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Abstract

The excessive exploitation of mineral resources adversely affects the regional ecological 
environment. Therefore, the timely assessment of changes in ecological environmental quality  
is crucial for the sustainable development and planning of coal resource-based cities. This study aims 
to explore an evaluation method for monitoring ecological environmental quality in coal resource-based 
cities. Specifically, we first built a comprehensive remote sensing ecological index (RSEI) based on 
four ecological indicators extracted from Landsat images in Zoucheng City. Subsequently, we combined 
the land use/land cover (LULC) data yielded from Landsat satellite images using the random forest 
algorithm with the time series RSEI data to analyze the spatiotemporal change characteristics of the 
ecological environment in Zoucheng City. The findings are summarized as follows: The mean values 
of the RSEI for the four periods (2006, 2011, 2016, and 2022) in Zoucheng City were 0.4501, 0.4562, 
0.6417, and 0.5822, respectively. The mean RSEI increased by 40.66% from 2011 to 2016, demonstrating 
a significant improvement in the ecological environment. However, the mean RSEI decreased by 
9.27% from 2016 to 2022 in Zoucheng City, indicating a decline in ecological environmental quality.  
This study can serve as a reference for understanding the ecological environment of other coal resource-
based cities.

Keywords: Zoucheng city, regional ecological environment, random forest, remote sensing ecological 
index, spatiotemporal changes
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Introduction

Over the past years, Chinese resource-based 
cities have achieved rapid economic development 
through resource exploitation, which has also caused 
much damage to the regional ecological environment  
[1-4]. Zoucheng City is located southwest of Shandong 
Province and is a typical coal resource-based city. 
The exploitation of coal resources has significantly 
damaged the local ecological environment. Thus, 
assessing its ecological environmental quality is 
crucial for harmonizing coal resource extraction with 
environmental conservation.

Urban ecological environmental monitoring is  
a complex task, and currently, it lacks clear and unified 
standards. In the 1970s, China began to conduct 
research on the ecological environment quality 
assessment system. In 1992, the Chinese Academy of 
Sciences and the Ministry of Agriculture conducted 
research on domestic resource environments using 
remote sensing and geographic information techniques 
[5]. In the same year, Fu created an index system to 
comprehensively assess regional environmental quality 
[6]. With the development of remote sensing techniques, 
the methods used for ecological environment monitoring 
have gradually increased, such as changes in vegetation 
indices, land use, and land cover changes. Remote 
sensing and geographic information techniques have 
provided new technical approaches for assessing 
ecological environment quality. In 1997, Li discussed the 
evaluation system for an ecological environment quality 
in mountainous areas [7], which includes indicators 
of overall quality that reflect the characteristics of the 
natural environment and indicators specifically related 
to human activities. In 2009, Ma et al. used vegetation 
information from SPOT-VGT NDVI time series data to 
monitor changes in vegetation and land desertification 
in the Shandong mining area [8]. In 2013, Xu proposed 
the Remote Sensing Ecological Index (RSEI) to 
monitor and evaluate the ecological quality of a city, 
which demonstrated strong comparability with other 
environmental assessment methods [9]. Xu conducted 
a spatiotemporal evolution study of the ecological 
environment quality of the entire country from 2002 to 
2013 based on multi-source remote sensing data [10], 
providing an in-depth analysis of the spatiotemporal 
variation patterns of China’s ecological environment 
quality. More recently, Chen et al. (2023) utilized 
improved RSEI to analyze urban ecological quality 
in Jining from 2000 to 2020, revealing the spatial 
distribution of environmental quality and its response to 
human activities [11]. Fang et al. (2023) extended RSEI 
applications to study Suzhou’s environmental quality 
from 2010 to 2020, emphasizing the positive influence of 
urban green spaces and water bodies on the ecological 
improvement of the region [12].

In this study, we aim to explore an evaluation 
method for assessing the ecological environmental 
quality of coal resource-based cities. Specifically, this 

study aims to: (i) extract the four ecological indicators 
from remotely sensed data in Zoucheng City to build 
an RSEI; (ii) generate time series RSEI data for 2006 
to 2022; and (iii) combine LULC data produced from 
Landsat satellite images using a random forest algorithm 
with the RSEI data to analyze the spatiotemporal 
change characteristics of the ecological environment in 
Zoucheng City. 

The remainder of this article is organized as 
follows. Materials and Methods Section introduces  
the study area and data sources and describes the details  
of the classification method and the construction method 
of the RSEI. Results Section presents the analysis 
of spatiotemporal dynamic change characteristics. 
Conclusions Section presents the main conclusions and 
suggestions for future work.

Materials and Methods

Study Area and Dataset

Study Area

Zoucheng City, a prefecture-level city in Shandong 
Province, is situated in the southwestern part of 
the province, near the eastern region of Jining 
City. Its geographical coordinates roughly range 
between longitude 116°44′30″E to 117°28′54″E and 
latitude 35°09′12″N to 35°32′54″N. The city spans 
approximately 63 km from east to west and 35 km from 
north to south, covering a total area of around 1616 km2. 
Zoucheng City boasts abundant geological coal reserves, 
totaling 4.1 billion tons, which accounts for 17.22% 
of the proven coal reserves in Shandong Province  
(Fig. 1).

Data Sources and Processing

The study utilized Landsat remote sensing image 
data for Zoucheng City from 2006, 2011, 2016, and 
2022. The images from 2006 and 2011 were obtained 
from Landsat 5 TM, while those from 2016 and 2022 
were from Landsat 8 OLI. The overall cloud cover  
in the remote sensing images was less than 0.7%,  
with the imaging dates for all images around August. 
This ensured a high level of similarity in vegetation 
growth and ground conditions, which is crucial for 
guaranteeing comparability among the four periods 
of images. Additionally, visual interpretation was 
conducted using high-resolution images from the Google 
Earth platform, spanning 2006 to 2022. To reduce and 
eliminate distortions, as well as to enhance the display 
effects and interpretation accuracy of the Landsat remote 
sensing images, radiometric calibration, atmospheric 
correction, and geometric correction processes were 
applied [13, 14]. At the same time, auxiliary data  
in the study area were collected, including administrative 
boundaries and the distribution of mining areas.
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Research Methods

Workflow

The method for evaluating the ecological 
environment quality of coal resource-based cities, 

explored in this study and depicted in Fig. 2, can 
be summarized in four key steps that include:  
(i) downloading and preprocessing data; (ii) extracting 
four ecological indicators for Zoucheng city and 
constructing time series remote sensing ecological 
indices; (iii) classifying LULC by combining  

Fig. 1. Location map of the study area.

Fig. 2. Experimental flow.
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the Random Forest classifier with multi-feature remote 
sensing imagery; and (iv) analyzing the spatiotemporal 
dynamics of the city to provide an evaluation  
of the ecological quality in coal resource-based cities.

Construction of the Multi-Feature Sample Set

To decrease confusion among different land covers 
with similar spectral features, relying solely on spectral 
information is insufficient for research needs. As this 
is especially important to improve the classification 
accuracy of mining areas, we extracted additional 
features from multispectral images [15]. While fully 
considering the spectral characteristics of remote 
sensing data, this study utilized the six least correlated 
texture measures, namely mean (MEA), standard 
deviation (STD), homogeneity (HOM), dissimilarity 
(DIS), entropy (ENT), and angular second moment 
(ASM). The texture statistics used were as follows. 
Additionally, considering the high correlation between 
spectral bands, we initially applied Principal Component 
Analysis (PCA) to fuse the bands and then used the first 
principal component for texture calculation to minimize 
computational requirements. Finally, this data is fused 
with the preprocessed multispectral data. This approach 
results in remote sensing data comprising thirteen 
bands, as shown in Table 1:
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Where N is the number of gray levels, P is  
the normalized symmetric GLCM of dimension N × 
N, and P (i, j) is the normalized gray level value in the 
cell i, j of the co-occurrence matrix such that the sum 
of P (i, j) equals 1. The calculation of texture statistics  
was based on a moving window around each pixel  
land, and the statistics were then attributed to the pixel 
itself.

Random Forest Classification

Random Forest (RF) is a comprehensive model of 
decision tree classifiers [16], a part of ensemble learning 
methods [17, 18] commonly used for classification, 
regression, and feature selection. RF improves prediction 
accuracy by constructing decision trees and voting 
on their results. It also improves prediction accuracy 
and robustness [19]. The random selection of samples 
and features and the ensemble of multiple decision 
trees mitigate the risk of overfitting [20] and improve 
the model’s generalization ability. RF is particularly 
effective in handling large-scale data [21], high-
dimensional features [22], and complex relationships. 
This study utilizes the random forest algorithm for land 
use classification.

In this study, we randomly selected six types of LULC 
samples: Cropland, water, urban, forest grassland, bare 
land, and mining areas from the four periods of remote 
sensing data based on the land cover characteristics 
of Zoucheng City. To ensure the reliability of our 
classification results, we used multi-temporal high-
resolution remote sensing images provided by Google 
Earth to assist in sample selection while also ensuring 
that the number of training samples for each category is 
not less than 150. Subsequently, corrections were made 
after classification, and accuracy was validated using  
a confusion matrix, with no fewer than 100 test samples 
for each period. The final classification results achieved 
an accuracy rate of over 80%, with the Kappa coefficient 
exceeding 0.8 for each period, as shown in Table 2.

Construction of the Remote Sensing Ecological Index

NDVI is a commonly used vegetation index that can 
reflect the growth status of surface vegetation, making 

Table 1. Remote sensing image band information.

Data types Band information

Spectral features

Red

Green

Blue

Near-infrared

Shortwave infrared

NDVI

NDWI

Texture features

MEA

STD

HOM

DIS

ENT

ASM
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minBrescal LMIN Grescale Qcalλ= − × 	
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The sensor is configured with specific parameters 
based on different references. It is important to note 
that the ETM sensor has two main sets of parameters: 
low gain and high gain. Low gain is primarily used 
for high-reflectance areas, while high gain is used for 
large water bodies and other low-reflectance areas.  
This study focuses on urban and vegetation-covered 
areas, excluding large water bodies, so the corresponding 
parameters with lower gain values are selected here.

Brightness temperature, also known as the 
temperature of the top of the atmosphere, refers to the 
blackbody temperature with the same radiance as the 
observed object. The calculation method for brightness 
temperature is given by formula (10). According to 
this formula, the radiance temperature image can be 
transformed into brightness and temperature images on 
the satellite.

	 2 / ln( 1/ 1)T K K Lλ= 〈 + 〉 	 (10)

Where T is the temperature value at the sensor, also 
known as the brightness temperature by the satellite. 
K1 and K2 are calibration parameters with specific 
values K1 = c1/λ K2 = c2/λ; c2  is the Planck constant, 
with a value of 1438.7; λ is the central wavelength of 
the thermal infrared band; Lλ represents radiance data, 
measured in W/(m2∙μm∙K).

	 ( )( )/ 1 / lnLST T Tλ ρ ε= + ×
	 (11)

Where LST is the land surface temperature after 
emissivity correction, and λ is the central wavelength of 
the thermal infrared band: ρ = 1.438×10–2m∙K (ρ = h×c/σ, 
h is Planck’s constant 6.626×10-34 J∙s, c is the speed of 

it particularly suitable for ecological environment 
monitoring. In coal-resource-based cities, especially 
in areas with frequent coal mining activities, NDVI 
can effectively reflect vegetation restoration and 
degradation. Furthermore, since mining activities are 
often accompanied by vegetation destruction, changes in 
NDVI can reflect the process of vegetation degradation 
and recovery in these areas.

Wet typically reflects surface moisture conditions 
by combining multiple surface reflectance bands, 
effectively capturing changes in wetlands, grasslands, 
and water bodies. In coal-resource-based cities, mining 
activities, vegetation cover, and water body changes 
often influence moisture changes. Wet can reflect these 
ecological changes.

NDBSI is used to distinguish between urban built-
up areas and bare soil, reflecting human activities and 
surface cover changes during urbanization. In coal-
resource-based cities, NDBSI can effectively identify 
urbanization processes in mining areas and surrounding 
regions and the extent of bare soil exposure.

LST represents the land surface temperature and 
reflects surface heat changes. LST can effectively reveal 
the urban heat island effect and surface temperature 
variations caused by mining activities. In coal-resource-
based cities, where large areas of bare soil and mining 
activities are common, LST changes are often quite 
significant, reflecting the thermal environment changes 
in urban and mining areas.

The heat index is represented using land surface 
temperature, calculated using the model provided in the 
Landsat user manual:

	 L Grescale QCAL Brescaleλ = × +  	 (7)

Lλ represents the radiance value at the sensor, QCAL  
is the pixel grayscale value (DN) in the thermal infrared 
band, and Grescale and Brescale are the gain and bias 
values for the thermal infrared band, corresponding  
to the bias (gain) and gain values in the image header 
file.

Table 2. Sample information (Training/Test).

Land cover/outcome 2006 2011 2016 2022

Cropland 156/102 150/102 152/102 159/102

Water 158/113 158/113 158/113 165/113

Urban 155/104 152/106 168/102 162/101

Forest grassland 154/106 161/107 154/101 156/102

Bare land 163/104 163/100 167/109 164/102

Mining areas 168/109 168/105 168/106 157/102

OA% 81.2312 80.6051 82.9028 81.3380

Kappa 0.8006 0.8052 0.8111 0.8040
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light 2.998×108 m/s, σ is Boltzmann constant 1.38×10–38 

J/K), and ε is the land surface emissivity. Land surface 
emissivity is used to describe the emissive capacity of 
the Earth’s surface and is a crucial input parameter for 
surface temperature inversion techniques.

Because the moisture fraction is also related to 
variables such as vegetation coverage, degree of 
coverage, and soil moisture in the environment, the term 
‘Wet’ is used in this article to represent the humidity 
index. The formulas for Landsat 5 TM and Landsat 8 
OLI are as follows:

	 Re 1 20.0315 0.2021 0.3102 0.1594 0.6806 0.6109Blue Green d Nir Swir SwirTM ρ ρ ρ ρ ρ ρ= + + + − − 

	 Re 1 20.0315 0.2021 0.3102 0.1594 0.6806 0.6109Blue Green d Nir Swir SwirTM ρ ρ ρ ρ ρ ρ= + + + − − 	 (12)

	 Re 1 20.1511 0.1973 0.3283 0.3407 0.7117 0.4559Blue Green d Nir Swir SwirOLI ρ ρ ρ ρ ρ ρ= + + + − − 

	 Re 1 20.1511 0.1973 0.3283 0.3407 0.7117 0.4559Blue Green d Nir Swir SwirOLI ρ ρ ρ ρ ρ ρ= + + + − − 	 (13)

where ρBlue, ρGreen, ρRed, ρNir, ρSwir1, ρSwir2 represent  
the reflectance values in the TM, OLI blue, green, red, 
near-infrared, shortwave infrared 1, and shortwave 
infrared 2 bands, respectively.

To fully consider the impact of bare soil and urban 
building structures in the images, the dryness index is 
calculated by averaging the normalized bare soil index 
(SI) and the building index (IBI), namely the following 
NDBSI. The mathematical expression is as follows.
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where ρBlue, ρGreen, ρRed, ρNir, and ρSwir1 represent  
the reflectance values in the TM, OLI blue, green, 
red, near-infrared, and shortwave infrared 1 bands, 
respectively.

Vegetation coverage is a key indicator for assessing 
the ecological environment quality of a region [23]. One 
commonly used vegetation index is the Normalized 
Difference Vegetation Index (NDVI), which utilizes the 
unique characteristics of vegetation in the near-infrared 
spectrum, such as a red-light absorption valley and high 
reflectance. This index can reflect specific information 
about the total quantity of green plants and the Leaf 
Area Index (LAI). The expression for NDVI is:

	 ( ) ( )Re Re/Nir d Nir dNDVI P P P P= − + 	 (17)

where ρRed and ρNir represent the reflectance values 
in the red and near-infrared bands of TM and OLI, 
respectively.

Principal Component Analysis (PCA), based on the 
concept of dimensionality reduction, employs linear 
transformation to convert multiple original variables 
into a few comprehensive variables that contain the 
majority of the important information from the original 
variables. This approach helps reduce redundant steps 
in information statistics research, thereby avoiding 
data overlap and reducing the correlation between 
datasets. The variance contribution rate can be used to 
characterize the quantity of information contained in 
each major factor. To ensure that the selected indicators 
contain the majority of the information from the original 
data and are representative, new indicators with an 
average contribution rate exceeding 80% can be chosen. 
For ease of measurement and comparison between 
indicators, standardization is also applied:

( ) ( )min max min0 0 / 0 0RSEI RSEI RSEI RSEI RSEI= − −  	(18)

The range of values for the RSEI is [0, 1]. A higher 
RSEI value indicates better ecological environment 
quality, approaching 1, while a lower RSEI value indicates 
poorer ecological environment quality, approaching 0.

Results and Discussion

Analysis of Land Use Evolution

The LULC transfer situation can intuitively reflect 
changes in regional ecology. The mutual conversion 
among cropland, forest grassland, bare land, mining, 
and urban areas in Zoucheng City is a crucial factor 
influencing the local ecological quality. Table 3 shows 
the mutual land use transfers among the six primary 
land classes in Zoucheng City during three different 
periods: 2006-2011, 2011-2016, and 2016-2022.

Based on the characteristics of the land classes in 
Zoucheng City, this study analyzes the quantitative 
relationship between the conversion of bare land and 
forest grassland during the study period. As shown in 
the table, the area of bare land first increases and then 
decreases from 2006 to 2022. Between 2006 and 2011, 
the area of bare land in Zoucheng City increased from 
663.6600 km2 to 717.0840 km2, then decreased to 611.6526 
km2 by 2022. In contrast, the area of forest grassland 
experienced a situation of first decreasing and then 
increasing. It decreased from 360.7416 km2 to 324.6804 
km2 from 2006 to 2016, then increased to 398.0755 km2 
in 2022. This shows that after 2011, bare land became 
the main output land type, while forest grassland became 
the main input land type, and the ecological environment 
quality of Zoucheng City gradually improved.
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To further study the impact of LULC transformations 
on the ecological environment quality in Zoucheng City, 
we reclassified it into three categories: Improvement, 
Deterioration, and Other. We focused our research 
on three typical representative areas: (I) urban areas, 
(II) natural areas, and (III) main mining areas. As 
illustrated in the Fig. 3, the three typical areas show 
similar development characteristics: the area occupied 
by deterioration grew from 2006 to 2016. In contrast, 
the area occupied by improvements was larger from 
2016 to 2022. In the urban areas (I) and main mining 
areas (III), land transitions were relatively concentrated, 
characterized by expansion from the center outwards. 
In contrast, the natural areas (II) experienced more 
dispersed changes, with a messy spatial distribution.

Spatial Autocorrelation Analysis

Considering the negative impact of bare land on 
the ecological environment, spatial autocorrelation 
analysis was conducted on its distribution using Geoda 
in Zoucheng City for 2006, 2011, 2016, and 2022 [24]. 
The global Moran’s Index and local Moran’s Index were 
calculated for each period. The global Moran’s Index 

values for the four periods were 0.143, 0.139, 0.138, and 
0.149, respectively, indicating a positive correlation in 
the distribution of bare land. However, the correlation 
is insignificant, suggesting a relatively low degree of 
human intervention. High-high clustering is mainly 
observed in the eastern towns of the city, with several 
spatial outliers in the western region (Fig. 4).

Spatio-Temporal Analysis of Remote 
Sensing Ecological Index

This study utilized principal component 
transformation to construct the RSEI data and conducted 
a dynamic assessment of the ecological environment in 
Zoucheng City [25-27]. Table 4 summarizes the results 
of the four ecological indicators in Zoucheng City 
after undergoing principal component transformation.  
The eigenvalues of the first principal component  
in 2006, 2011, 2016, and 2022 are 0.2816, 0.2250, 0.2205, 
and 0.3010, respectively. The eigenvalue contribution 
rates all exceed 80%, indicating that in the four study 
periods, the first principal component concentrated 
most of the key information from the four indicators: 
greenness, humidity, heat index, and dryness.

Table 3. Land transition matrix for the study area from 2006 to 2022 (Unit: km2).

Period Type Cropland Forest 
grassland Urban Water Bare land Mining Total

2006
to

2011

Cropland 184.4280 33.0777 2.3616 4.4914 0.7533 0.6687 221.7807

Forest grassland 78.0804 177.4602 20.7594 2.0763 42.9543 13.1958 334.5264

Urban 16.0659 32.6340 122.0541 1.1151 32.778 10.5129 215.1900

Water 1.2249 4.9194 3.2688 16.9677 0.5004 0.2502 27.1314

Bare land 14.9931 75.6162 33.4944 0.8622 583.2333 8.8848 717.0840

Mining 2.8080 37.0341 6.0948 0.0063 3.4407 47.8305 97.2144

Total 297.6003 360.7416 188.0631 21.5190 663.6600 81.3429 1612.9269

2011
to

2016

Cropland 168.8400 97.5096 7.5537 1.3743 16.7877 13.734 305.7993

Forest grassland 19.5903 123.9489 9.4401 1.0287 155.8989 14.7735 324.6804

Urban 6.6699 13.7691 126.9684 3.1302 25.6869 7.5285 183.7530

Water 0.9288 2.4795 1.7298 15.2127 0.9378 1.0602 22.3488

Bare land 21.6711 74.3931 58.6782 6.2739 510.2703 3.1455 674.4321

Mining 4.0806 22.4262 10.8198 0.1116 7.5024 56.9727 101.9133

Total 221.7807 334.5264 215.1900 27.1314 717.084 97.2144 1612.9269

2016
to

2022

Cropland 51.7787 97.5546 11.7810 0.9450 130.7475 34.5249 327.3317

Forest grassland 141.6170 118.3204 5.6691 1.9179 121.4215 9.1296 398.0755

Urban 14.0111 10.4912 140.4315 1.9854 21.3275 19.4589 207.7056

Water 1.8603 1.2573 1.3320 16.8984 5.3118 0.2295 26.8893

Bare land 85.3182 93.7863 22.2435 0.3375 392.2821 17.6850 611.6526

Mining 11.2140 3.2706 2.2959 0.2646 3.3417 20.8854 41.2722

Total 305.7993 324.6804 183.7530 22.3488 674.4321 101.9133 1612.9269
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Over the four study periods, the indicators of 
greenness, humidity, dryness, and heat index all 
contributed to the first principal component, and there 
was no fluctuation, as seen in PC2-PC4. This indicates 
that the values displayed in PC1 are much more stable 
than those in PC2-PC4, and PC1 is better at capturing 
the characteristics of the indicators. Based on the data 
obtained from the four study periods in 2006, 2011, 2016, 
and 2022, the greenness index and humidity index in the 
first principal component are positive, indicating that 
vegetation coverage and environmental humidity play 
a positive and active role in the ecological environment 
protection of Zoucheng. On the other hand, the dryness 
index and heat index are negative, suggesting that land 
surface temperature and the degree of land degradation 
have a negative and adverse impact on the ecological 
environment in Zoucheng [28-30].

To further study the spatiotemporal changes of the 
urban ecological environment quality in Zoucheng 

City during the study period, we depicted areas with 
relatively poor ecological environment quality based on 
the constructed time-series remote sensing ecological 
index data: 0.0<RSEI<0.2, 0.2<RSEI<0.4. This study 
used an intuitive analysis method. As shown in Fig. 5, 
in 2006 and 2011, areas with lower RSEI values were 
distributed in the western part of Zoucheng City, 
occupying a larger proportion of the area. This was 
due to the predominance of bare land in the western 
areas, which could not support complex ecosystems. 
Before 2016, areas with lower RSEI values were mainly 
distributed in the primary urban areas of the east, with 
scattered low-value areas in the west, indicating a 
significant improvement in the ecological environment 
quality in the western regions. The number of areas with 
low RSEI values increased from 2016 to 2022. This is 
due to the increase in negative factors such as NDBSI 
and LST caused by urban development. NDVI and Wet 
represent vegetation coverage and surface moisture, 

Fig. 3. Land transformation map of the study area for three phases. 
Note: The output from forest grassland to other land types and the input from other land types to bare land and mining areas are classified 
as “Deterioration”; the land types of input from other categories to forest grassland are classified as “Improve”; the remaining are 
classified as “Other”.
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respectively, and are indicators for analyzing urban 
ecological quality [31]. ST and NDBSI are influenced 
by various factors, such as exhaust emissions and the 
respiration of animals and plants [32-35]. Although not 
directly related to ecological environment quality, their 
impact on the RSEI ecological index should not be 
overlooked [36-40].

As shown in Fig. 6, the average RSEI values of 
Zoucheng City for the four periods (2006, 2011, 2016, 

and 2022) are 0.4501, 0.4562, 0.6417, and 0.5822, 
respectively, showing significant fluctuations that can 
be roughly divided into three stages. The ecological 
environment quality was relatively stable, with lower 
RSEI mean values and a larger area of low values from 
2006 to 2011, reflecting poorer ecological environment 
quality. The mean RSEI value of Zoucheng City 
increased by 40.66% from 2011 to 2016, indicating  
a significant improvement in ecological environment 

Fig. 4. Local Moran’s I Index for study area.

Table 4. Principal component analysis of indicators.

Year Greenness 
index

Humidity 
index

Dryness 
index Heat index Eigenvalue Eigenvalue 

contribution rate

2006

pc1 0.06238 0.0552 -0.0545 -0.0667 0.1721 89.03
pc2 0.0571 0.0695 -0.0539 -0.0695 0.0140 93.91
pc3 -0.0508 -0.0539 0.0634 0.0628 0.0105 98.58
pc4 -0.0017 -0.0695 0.0628 0.0912 0.0069 100.00

2011

pc1 0.0614 0.0312 -0.0682 -0.0513 0.2279 83.98
pc2 0.0312 0.0384 -0.0474 -0.0410 0.0254 93.33
pc3 -0.0682 -0.0474 0.0892 0.0649 0.0151 98.92
pc4 -0.0513 -0.0410 0.0649 0.0821 0.0029 100.00

2016

pc1 0.0584 0.0370 -0.0548 -0.0352 0.2231 80.94
pc2 0.0370 0.0593 -0.0551 -0.0459 0.0289 92.65
pc3 -0.0548 -0.0551 0.0666 0.0453 0.0160 99.15
pc4 -0.0352 -0.0459 0.0453 0.0619 0.0021 100.00

2022

pc1 0.0792 0.0579 -0.0625 -0.0674 0.2299 82.48
pc2 0.0579 0.0836 -0.0656 -0.0735 0.0271 92.22
pc3 -0.0625 -0.0656 0.0618 0.0652 0.0177 98.58
pc4 -0.0674 -0.0735 0.0652 0.0942 0.0040 100.00
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Fig. 6. Changes in remote sensing ecological index for the study area.

Fig. 5. Pattern of remote sensing ecological index for the study area in four phases.
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quality. From 2016 to 2022, the average RSEI value 
of the study area decreased again. The RSEI value of 
Zoucheng City shows an ecological degradation gradient 
that gradually decreases from west to east from 2006 to 
2011, meaning that the ecological environment quality 
in the west is significantly higher than in the east. This 
ecological pattern was significantly improved by 2016, 
with urban expansion and development becoming 
the main factors for the decrease in the ecological 
environment quality of Zoucheng City.

Conclusions

The excessive exploitation of coal had negative 
impacts on the stability of ecosystems. Therefore, 
protecting and restoring the ecological environment 
has become an urgent task. This study developed an 
RSEI based on four ecological indicators extracted 
from Landsat images and assessed the ecological 
environmental quality in Zoucheng City (a coal 
resource-based city) from 2006 to 2022 by integrating 
the LULC data produced from Landsat satellite images 
using the random forest algorithm. The main conclusions 
are as follows:

(i) The average RSEI value of the study area 
changed from 0.4501 to 0.5822 during the study period, 
experiencing an upward trend followed by a decline. 
NDVI increased by 15.31%, indicating a significant 
enhancement in vegetation coverage. The impact of 
surface bareness on environmental quality gradually 
diminished, and urban expansion became a major factor 
affecting the region’s ecological environment quality.

(ii) From 2006 to 2011, the western region of 
Zoucheng City was predominantly composed of 
cropland and forest grassland, while the eastern region 
was characterized by bare land and mining. This created 
a distinct ecological gradient, with the western region 
having better ecological quality than the eastern region, 
indicating relatively chaotic land use and minimal 
human intervention. Significant improvements were 
observed until 2016.

(iii) The area of bare land decreased from 717.0840 
km² to 611.6526 km² during the study period, 
indicating a significant improvement in the ecological 
environment. However, bare land still accounts for 
37.92% of the total area. Reducing the area of bare land 
and increasing vegetation coverage remain the primary 
methods for improving the ecological environment 
quality in the Zoucheng City region.

The ecological environment quality evaluation 
method explored in this study can provide certain 
references for the sustainable development of 
Zoucheng. However, due to limitations in data quality, 
the experiment was based only on data from four 
years (2006, 2011, 2016, and 2022), overlooking finer 
temporal dynamics. Therefore, we will consider using 
data with higher temporal resolution in future research. 
Additionally, this study only considered four indicators 

(NDVI, Wet, NDBSI, and LST), and the ecological 
environmental assessment result may be questionable for 
some local regions of the study area. In future studies, 
we will draw on the research of many scholars in the 
field of environmental assessment and further explore 
more influencing factors when designing RSEI.
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