap in residential carbon emissions within 
and between Guangzhou City’s districts from 2014 to 
2022 gradually widened, indicating a more pronounced 
aggregation effect; in 2021, Guangzhou’s residential 
carbon emissions as a whole displayed a spatial 
pattern of dispersion from the central urban area to the 
surrounding area.

(4) Residential CE can be more accurately estimated 
and more accurately reflect regional variations at a finer 
scale when it is based on the finer-grained characteristics 
of land use and nighttime light intensity. By contrast, 
when comparing the spatial visualization findings, it is 
easy to exaggerate the carbon emissions from residential 
areas and difficult to portray the differences between 
locations with large carbon emissions (carbon emissions 
greater than 2131t).

This work builds an unmixing model to replicate 
the spatial distribution pattern of residential carbon 
emissions, which might serve as a database for future 
studies. In addition, a high-resolution map of the 
distribution of residential carbon emissions will give 
policymakers additional insights to meet emission 
reduction targets while also assisting different 
departments in developing more specialized low-carbon 
consumption patterns and fine-grained environmental 
management and control strategies. However, there are 
still some issues with this paper. For instance, errors 
will inevitably occur due to the availability of statistical 
data, inconsistent statistical calibre, and other factors. 
This paper only establishes a simple linear fitting model 
between the carbon emissions of residential housing 
and the value of lighting in residential districts, and the 
results obtained have certain errors. Taking into account 
the data problem and the significance of Guangzhou City, 
this paper only uses Guangzhou City, a first-tier city, as 
the research object, which has a smaller research scope. 
Other types of cities are also included in the research 
scope, which better indicates the model’s universality. 

To improve the generalizability of the carbon emission 
estimating model, this work will subsequently widen 
the study region and consider the remaining elements 
affecting carbon emissions in residential areas.
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