Original Research

Response of Soil Greenhouse Gases Emissions to Microplastics Accompanied with Earthworms and Biochar from a Sandy-Loam Soil

Wenjing Ma¹, Jinghan Yue¹, Feng Lin², Yaojun Zhang^{1,3*}

¹International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China

²School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China ³Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Xingyang, China

Received: 24 December 2024 Accepted: 6 April 2025

Abstract

Microplastics (MPs), biochar, and earthworms are critical yet understudied drivers of greenhouse gas (GHG) emissions in agricultural soils. However, limited research has explored the interactive effects of these factors on soil GHG emissions and soil carbon and nitrogen cycling. Here, we conducted a full-factorial mesocosm experiment (2×2×2 design) to assess the individual and combined influences of PVC microplastics (1% w/w), biochar (1% w/w), and the epigeic earthworm on carbon dioxide (CO₂), nitrous oxide (N₂O), and methane (CH₄) emissions in a sandy-loam soil. The results revealed that MPs increased soil CO₂ emissions while suppressing N₂O and CH₄ emissions. Earthworms elevated CO₂ and N₂O emissions by 42.3% and 27.3%, respectively. Biochar amplified CO₂ release by 20.6% and reduced N₂O by 26.1%. The interaction between MPs and earthworms significantly influenced CO₂ emissions and the global warming potential (GWP). Both MPs and biochar significantly enhanced earthworm survival rates by 24-33% but did not affect individual biomass. Soil properties were partially influenced by the individual or combined effects of MPs, biochar, and earthworms. Overall, these results underscore the need for integrated amendment strategies to mitigate GHG emissions in MP-contaminated agroecosystems, balancing carbon sequestration priorities with soil health preservation.

Keywords: carbon dioxide, nitrous oxide, methane, MBC, MBN

Introduction

Carbon dioxide (CO₂), nitrous oxide (N₂O), and methane (CH₄) constitute the dominant anthropogenic greenhouse gases (GHGs), collectively responsible for

over 90% of radiative forcing driving contemporary climate change [1]. Notably, the warming potentials of N₂O and CH₄ are approximately 298 and 35 times higher than that of CO₂ over a 100-year horizon, respectively [2]. Agricultural soils are critical GHG sources, emitting 5-20% of CO₂, 15-30% of CH₄, and 80-90% of N₂O annually [3]. Various factors influence soil GHG emissions, including biological (e.g., earthworms) and non-biological (e.g., microplastics, biochar) factors.

^{*}e-mail: njauyjzhang@163.com

Wenjing Ma, et al.

For instance, neutral soils favor maximal CO₂ efflux, acidic soils enhance N₂O production, and alkaline soils promote CH₄ oxidation [4]. Addressing these dynamics requires a holistic assessment of biotic and abiotic drivers, including emerging contaminants and soil amendments.

Microplastics (MPs, size < 5mm), derived from plastic fragmentation, have emerged as a pervasive threat to agroecosystems [5]. MPs infiltrate soils mainly via plastic mulching and organic fertilizer, with mulching being one of the most significant sources of MPs in arable soil [6]. Their persistence and mobility enable MPs to alter soil structure, aeration, and microbial habitats, thereby disrupting carbon and nitrogen cycling [7, 8]. Meta-analyses indicate that MPs generally elevate CO₂ (+54.3%) and N₂O (+140.6%) emissions, though responses vary by polymer type, soil pH, and land use [9, 10]. For example, polyethylene MPs tripled N₂O fluxes in flooded paddy soils but suppressed CH₄ emissions in alkaline soils [11-13]. Such contextdependent effects underscore the need to evaluate MPs' interactions with co-occurring soil amendments.

Biochar, a carbon-rich pyrolysis product, is widely advocated for soil carbon sequestration and GHG mitigation [14]. Its porous structure and alkaline nature enhance nutrient retention, microbial activity, and soil aggregation [15]. However, biochar's impact on GHG emissions remains contentious: global syntheses report CH₄ and N₂O reductions of 9-72% and 14-60%, respectively [16-18], while other studies document increased CO₂ emissions or null effects [19-21]. These discrepancies likely arise from feedstock-specific properties (e.g., lignin content, pyrolysis temperature) and soil type [22].

As ecosystem engineers, earthworms further modulate GHG dynamics through bioturbation, organic matter mineralization, and gut-associated microbial processes [23]. Previous studies have demonstrated that the presence of earthworms can exert both positive

and negative effects on soil GHG emissions [24]. For example, in a two-year microcosmic experiment, they reported that earthworms did not contribute to GHG emissions [25]. Conversely, the presence of earthworms notably increased N₂O, and CO₂ emissions were also certified [24]. These contrasts highlight knowledge gaps regarding earthworm interactions with MPs and biochar—a critical oversight given their co-occurrence in agricultural systems.

Despite advances in understanding individual drivers, the synergistic or antagonistic effects of MPs, biochar, and earthworms on GHG emissions remain unexplored. Preliminary evidence suggests biochar may offset MP-induced N2O emissions in earthworminhabited acidic soils [26], but no studies have examined these interactions in alkaline vertisols. Here, we address this gap through a controlled mesocosm experiment using sandy-loam soil. We hypothesized that (1) MPs and earthworms would synergistically enhance CO, and N₂O emissions by accelerating organic matter turnover and nitrogen mineralization, and (2) biochar would mitigate MP/earthworm-driven GHG fluxes via carbon stabilization and microbial community modulation. To validate these hypotheses, we measured the emissions of CO₂, N₂O, and CH₄ from sandy-loam soil under the addition of MPs, earthworms, and biochar.

Materials and Methods

Soil Sampling, Biochar, MPs, and Earthworm Preparation

Soil samples (0–20 cm depth) were collected from a sandy-loam vertisol (USDA soil classification) under a decade-long maize (*Zea mays* L.) and wheat (*Triticum aestivum* L.) rotation at the Sustainable Agro-Ecology Experimental Station of Henan University, Kaifeng, China (34° 39′ N, 114° 14′ E, 76 m a.s.l). The soil,

T 11 1 0 '1 ' 1 4'	11' 1 1 ' 1 '	1 4 / 1 1	1 ' 2' \ 1 C
rable 1. Soll, illicrobiastic	, and biochar bilysicochemica	i brobernes (mean ± standard	deviation) before the incubation.

D	Soil	Microplastics	Biochar
Properties		Value	
Clay (%)	11.7±0.6	-	-
Silt (%)	19.7±1.1	-	-
Sand (%)	68.6±1.2	-	-
Total C (mg kg ⁻¹)	236.6±2.5	86.2±1.1	435.6±1.2
Total N (mg kg ⁻¹)	26.5±0.5	0.03±0.0	6.4±0.6
C-to-N ratio	8.9	2873	68.1
NH ₄ ⁺ -N (mg kg ⁻¹)	6.5±0.9	-	-
NO ₃ -N (mg kg ⁻¹)	26.2±3.4	-	-
pH	8.5±0.03	7.3±0.05	10.7±0.02
Bulk density (g cm ⁻³)	1.26	0.88	0.52

	•			
Treatment	Individual (in	dividual pot¹)	Biomass (g	individual ⁻¹)
Treatment	Beginning	Ending	Beginning	Ending
E-M0	-	-	-	-
E+M0	15	10.50±0.29 b	0.43	0.28±0.01 a
E-M10	-	-	-	-
E+M10	15	14.00±0.41 a	0.44	0.26±0.01 a
B+E-M0	-	-	-	-
B+E+M0	15	13.00±1.08 a	0.44	0.26±0.01 a
B+E-M10	-	-	-	-
B+E+M10	15	14.00±0.91 a	0.44	0.27±0.01 a

Table 2. Earthworm survival rate after 21 days.

derived from Yellow River alluvium, comprised 68.6% sand, 19.7% silt, and 11.7% clay. Visible plant debris and any fragments were removed. Samples were air-dried at $25 \pm 2^{\circ}$ C for 14 days, homogenized, and sieved through a 2-mm stainless steel mesh prior to use. The biochar used in this study was derived from wheat straw via pyrolysis at 550° C. Polyvinyl chloride (PVC) microplastics (MPs; <0.5 mm diameter) were sourced from Wangda Plastic Co. (Dongguan, China). The primary properties of the soil, biochar, and MPs are presented in Table 1.

The epigeic earthworm *Eisenia fetida* was selected for this investigation due to its prevalence in regional agroecosystems and standardized use in ecotoxicological assays [26-27]. The earthworms were carefully washed, dried on filter paper, and weighed prior to their introduction into each experimental pot. Detailed information on the earthworms is provided in Table 2.

Experimental Design and Setup

A full-factorial mesocosm experiment (2 × 2 × 2 design) was conducted to assess the individual and interactive effects of PVC-MPs (MPs: 0% [M0] or 1% w/w [M10]), biochar (0% [B–] or 1% w/w [B+]), and earthworms (0 [E–] or 15 individuals pot⁻¹ [E+]). Each treatment combination was replicated four times (n = 32 pots total). Mesocosms consisted of 6 L polypropylene pots filled with 7.0 kg of air-dried sandy-loam vertisol (sieved to 2 mm), homogenized with MPs and/or biochar. Earthworms (4.8–5.0 g individual⁻¹) were surface-sterilized with clean water, rinsed, and acclimated for 48 h prior to introduction. Pots were maintained at 20 ± 2°C under 60% water-holding capacity for 21 days, with fleece-lined bases to prevent earthworm escape.

Greenhouse Gas Measurement

GHG fluxes were measured at 1, 2, 3, 4, 6, 7, 10, 13, and 21 days using static chambers (50 cm height \times 40 cm diameter) sealed to pots via water-filled grooves. Gas

samples (20 mL) were collected at 0 and 120 min using gas-tight syringes, stored in pre-evacuated vials, and analyzed within 24 h via gas chromatography (Agilent 7890B). $\rm CO_2$ and $\rm CH_4$ were quantified using flame ionization detection (FID; 250°C detector temperature) and $\rm N_2O$ using electron capture detection (ECD; 350°C). The GWP for a 100-year time horizon, including climate–carbon feedbacks, was calculated using a radiative forcing potential relative to $\rm CO_2$ of 34 for $\rm CH_4$ and 298 for $\rm N_2O$.

Soil Analysis

Following a 21-day incubation period, soil samples were analyzed. Soil pH was measured in a 1:2.5 (w/v) soil-deionized water suspension using a calibrated pH meter (Orion Star A329, Thermo Scientific). Dissolved organic carbon (DOC) and total nitrogen (TN) soil extracts (2 M KCl, 1:5 w/v) were shaken (200 rpm, 25°C, 1 h), centrifuged (4,000 \times g, 15 min), and filtered (0.45 µm GF/C membranes). DOC and TN concentrations were quantified via high-temperature combustion (Shimadzu TOC-VCSH/TNM-1; detection limits: 0.1 mg C L⁻¹, 0.01 mg N L⁻¹). Mineral nitrogen: NH₄-N and NO₃-N in filtered extracts were analyzed colorimetrically using a Flow Injection Analyzer (Lachat QuikChem 8500; detection limits: 0.01 mg N L⁻¹). The chloroform fumigation-extraction method determined the soil microbial biomass carbon (MBC) and nitrogen (MBN). Briefly, fumigated (24 h, CHCl, vapor) and nonfumigated soils were extracted with 0.5 M K₂SO₄ (1:4 w/v). MBC and MBN were calculated as [(fumigated non-fumigated C or N) / 0.45 and 0.54, respectively].

Data Analysis and Statistics

Three-way ANOVA with Tukey's HSD post-hoc tests ($\alpha=0.05$) assessed main and interactive effects using the SPSS 27 package. Data met normality (Shapiro-Wilk) and homogeneity (Levene's test) assumptions; non-normal datasets were log-transformed. Treatment

Table 3. Soil characteristics after the 21-day incubation (mean values ± standard error). Different letters within each treatment indicate significant differences for the Fisher LSD test.

					Variables				
Treatments	Hd	$NH_4^{+-}N$ (mg kg ⁻¹)	NO ₃ N (mg kg ⁻¹)	DOC (mg kg ⁻¹)	TN (mg kg ⁻¹)	DOC:TN	MBC (mg kg ⁻¹)	MBN (mg kg ⁻¹)	MBC:MBN
Microple	Microplastic (MP)								
Control	8.45±0.03a	6.07±0.44a	33.12±2.31a	271.10±10.61b	27.11±0.27b	10.00±0.38b	84.64±9.11b	19.03±1.86b	4.55±0.37b
+MP	8.48±0.04a	6.34±0.34a	23.53±2.43b	434.55±22.08a	29.64±0.38a	14.58±0.59a	137.83±7.33a	23.01±1.58a	6.29±0.41a
Earthw	Earthworm (E)								
Control	8.54±0.03a	6.30±0.35a	21.90±1.86b	348.44±23.16a	27.96±0.43a	12.35±0.66a	122.46±10.77a	21.90±0.98a	5.63±0.42a
+ E	8.38±0.02b	6.10±0.43a	34.75±2.32a	357.21±30.85a	28.79±0.47a	12.23±0.87a	100.01±9.91b	20.14±2.33a	5.21±0.47a
Biock	Biochar (B)								
Control	8.39±0.02b	6.06±0.44a	27.22±2.68a	305.19±19.27b	27.94±0.38a	10.84±0.57b	90.14±10.59b	20.33±2.15a	4.47±0.33b
+B	8.54±0.03a	6.35±0.34a	29.43±2.65a	400.45±28.58a	28.82±0.51a	13.74±0.77a	132.32±7.72a	21.70±1.34a	6.36±0.42a
ANOVA									
Microplastic	0.0501	0.607	<0.01	<0.001	<0.001	<0.001	<0.001	<0.01	<0.001
Earthworm	<0.001	0.693	<0.001	0.611	0.063	0.804	<0.001	0.188	0.296
Biochar	<0.001	0.577	0.374	<0.001	0.051	<0.001	<0.001	0.304	<0.001
$MP \times E$	0.545	<0.05	0.857	0.099	0.625	0.084	0.264	0.397	0.934
$MP \times B$	0.078	0.081	0.289	0.183	0.200	0.435	<0.001	<0.001	0.579
$\mathbf{E} \times \mathbf{B}$	0.657	0.408	0.472	0.788	0.895	0.934	0.214	0.776	0.855
$MP \times E \times B$	<0.001	0.979	0.149	0.207	0.372	0.219	<0.01	<0.001	<0.01

effects were quantified as percentage changes relative to controls (95% confidence intervals).

Results and Discussion

Earthworm Survival and Soil Biogeochemical Properties

The survival of earthworms across all treatments was not optimistic, although they remained alive throughout the incubation period (Table 2). E+M0 treatment especially exhibited the lowest earthworm survival rate of 53% compared to the initial state. Notably, the incorporation of microplastics or biochar increased survival by 24-33% (p < 0.05), likely due to MPs improving soil aggregation (enhancing habitat structure) and biochar buffering moisture fluctuations. Despite these improvements, individual earthworm biomass declined uniformly by 35-41% (p > 0.05), suggesting physiological stress from MP exposure, potentially via oxidative damage or gut obstruction.

Soil pH exhibited dual regulation: earthworms reduced pH by 1.9% (8.54 vs 8.38; p < 0.01) through acidifying excretions (e.g., ammonium), while biochar increased it by 1.8% (8.39 vs 8.54; p < 0.001) via its alkaline ash content (Table 3). This pH modulation influenced microbial community composition, favoring nitrifying bacteria under biochar-amended conditions. MPs reduced NO₃⁻-N by 29.0% (p < 0.01), likely by adsorbing NO₃⁻ on hydrophobic surfaces, whereas earthworms increased NO₃⁻-N by 58.7% (p < 0.001) via enhanced mineralization of organic N (Table 3). The MP \times E interaction amplified NH₄+-N depletion (p < 0.05), reflecting earthworm-driven nitrification of NH₄+-N in MP-aerated soils. MPs elevated DOC by 60.3% (p < 0.001) and DOC:TN by 45.8% (p < 0.01) (Table 3), directly correlating with CO2 emissions. Biochar increased DOC by 22.1% (p < 0.05), likely through leaching of labile C fractions. Microbial biomass responded divergently: MPs and biochar synergistically increased MBC by 28.4% (p < 0.01) but reduced MBN by 19.7% (p < 0.05), elevating MBC:MBN by 32.6% (p < 0.01). This shift suggests N-limitation for microbial growth, suppressing nitrifier activity and N₂O production.

Greenhouse Gas Flux Dynamics

The three greenhouse gases exhibited distinct temporal flux dynamics (Fig. 1). CO₂ fluxes declined sharply within 132 hours, followed by slight fluctuations at low rates until the end of the incubation. Adding earthworms and biochar significantly enhanced CO₂ emissions. Across all treatments, N₂O flux emissions peaked in the first 4 days (~84 h) of incubation and then declined steadily thereafter. Some negative N₂O fluxes were observed between 300 and 516 hours. In contrast, CH₄ emissions were relatively variable and did

not exhibit a clear pattern. Furthermore, CH₄ emissions were negative for all the treatments, indicating net CH₄ oxidation.

A substantial amount of CO₂ emissions occurred in the initial stage and then decreased steadily. This is likely due to the addition of MPs and biochar providing an external input of available C for heterotrophic consumption of labile C, while exhaustion of labile C thereafter leads to a steady decrease [28]. Furthermore, earthworms generally lead to higher CO₂ emissions, as their activity in soil facilitates the availability of more oxygen for CO₂ production and release [29]. Additionally, biochar amendment resulted in higher CO₂ emissions than the control in the initial stages (Fig. 1c), primarily due to the increased soil organic C mineralization induced by its priming effect [30]. N₂O emission fluxes generally followed a similar trend but exhibited varied responses to the three factors during the first 10 days of the incubation. These results are likely attributed to two distinct processes: 1) adding MPs or biochar enhancing soil C/N ratio and promoting ammonia oxidation [31], and 2) earthworm activity accelerating the availability of soil mineral N, which is associated with soil nitrification and denitrification processes [32]. CH, fluxes were almost negative for all the treatments, which means the sandy-loam alkaline soil here has an intense capacity for CH₄ oxidation [33].

Effect of MPs on GHG Emissions

Adding MPs exerted significant yet inconsistent effects on the three greenhouse gas emissions (Fig. 2, Table 4). Specifically, it significantly increased CO, emissions and GWP while decreasing N₂O and CH₄ emissions. The different effects of MPs on these three GHG emissions may stem from various potential reasons. Firstly, adding MPs improves soil porosity, aggregation, and aeration [34, 35], facilitating the diffusion of O2 and CO2 from the soil [36]. It is known that N₂O production primarily depends on denitrification under anaerobic conditions and nitrification under aerobic conditions [37]. Soil O2 increase can reduce denitrification, decreasing microbial soil emissions. Additionally, the increased soil O₂ content also accelerates CH₄ oxidation and restrains soil CH₄ emission [38]. Secondly, the soil C:N ratio is a crucial indicator for assessing soil GHG emissions, particularly in relation to N₂O emissions [39]. Previous studies have demonstrated a robust inverse correlation between the soil C/N ratio and N₂O emission [40], consistent with our findings. Furthermore, 22%-46% of the DOC in MPs can be utilized by organisms or microorganisms in the carbon cycle as energy or nutrients [41], correlating with the increase in CO2 emission and the decrease in N₂O emission. Thirdly, a higher MBC:MBN ratio primarily impeded soil nitrification, subsequently reducing N₂O emission [42]. A recent global analysis revealed a negative correlation between the MBC:MBN ratio and soil N₂O emissions [43]. Furthermore, previous

6 Wenjing Ma, et al.

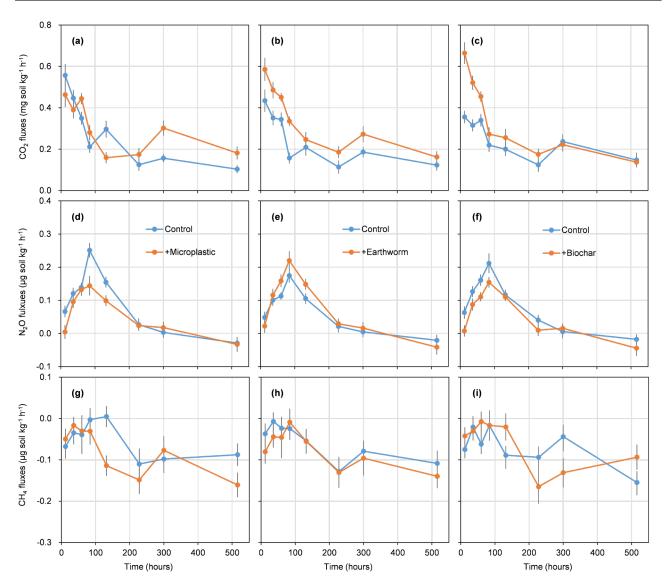


Fig. 1. Hourly CO_2 (a, b, and c), N_2O (d, e, and f), and CH_4 (g, h, and i) emission fluxes during the 21-day incubation. The error bars indicate the standard errors of means (\pm SE, n=16).

research discovered a strong correlation between soil N₂O emissions and NO₃⁻ content in spatial and temporal models [44]. This suggests that a reduction in NO₃⁻ levels would decrease inorganic nitrogen availability for microbial denitrification, ultimately leading to a decrease in N₂O emissions as an intermediate product.

Effect of Earthworms on GHG Emissions

The presence of earthworms in the soil significantly increased soil CO₂ and N₂O emissions. The presence of earthworms significantly enhanced GWP by 50.9% compared to the control. However, earthworms did not affect CH₄ production (Fig. 2, Table 4). This effect was likely due to the changes in soil properties caused by earthworms and their inherent characteristics. Earthworm respiration contributes significantly to soil respiration [26], accounting for the 42.3% increase in CO₂ emissions observed in our study due to the presence

of earthworms. This result is similar to the findings of a 34% increase in CO₂ emissions due to the presence of earthworms [45-46]. Our results indicated that the presence of earthworms had a strong influence on accelerating N₂O emissions, which is consistent with previous studies [47]. This phenomenon is likely due to the increase in soil NO₃⁻ content, which provides sufficient substrate for denitrification and thus stimulates soil N₂O emissions [48]. In the current study, the presence of earthworms did not affect CH₄ emissions, a finding that is supported by previous studies [49]. However, there are differing results regarding the effect of earthworms on CH₄ emissions. For instance, aquatic earthworms could reduce CH₄ fluxes by promoting a favorable environment for methanotrophs [50].

Effect of Biochar on GHG Emissions

Biochar amendment had a significant but opposite effect on CO₂ and N₂O emissions while having no effect

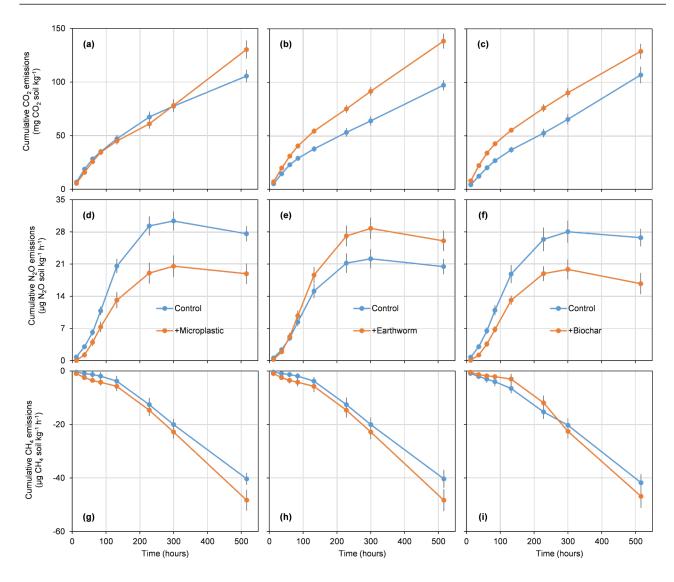


Fig. 2. Cumulative CO₂ (a, b, and c), N₂O (d, e, and f), and CH₄ (g, h, and i) emissions during the 21-day incubation. The error bars indicate the standard errors of means (±SE, n=16).

on $\mathrm{CH_4}$ production (Fig. 2, Table 4). Specifically, biochar amendment significantly increased $\mathrm{CO_2}$ emissions while decreasing $\mathrm{N_2O}$ emissions relative to the unamended treatments.

Biochar is a highly effective material for regulating soil's physico-chemical environment, given that GHG emissions are closely correlated with soil physical properties (e.g., pH, porosity, aggregation) and chemical properties (e.g., carbon-nitrogen ratio, microbial carbon) [51]. Our study found that biochar amendment significantly impacted several soil properties, including pH, DOC, and MBC, thereby influencing soil CO₂ and N₂O emissions. Previous studies reported that biochar amendment could increase CO₂ emissions by 22.14% and decrease N₂O emissions by 38% [52, 53]. These findings align closely with our own results, demonstrating a 20.6% increase in CO₂ emissions and a 26.1% decrease in N₂O emissions. Biochar has a carbon content exceeding 90%, and its addition results in higher

mineralization of labile C and inorganic C release, which stimulates soil microbial activities, ultimately promoting CO_2 emissions [54]. Furthermore, adding biochar to soil enhances soil aeration, which not only facilitates CO_2 diffusion but also suppresses microbial denitrification, thereby leading to a reduction in $\mathrm{N}_2\mathrm{O}$ emissions [55]. Additionally, the higher carbon-to-nitrogen ratio in soil resulting from biochar amendment could also restrain $\mathrm{N}_2\mathrm{O}$ emissions. The increased nitrogen demand by microorganisms elevates the soil carbon-to-nitrogen ratio, a crucial factor affecting nitrification and denitrification processes, ultimately decreasing $\mathrm{N}_2\mathrm{O}$ emissions [56].

Comprehensive Effects of the Three Factors on GHG Emissions

Our findings revealed few interactive effects of the treatments on soil GHG emissions. Only CO₂ emissions and GWP were significantly influenced by

Table 4. Cumulative greenhouse gas emission during the 21-day incubation (mean values ± standard error). Different letters within each treatment indicate significant differences for the Tukey HSD test.

				11/2	111			
				varı	variables			
Treatments	CO ₂ (mg CO ₂ kg ⁻¹)		N ₂ O (μg N ₂ O kg ⁻¹)		$\mathrm{CH_4}\left(\mu\mathrm{g}\mathrm{CH_4}\mathrm{kg^{-1}}\right)$		$GWP\left(mgCO_{2(eq)}\right.$ kg ⁻¹)	
Micropla	Microplastic (MP)							
Control	105.57±5.98	q	27.60±1.94	В	-36.02±2.28	a	112.57±5.95	q
+MP	130.36±8.44	В	18.91±1.57	q	-52.60±3.95	þ	134.20±8.51	а
Earthw	Earthworm (E)							
Control	97.35±4.80	q	20.46±1.65	q	-40.33±3.34	а	102.08±4.51	q
H=	138.57±6.91	B	26.05±2.23	а	-48.29±4.09	а	154.02±5.03	а
Bioch	Biochar (B)							
Control	106.93±7.81	q	26.74±1.90	В	-41.76±3.22	а	113.48±7.76	q
+B	129.00±7.08	а	19.77±1.87	þ	-46.86±4.32	a	133.29±7.07	а
ANOVA	p values							
Microplastic	<0.001		<0.001		<0.01		<0.01	
Earthworm	<0.001		<0.05		0.101		<0.001	
Biochar	<0.01		<0.01		0.285		<0.01	
$\mathbf{MP} \times \mathbf{E}$	<0.05↑		0.467		0.634		<0.05⁺	
$\mathbf{MP} \times \mathbf{B}$	0.68		0.785		0.923		0.707	
$\mathbf{E} \times \mathbf{B}$	0.76		0.834		0.657		0.755	
$MP \times E \times B$	0.95		0.747		0.905		0.975	

Note: † are significant interactions, where significant differences are shown in Fig. 3.

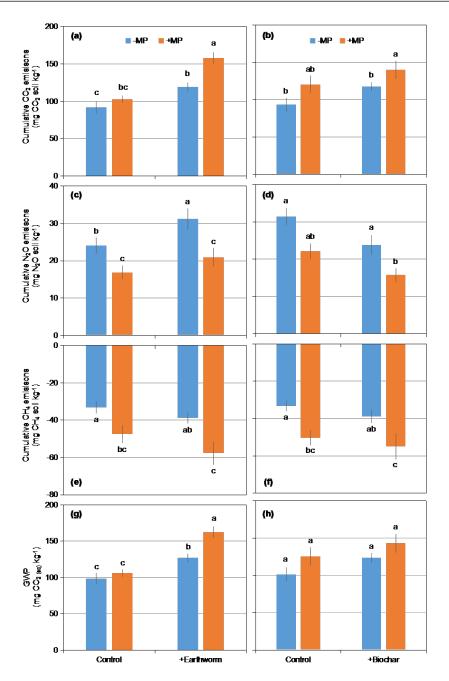


Fig. 2. Cumulative CO₂ (a, b, and c), N₂O (d, e, and f), and CH₄ (g, h, and i) emissions during the 21-day incubation. The error bars indicate the standard errors of means (±SE, n=16).

the interaction of MPs and earthworms (Table 4, Fig. 3). Specifically, when earthworms were absent, there was no significant difference in CO₂ emissions with or without MPs. However, the presence of earthworms significantly enhanced CO₂ emissions by 32.7% when MPs were added compared to the treatment without adding MPs (Fig. 3a). This was primarily attributed to the stimulation of earthworms' respiration by adding MPs, which is linked to soil respiration, resulting in a significant increase in soil CO₂ emissions [26]. Previous research has demonstrated that adding MPs can promote soil aeration, which favors earthworms' activities such as burrowing, feeding, and excretion [57]. Furthermore, MPs increased the survival rate of earthworms in our

study, factors that collectively enhance the respiration of earthworms themselves, ultimately increasing soil CO_2 emission. Similarly, earthworms significantly enhanced GWP by 27.7% when adding MPs (Fig. 3g). This interaction was closely associated with the combined contribution of CO_2 , N_2O , and CH_4 emissions under different treatments [58]. However, the absence of earthworms resulted in no significant difference in GWP regardless of adding MPs. Currently, research on the interactive effects of earthworms and MPs on the GWP of agricultural soils is relatively limited, and the underlying mechanisms are complex, warranting further investigation in future studies.

10 Wenjing Ma, et al.

Conclusions

This study elucidates the distinct and interactive effects of biochar, earthworms, and MPs on soil GHG emissions in a sandy-loam vertisol. Key findings reveal those alterations in soil DOC, nitrogen dynamics (TN, NO₃-N), microbial biomass (MBC:MBN ratio), and C/N stoichiometry collectively drive GHG flux patterns. Our findings revealed that the survival rate, rather than the biomass, of earthworms was enhanced in the presence of earthworms and biochar. Notably, earthworms, MPs, and biochar alone significantly increased soil CO, emissions and GWP. Furthermore, the changes in GHG emissions under different treatments exhibited variability. Specifically, MPs decreased N₂O emissions, while earthworms and biochar increased them. Conversely, CH₄ emissions were reduced only in the presence of MPs, with no significant effect observed under earthworms or biochar addition. The interaction between earthworms and MPs (E × MP) was the only significant interaction among all treatments, which substantially influenced CO, emissions and GWP. These findings provide valuable insights for formulating emission reduction management strategies in sandy loam soils, aiming to mitigate the global warming potential and promote sustainable soil environmental management.

Acknowledgments

This work was financially supported by the Henan Province Higher Education Institutions Youth Talents Cultivation Plan (2023GGJS018).

Conflict of Interest

The authors declare no conflict of interest.

References

- FENG Z., WANG L., WAN X., YANG J., PENG Q., LIANG T., WANG Y., ZHONG B., RINKLEBE J. Responses of soil greenhouse gas emissions to land use conversion and reversion - A global meta-analysis. Global Change Biology, 28 (22), 6665, 2022.
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, 2021.
- 3. LIU Y., TANG H., MUHAMMAD A., HUANG G. Emission mechanism and reduction countermeasures of agricultural greenhouse gases a review. Greenhouse Gases: Science and Technology, 9 (2), 160, 2019.
- SHAKOOR A., SHAKOOR S., REHMAN A., ASHRAF F., ABDULLAH M., SHAHZAD S.M., FAROOQ T.H., ASHRAF M., MANZOOR M.A., ALTAF M.M., ALTAF M.A. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils A global meta-analysis. Journal of

- Cleaner Production, 278, 124019, 2021.
- ZHANG S., WANG J., YAN P., HAO X., XU B., WANG W., AURANGZEIB M. Non-biodegradable microplastics in soils: A brief review and challenge. Journal of Hazardous Materials, 409, 124525, 2021.
- ZHANG B., YANG X., CHEN L., CHAO J., TENG J., WANG Q. Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. Journal of Chemical Technology and Biotechnology, 95 (8), 2052, 2020.
- HUANG Y., LIU Q., JIA W., YAN C., WANG J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096, 2020.
- YAO Y., WANG L., PAN S., LI G., LIU H., XIU W., GONG L., ZHAO J., ZHANG G., YANG D. Can microplastics mediate soil properties, plant growth and carbon/nitrogen turnover in the terrestrial ecosystem? Ecosystem Health and Sustainability, 8 (1), 2133638, 2022.
- ZHANG Z., YANG Z., YUE H., XIAO M., GE T., LI Y., YU Y., YAO H. Discrepant impact of polyethylene microplastics on methane emissions from different paddy soils. Applied Soil Ecology, 181, 104650, 2023.
- 10. SU P., BU N., LIU X., SUN Q., WANG J., ZHANG X., XIANG T., CHU K., ZHANG Z., CAO X., LI Z. Stimulated soil CO₂ and CH₄ emissions by microplastics: A hierarchical perspective. Soil Biology and Biochemistry, 194, 109425, 2024.
- YU Y., LI X., FENG Z., XIAO M., GE T., LI Y., YAO H. Polyethylene microplastics alter the microbial functional gene abundances and increase nitrous oxide emissions from paddy soils. Journal of Hazardous Materials, 432, 128721, 2022.
- 12. SU P., GAO C., ZHANG X., ZHANG D., LIU X., XIANG T., LUO Y., CHU K., ZHANG G., BU N., LI Z. Microplastics stimulated nitrous oxide emissions primarily through denitrification: A meta-analysis. Journal of Hazardous Materials, 445, 130500, 2022.
- YU Y., LI X., FAN H., LI Y., YAO H. Dose effect of polyethylene microplastics on nitrous oxide emissions from paddy soils cultivated for different periods. Journal of Hazardous Materials, 453, 131445, 2023.
- 14. SHRESTHA R.K., JACINTHE P.A., LAL R., LORENZ K., SINGH M.P., DEMYAN S.M., REN W., LINDSEY L.E. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. Journal of Environmental Quality, 52 (4), 769, 2023.
- 15. SULTAN H., LI Y., AHMED W., YIXUE M., SHAH A., FAIZAN M., AHMAD A., ABBAS H.M.M., NIE L., KHAN M.N. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. Journal of Environmental Management, 355, 120448, 2024.
- 16. NAN Q., HU S., QIN Y., WU W. Methane oxidation activity inhibition via high amount aged biochar application in paddy soil. Science of The Total Environment, 796, 149050, 2021.
- 17. WU Z., ZHANG X., DONG Y., LI B., XIONG Z. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis. Agricultural and Forest Meteorology, 278, 107625, 2019.
- 18. WANG L., GAO C., YANG K., SHENG Y., XU J., ZHAO Y., LOU J., SUN R., ZHU L. Effects of biochar aging in the soil on its mechanical property and performance

- for soil CO_2 and N_2O emissions. Science of The Total Environment, **782**, 146824, **2021**.
- JEFFERY S., VERHEIJEN F.G.A., KAMMANN C., ABALOS D. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry, 101, 251, 2016.
- CAI F., FENG Z., ZHU L. Effects of biochar on CH₄ emission with straw application on paddy soil. Journal of Soils and Sediments, 18 (2), 599, 2017.
- OO A.Z., SUDO S., AKIYAMA H., WIN K.T., SHIBATA A., YAMAMOTO A., SANO T., HIRONO Y. Effect of dolomite and biochar addition on N₂O and CO₂ emissions from acidic tea field soil. PLoS One, 13 (2), e0192235, 2018.
- LIU J., QIU H., WANG C., SHEN J., ZHANG W., CAI J., TANG H., WU J. Effects of biochar amendment on greenhouse gas emission in two paddy soils with different textures. Paddy and Water Environment, 19 (1), 87, 2020.
- 23. JU H., YANG X., OSMAN R., GEISSEN V. Effects of microplastics and chlorpyrifos on earthworms (*Lumbricus* terrestris) and their biogenic transport in sandy soil. Environmental Pollution, 316, 120483, 2023.
- 24. GONG X., LI J., CHANG S., WU Q., AN Z., HUANG C., SUN X., LI S., WANG H. Cattle manure biochar and earthworm interactively affected CO₂ and N₂O emissions in agricultural and forest soils: Observation of a distinct difference. Frontiers of Environmental Science & Engineering, 16 (3), 39, 2021.
- 25. FOREY O., SAUZE J., PIEL C., GRITTI E.S., DEVIDAL S., FAEZ A., RAVEL O., NAHMANI J., ROUCH L., BLOUIN M., PÉRÈS G., CAPOWIEZ Y., ROY J., MILCU A. Earthworms do not increase greenhouse gas emissions (CO₂ and N₂O) in an ecotron experiment simulating a three-crop rotation system. Scientific Reports, 13, 21920, 2023.
- 26. GAO B., LI Y., ZHENG N., LIU C., REN H., YAO H. Interactive effects of microplastics, biochar, and earthworms on CO₂ and N₂O emissions and microbial functional genes in vegetable-growing soil. Environmental Research, 213, 113728, 2022.
- 27. ZAITSEV A.S., GORBUNOVA A.Y., KOROBUSHKIN D.I., DEGTYAREV M.I., ZHADOVA A.N., KOSTINA N.V., GONGALSKY K.B. The earthworm species Eisenia fetida modulates greenhouse gas release and carbon stabilization after rice straw amendment to a paddy soil. European Journal of Soil Biology, 89, 39, 2018.
- 28. NAMOI N., PELSTER D., ROSENSTOCK T.S., MWANGI L., KAMAU S., MUTUO P., BARRIOS E. Earthworms regulate ability of biochar to mitigate CO₂ and N₂O emissions from a tropical soil. Applied Soil Ecology, 140, 57, 2019.
- 29. GANAULT P., NAHMANI J., CAPOWIEZ Y., FROMIN N., SHIHAN A., BERTRAND I., BUATOIS B., MILCU A. Earthworms and plants can decrease soil greenhouse gases emissions by modulating soil moisture fluctuations and soil macroporosity in a mesocosm experiment. PLoS One, 2, 19, 2023.
- 30. LUO Y., ZANG H., YU Z., CHEN Z., GUNINA A., KUZYAKOV Y., XU J., ZHANG K., BROOKES P.C. Priming effects in biochar enriched soils using a threesource-partitioning approach: ¹⁴C labelling and ¹³C natural abundance. Soil Biology and Biochemistry, 106, 28, 2017.
- ZHANG Y., MAI H., QIU Q., ZHU Y., LONG J., CHEN S., CHEN Y. The Responses of C, N, P and Stoichiometric Ratios to Biochar and Vermicompost Additions Differ from Alfalfa and a Mine Soil. Agriculture, 13 (10), 1954,

2023.

- 32. ZHU X., CHANG L., LI J., LIU J., FENG L., WU D. Interactions between earthworms and mesofauna affect CO₂ and N₂O emissions from soils under long-term conservation tillage. Geoderma, **332**, 153, **2018**.
- 33. YANG W., YANG M., WEN H., JIAO Y. Global Warming Potential of CH₄ uptake and N₂O emissions in saline–alkaline soils. Atmospheric Environment, **191**, 172, **2018**.
- 34. RILLIG M.C., LEIFHEIT E., LEHMANN J. Microplastic effects on carbon cycling processes in soils. PLoS Biology, 19 (3), e3001130, 2021.
- DE SOUZA MACHADO A.A., LAU C.W., TILL J., KLOAS W., LEHMANN A., BECKER R., RILLIG M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environmental Science & Technology, 52 (17), 9656, 2018.
- 36. SHI J., WANG Z., PENG Y., FAN Z., ZHANG Z., WANG X., ZHU K., SHANG J., WANG J. Effects of Microplastics on Soil Carbon Mineralization: The Crucial Role of Oxygen Dynamics and Electron Transfer. Environmental Science & Technology, 57 (36), 13588, 2023.
- 37. KAN Z., ZHOU J., LI F., SHETEIWY M.S., QI J., CHEN C., YANG H. Straw incorporation interacting with earthworms mitigates N₂O emissions from upland soil in a rice-wheat rotation system. Science of The Total Environment, **859**, 160338, **2023**.
- 38. HAN L., CHEN L., LI D., JI Y., FENG Y., FENG Y., YANG Z. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environmental Pollution, 292, 118386, 2022.
- 39. YAO Z., YAN G., MA L., WANG Y., ZHANG H., ZHENG X., WANG R., LIU C., WANG Y., ZHU B., ZHOU M., RAHIMI J., BUTTERBACH-BAHL K. Soil C/N ratio is the dominant control of annual N₂O fluxes from organic soils of natural and semi-natural ecosystems. Agricultural and Forest Meteorology, **327**, 109198, **2022**.
- KLEMEDTSSON L., VON ARNOLD K., WESLIEN P., GUNDERSEN P. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 11 (7), 1142, 2005.
- 41. SUN X., TAO R., XU D., QU M., ZHENG M., ZHANG M., MEI Y. Role of polyamide microplastic in altering microbial consortium and carbon and nitrogen cycles in a simulated agricultural soil microcosm. Chemosphere, 312, 137155, 2023.
- 42. LI Z., TANG Z., SONG Z., CHEN W., TIAN D., TANG S., WANG X., WANG J., LIU W., WANG Y., LI J., JIANG L., LUO Y., NIU S. Variations and controlling factors of soil denitrification rate. Global Change Biology, 28 (6), 2133, 2022.
- 43. LI Z., ZENG Z., SONG Z., TIAN D., HUANG X., NIE S., WANG J., JIANG L., LUO Y., CUI J., NIU S. Variance and main drivers of field nitrous oxide emissions: A global synthesis. Journal of Cleaner Production, 353, 131686, 2022.
- 44. ARAUJO P.I., PIÑEIRO-GUERRA J.M., YAHDJIAN L., ACRECHE M.M., ALVAREZ C., ALVAREZ C.R., COSTANTINI A., CHALCO VERA J., DE TELLERÍA J., DELLA CHIESA T., LEWCZUK N.A., PETRASEK M., PICCINETTI C., PICONE L., PORTELA S.I., POSSE G., SEIJO M., VIDELA C., PIÑEIRO G. Drivers of N₂O Emissions from Natural Forests and Grasslands Differ in Space and Time. Ecosystems, 24 (2), 335, 2020.
- 45. LV M., FU S., SHAO Y., LIN Y., WU J., ZHANG W. Earthworm Pontoscolex corethrurus stimulated soil CO₂

- emission by enhancing substrate availability rather than changing microbiota community structure. Science of The Total Environment, 717, 137227, 2020.
- 46. LUBBERS I.M., VAN GROENIGEN K.J., FONTE S.J., SIX J., BRUSSAARD L., VAN GROENIGEN J.W. Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change, 3 (3), 187, 2013.
- 47. KAN Z.R., WEI Q., YANG R., LI Y., ZHOU J., QI J., LI F.M., YANG H. Arbuscular mycorrhizal fungi mitigate earthworm-induced N₂O emissions from upland soil in a rice-rotated wheat farming system. Applied Soil Ecology, 189, 104981, 2023.
- 48. KUIPER I., DE DEYN G.B., THAKUR M.P., VAN GROENIGEN J.W. Soil invertebrate fauna affect N₂O emissions from soil. Global Change Biology, 19 (9), 2814, 2013.
- 49. LI Y., LIAO J., CHEN H.Y.H., ZOU X., DELGADO-BAQUERIZO M., NI J., REN T., XU H., RUAN H. Soil fauna alter the responses of greenhouse gas emissions to changes in water and nitrogen availability. Soil Biology and Biochemistry, 179, 108990, 2023.
- MITRA P., KANEKO N. Impact of Aquatic Earthworms on Methane Emission Reduction from the Paddy Field Soil in Japan. Journal of Agricultural Science, 9 (10), 36, 2017.
- 51. WALKIEWICZ A., KALINICHENKO K., KUBACZYŃSKI A., BRZEZIŃSKA M., BIEGANOWSKI A. Usage of biochar for mitigation of CO₂ emission and enhancement of CH₄ consumption in forest and orchard Haplic Luvisol (Siltic) soils. Applied Soil Ecology, 156, 103711, 2020.
- 52. BORCHARD N., SCHIRRMANN M., CAYUELA M.L., KAMMANN C., WRAGE-MÖNNIG N., ESTAVILLO

- J.M., FUERTES-MENDIZÁBAL T., SIGUA G., SPOKAS K., IPPOLITO J.A., NOVAK J. Biochar, soil and land-use interactions that reduce nitrate leaching and N₂O emissions: A meta-analysis. Science of The Total Environment, **651**, 2354, **2019**.
- 53. HE Y., ZHOU X., JIANG L., LI M., DU Z., ZHOU G., SHAO J., WANG X., XU Z., HOSSEINI BAI S., WALLACE H., XU C. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9 (4), 743, 2016.
- 54. CHEN C., WANG K., ZHU H. Meta-Analysis of N₂O Emissions as Affected by Biochar Amendment in Northern China. Water, Air, & Soil Pollution, 235 (4), 238, 2024.
- 55. DONG W., WALKIEWICZ A., BIEGANOWSKI A., OENEMA O., NOSALEWICZ M., HE C., ZHANG Y., HU C. Biochar promotes the reduction of N₂O to N₂ and concurrently suppresses the production of N₂O in calcareous soil. Geoderma, **362**, 114091, **2020**.
- 56. FENG Z., ZHU L. Impact of biochar on soil N₂O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil. Science of The Total Environment, 584, 776, 2017.
- 57. RILLIG M.C., HOFFMANN M., LEHMANN A., LIANG Y., LÜCK M., AUGUSTIN J. Microplastic fibers affect dynamics and intensity of CO₂ and N₂O fluxes from soil differently. Microplastics and Nanoplastics, 1, 3, 2021.
- 58. NASER H.M., NAGATA O., SULTANA S., HATANO R. Carbon Sequestration and Contribution of CO₂, CH₄ and N₂O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan. Agriculture, 10 (1), 6, 2019.