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Abstract

Reducing carbon emissions in agricultural production helps achieve green agricultural development 
in the Yellow River Basin, China. Exploring the influence of high-quality development (HQD) on 
agricultural carbon emissions (ACE) is of great significance for implementing low-carbon agriculture. 
Using the panel data of 76 prefecture-level cities from 2005 to 2021, this paper analyzes the influence 
and mechanism of HQD on ACE using the static and dynamic spatial Durbin, mediating effect,  
and panel threshold models. Results show that carbon emissions from chemical fertilizers are  
the highest, above 13 million tons. ACE in the eastern part is higher than in the western part. Empirical 
analysis manifests that HQD correlates with ACE negatively, accompanied by a substantial negative 
spatial spillover effect. The long-term effects of HQD, with estimated direct and indirect coefficients 
of -0.771 and -1.461, are obviously greater than the short-term effects, with estimated coefficients of 
-0.263 and -0.469. In addition, industrial structure upgrading plays a mediating role in the relationship 
between HQD and ACE. Furthermore, there is a non-linear relationship between HQD and ACE.  
When the degree of urbanization and economic development exceeds the threshold value, the effect 
of HQD on ACE shifts from promotion to inhibition. These results have guiding significance for  
low-carbon and sustainable agricultural practices.

Keywords: agricultural carbon emissions, high-quality development, spatial Durbin model, panel threshold 
effect, Yellow River Basin
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Introduction

Climate change seriously threatens the sustainable 
development of human society and economy [1-2]. 
Greenhouse gas emissions, such as carbon dioxide 
(CO2) and methane (CH4), are the main factors leading 
to global climate warming [3-5]. In order to mitigate 
climate change, China put forward a new target of 
“reaching carbon neutrality by 2030 and carbon peaking 
by 2060”, called the “dual carbon” target, to better 
fulfill its carbon reduction responsibilities [6]. As China 
is a major agricultural producer and consumer, the 
agricultural sector accounts for about 17% of the total 
carbon emissions [7]. Consequently, carbon reduction 
in the agricultural sector should not be ignored, and the 
development of low-carbon agriculture is essential for 
sustainable socio-economic development and achieving 
China’s dual-carbon goals. As an important agricultural 
production base and ecological barrier in China, the 
HQD of the Yellow River Basin is not only related to 
the sustainable development of the regional economy but 
also directly affects national food security and carbon 
emission control. The agricultural production in the 
Yellow River Basin not only constitutes a significant 
portion of the country’s total agricultural output but 
also faces multiple challenges, such as land degradation, 
water scarcity, and carbon emission pressure. In this 
context, researching how to promote low-carbon 
transformation in agriculture has become a focus for the 
current academic community and policymakers.

The existing studies on agricultural carbon emissions 
have achieved fruitful results, including agricultural 
carbon emissions accounting [8], spatio-temporal 
characteristics [9], prediction analysis [10], coupling 
relationship [11], decoupling effect [12], and analysis 
of influencing factors [13]. From the view of research 
methods, the main approaches include the IPCC emission 
factor accounting method, life cycle method, spatial 
Moran’s I, gray prediction model, XGBoost prediction 
model, logarithmic mean Divisia index (LMDI), coupled 
coordination model, Tapio decoupling model, Multi-
Feature Fusion of 3D-CNN and Graph Attention Network 
MFFCG [14], local similarity projection Gabor filtering 
(LSPGF) [15], etc. As for the drivers of agricultural 
carbon emissions, the major concerns are economic 
development, technological progress, agricultural 
policies, environmental regulations, urbanization, 
industrial structure, climate factors, socio-economic 
factors [16], etc. The existing literature has fruitfully 
explored agricultural carbon emissions from multiple 
angles and revealed paths and mechanisms of various 
factors in reducing agricultural carbon emissions.

China’s economy has transitioned from the stage 
of high-speed development to the stage of high-
quality development, as stated in the report of the 19th 
National Congress [17]. The core connotation of high-
quality development (HQD) consists of innovation, 
coordination, greenness, openness, and sharing, which 
covers all fields of the social economy. Academics hold 

varying views on HQD. For example, Zhang et al. [18] 
argued that HQD should contain the scale of economic 
development as well as the quality of economic 
development. Lu et al. [19] held the view that HQD 
should prioritize quality and foster new development 
dynamics. Comprehensively, HQD has multidimensional 
connotations and should be balanced in various aspects, 
such as economy, society, ecology, and culture [20]. 
In addition, there is a growing consensus that HQD 
should include resource conservation and environmental 
protection. Consequently, HQD has rich connotations 
and far-reaching significance for the socio-economic 
transformation and low-carbon development. However, 
studies on HQD mainly focus on theoretical analysis 
[21] and level measurement [22], with less attention 
paid to the relationship between HQD and agricultural 
carbon emissions. The outline of the literature review is 
shown in Fig. 1.

Fig. 1. The outline of the literature review.
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The Yellow River Basin, one of the key areas for 
economic development and ecological fragility in China, 
has seen its ecological protection and high-quality 
development become a national strategy [23]. However, 
despite the long-standing implementation of the HQD 
strategy in the Yellow River Basin, its specific impact on 
ACE still lacks quantitative evaluation. Previous studies 
often overlooked the dynamic relationship between  
the HQD strategy and ACE. To fill this knowledge 
gap, this article innovatively combines the HQD 
strategy of the Yellow River Basin with ACE, using 
multidimensional quantitative analysis methods. In 
addition, this article also considers the mechanism of the 
impact of HQD on ACE and the non-linear relationship 
between the two, providing a more comprehensive 
perspective for sustainable regional development. 76 
prefecture-level cities in the Yellow River Basin are 
selected as the research object, and panel data from 2005 
to 2021 are used to quantitatively analyze the degree 
and direction of influence of HQD on ACE. The static 
and dynamic Durbin models are adopted to explore 
the relationship between the short-term and long-term 
effects of HQD on ACE. The mediating effect model 
is used to reveal the mechanism of HQD on ACE, and 
the threshold panel model is employed to examine the 
non-linear relationship between them, aiming to offer 
insights and a theoretical foundation for low-carbon 
agriculture and HQD in the Yellow River Basin, China.

Theoretical Analysis and Hypothesis

High-Quality Development (HQD)  
and Agricultural Carbon Emissions

From an economic perspective, HQD represents  
a developmental approach aimed at satisfying the genuine 
needs of the populace [24]. Resource environment 
changes hinder economic development, illustrating that 
a development strategy reliant solely on material inputs 
is unsustainable [25]. To achieve HQD in the new era, 
it’s imperative to prevent environmental deterioration 
and mitigate carbon emissions. The advantages of 
“demographic dividend” and “capital accumulation” are 
gradually diminishing, making it imperative to shift the 
drivers of economic development towards innovation and 
technological advancements [26]. Since the reform and 
opening up, significant progress has been achieved in 
China’s economy. However, it still faces challenges such 
as spatial discordance of development and imbalance 
between urban and rural regions. Therefore, there is 
an urgent need to prioritize coordinated strategies in 
high-quality development initiatives in the new era. 
Local governments should particularly emphasize green 
and sustainable development practices. This includes 
increasing subsidies for peasant households to adopt 
environment-friendly practices in agricultural planting, 
such as cultivating green agricultural products and 
reducing the use of pesticides and chemical fertilizers 
[27]. By doing so, we can reduce agricultural chemical 

pollution, enhance environmental sustainability, and 
contribute to coordinated development. Additionally, 
further opening up helps to attract foreign investment 
and promote scientific innovation and technological 
progress, which helps to cut down agricultural carbon 
emissions [28]. Finally, HQD emphasizes the concept 
of “sharing” development. In the agricultural sector, the 
sharing economy can promote resource recycling and 
reduce the pressure on environmental resources, while 
the sharing of information technology can facilitate 
technology advancement, which is beneficial to 
reducing agricultural carbon emissions and sustainable 
development in agriculture. HQD is recognized as 
an effective way to reduce carbon emissions [29, 30].  
In summary, this paper proposes the following 
hypotheses:

H1: HQD presents a reducing effect on agricultural 
carbon emissions.

Spatial Spillover Effects

In geography, everything is related, with closer things 
exhibiting stronger relationships. The spatial spillover 
effects of HQD on agricultural carbon emissions occur 
through various channels, including interregional 
resource allocation optimization, synergy between 
regions, coordination of policies across regions, and 
dissemination of knowledge between regions. Firstly, 
HQD can optimize inter-regional resource allocation 
by sharing agricultural technology and management 
experience, effectively preventing neighboring regions 
from “taking a detour” and facilitating the direct use 
of advanced technology and effective management 
experience, which reduces agricultural carbon 
emissions. Secondly, HQD can promote inter-regional 
cooperation, realize the complementary effect between 
regions, and boost the overall production efficiency in 
agriculture, thereby reducing carbon emissions from 
agriculture. In addition, HQD requires strengthening 
inter-regional environmental policy cooperation, 
facilitating the integration of environmental governance, 
and enhancing the management efficiency of 
agricultural carbon emissions. Finally, HQD encourages 
the diffusion of interregional knowledge, which 
contributes to the application of low-carbon technology, 
promotes the transformation of production mode, and 
reduces agricultural carbon emissions in neighbors.  
As a consequence, the following hypothesis is proposed:

H2: HQD poses a negative spatial spillover effect on 
agricultural carbon emissions.

Mediating Effects of Industrial 
Structure Upgrading (ISU)

It has been argued that industrial structure upgrading 
(ISU) is feasible to realize HQD [31]. ISU is mainly 
characterized by the decline in primary industry and the 
ascent of secondary and tertiary industries. Meanwhile, 
industrial structure evolves towards advanced  
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and coordinated development [32]. ISU is also a green 
development approach with low energy, less pollution, 
and high yield, which meets the requirements of HQD. 
When upgrading the industrial structure, agricultural 
modernization is further promoted. More advanced 
technology and equipment are used in agricultural 
production, raising efficiency and reducing agricultural 
carbon emissions. Meanwhile, literature has revealed 
that ISU can significantly reduce carbon emissions [33, 
34]. Consequently, this paper proposes the following 
hypothesis:

H3: HQD can go through ISU to reduce agricultural 
carbon emissions.

Threshold Effects of Urbanization 
and Economic Development

An increase in the urbanization rate is one of the 
characteristics possessed by HQD [35]. In the primary 
stage of urbanization, rural areas send out a large 
number of young and strong laborers. The increased 
urban population now stimulates the demand for 
agricultural products. Consequently, pesticides and 
chemical fertilizers are used to boost output and 
satisfy market demand. Meanwhile, the concept of 
HQD could not be fully implemented, leading to 
increased agricultural carbon emissions. However, when 
urbanization reaches a critical level, cities begin to have 
a positive spillover effect on rural areas. Specifically, 
cities provide modern technology and systems to support 
agriculture [36], promoting intelligent and low-carbon 
development. This transition enhances management 
and production efficiency, reduces the consumption of 
agricultural resources, and increases farmers’ awareness 
of environmental protection. The conditions for HQD 
can be satisfied, thus reducing agricultural carbon 
emissions. In summary, this paper puts forward the 
following assumptions:

H4: Urbanization manifests a threshold effect on the 
influence of HQD on agricultural carbon emissions.

Environmental degradation is often prioritized 
in exchange for economic growth during the initial 
stages of economic development, leading to numerous 
environmental issues [37]. At that time, the promotion 
of local officials was also linked to the local economy 
[38]. As a result, local governments increased the use 
of traditional energy sources to boost GDP growth in 
the short term, often at the expense of environmental 
protection. Moreover, the concept of HQD was not fully 
recognized. These factors collectively led to increased 
agricultural carbon emissions. Environmental problems 
caused by extensive economic growth are increasingly 
prominent when the economy develops to a certain 
extent. To address these problems, the country has 
introduced corresponding policies. At the same time, 
the environmental protection awareness of farmers has 
been improved [39], and more farmers are willing to 
accept green agricultural production methods, which 
helps reduce the dependence on traditional production 

methods and further raises the efficiency of agricultural 
production and reduces agricultural carbon emissions 
[40]. In summary, this paper makes the following 
hypothesis:

H5: Economic development poses a threshold 
effect on the influence of HQD on agricultural carbon 
emissions.

Materials and Methods

Methodology

Spatial Autocorrelation

The global Moran’s I is adopted to test the degree 
of spatial patterns of HQD and agricultural carbon 
emissions. The formula is as follows:
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where I is the global Moran’s I; n denotes the number 
of cities; xi and xj are the level of HQD or agricultural 
carbon emissions of city i and city j; x̅ is the mean 
value; Wij denotes the spatial weight matrix. I>0 means  
the positive spatial autocorrelation, and I<0 denotes  
the negative spatial autocorrelation. The larger the value, 
the more obvious the agglomeration characteristics.

Spatial Econometric Model

The spatial econometric model can measure the 
influence of drivers on dependent variables, considering 
spatial factors among variables. To reveal the direct 
and indirect influences of HQD on agricultural carbon 
emissions, the spatial Durbin model is adopted (Eq. (2)). 
In addition, given that agricultural carbon emissions are 
also influenced by the prior period, the dynamic spatial 
Durbin model is constructed as Eq. (3).
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where C represents the agricultural carbon emissions; 
HQD is the core explanatory variable, that is, high-
quality development; X presents control variables; W 
denotes the spatial weight matrix; i and t refer to city and 
time, respectively; σ, λ, and δ stand for the corresponding 
coefficients; ui and vi are spatial individual fixed effects 
and time fixed effects; eit indicates a random error.
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agricultural carbon emissions mainly cover agricultural 
material inputs (fertilizers, agricultural films, pesticides, 
agricultural land tilling, total power of agricultural 
machines, agricultural irrigation, etc.). The specific 
Equation is constructed as follows: 

 i i iC C T τ= = ⋅∑ ∑  (8)

where Ci denotes the emissions of the i-th carbon 
source, Ti is the activity of the i-th carbon source, and τi  
is the carbon coefficient of the i-th emitter.  
The coefficients of carbon emissions for each emitter  
are displayed in Table 1.

Core Explanatory Variables

This paper takes high-quality development (HQD) 
as the core explanatory variable. Referring to existing 
results [41-43], an index system is constructed to 
evaluate the level of HQD, covering five categories: 
innovative development, coordinated development, 
open development, green development, and shared 
development. Considering the data availability, 21 
indicators are listed in Table 2, and the entropy 
weighting method is applied to calculate the weights of 
indicators.

Control Variables

Considering the potential influencing factors 
affecting carbon emissions in agricultural production 
[44, 45], this paper chooses the following control 
variables: (1) Fertilizer application intensity (FI) adopts 
the ratio of fertilizer utilization to the sown area; the 
process of fertilizer application will generate greenhouse 
gases, which will play a direct role in agricultural carbon 
emissions. (2) Rural Energy Infrastructure (RE): Rural 
electricity consumption is strongly associated with 
agricultural activities in production progress, which 
will generate carbon emissions [46]. (3) Agricultural 
economic development (AED) adopts agricultural GDP 
(processed in 2005 as the base period); agricultural 

Models of Mediating Effects

Based on previous theoretical analysis, HQD has 
the potential to influence agricultural carbon emissions 
using ISU. The mediation effect model is constructed in 
order to verify the mechanism:

 0 1 2ln it it it i t itC HQD X u v eα α α= + + + + +  (4)

 0 1 2it it it i t itM HQD X u v eβ β β= + + + + +  (5)

0 1 2 3ln it it it it i t itC HQD M X u v eγ γ γ γ= + + + + + +                                 
(6)

where M denotes the mediating variable.

Panel Threshold Models

To reveal the non-linear curve between HQD and 
agricultural carbon emissions at varying degrees of 
urbanization and economic development, a panel 
threshold model is used:

 0 1 2 3ln ( ) ( )it it it it it it i t itC HQD I TH HQD I TH X u v eϕ ϕ θ ϕ θ ϕ= + ≤ + > + + + +  

 0 1 2 3ln ( ) ( )it it it it it it i t itC HQD I TH HQD I TH X u v eϕ ϕ θ ϕ θ ϕ= + ≤ + > + + + +  (7)

where TH denotes the threshold variable. I(·) is the 
indicator function, and the value is 1 when it satisfies 
the condition in the parentheses; otherwise, it is 0.

Selection of Variables

Agricultural Carbon Emissions

Carbon emissions in agricultural production 
principally originate from chemical fertilizers, 
pesticides, and agricultural films, as well as the energy 
consumption of agricultural machines, agricultural 
land tilling, and agricultural irrigation [39]. Therefore, 

Table 1. Carbon coefficients for each agricultural emitter.

Category Carbon emission coefficient Source

Fertilizers 0.8956 kg(C)∙kg−1 Oak Ridge National Laboratory (ORNL), USA

Agrochemical 4.934 kg(C)∙kg−1 Oak Ridge National Laboratory (ORNL), USA

Agricultural plastic film 5.18 kg(C)∙kg−1
Institute of Agricultural Resources and Ecological 

Environment, 
Nanjing Agricultural University (IREEA)

Gross power of agricultural machinery 0.18 kg(C)∙kw−1 Li et al. [40] 

Agricultural irrigation 20.476 kg(C)∙hm−2 Rural Development Research Center of Hubei 
(RDRCH)

Agricultural plowing 3.126 kg(C)∙hm−2 College of Agronomy and Biotechnology, China 
Agricultural University (CAB)
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economic development usually boosts the technological 
progress in agricultural production, leading to changes 
in agricultural carbon emissions. (4) Agricultural 
technology progress (AT) adopts fertilizer application 
discounted amounts; fertilizer can increase crop yields, 
promote agricultural modernization, and improve 
agricultural production efficiency, which is related to 
agricultural carbon emissions. 

Mediating Variables

Industrial structure upgrading (ISU) is selected as 
the mediating variable. Based on Lin and Zhou [47], ISU 
is calculated as follows: 
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where Yj denotes the output value of the j-th industry; Y 
means the gross output value of three industries; and Lj 
indicates the number of employees in the j-th industry.

Threshold Variables

Urbanization and economic development levels 
are selected as threshold variables. Urbanization is 
depicted by the proportion of the urban population to 
the total population. The level of economic development 
is deemed as the real total GDP of the study area 
(processed with the base period of 2005).

Study Area and Data

Study Area

The Yellow River Basin covers Qinghai, Sichuan, 
Ningxia, Gansu, Inner Mongolia, Shaanxi, Shanxi, 
Henan, and Shandong. However, Sichuan is now part 
of the Yangtze River Economic Belt, and the four 
leagues of Inner Mongolia are included in the Northeast 
region [48]. Further, considering data availability,  
76 prefecture-level cities in the Yellow River Basin were 
finally selected as the study area. 

Table 2. Evaluation index system for high-quality development.

Primary 
indicators Sub-indicators Specific indicators Direction Weight

Innovative 
development

Investment in science 
and education

Science and technology inputs/financial expenditures + 0.0465

Investment in education/financial expenditure + 0.0232

Patent level Patent acquisition + 0.1587

Coordinated 
development

Financial development Balance of financial deposits/balance of financial loans + 0.0081

People’s livelihood
Income per capita + 0.0368

Investment in non-real estate/investment in fixed assets + 0.0128

Industrial structure Share of tertiary sector + 0.0111

Open 
development Foreign investment

Utilization rate of foreign investment + 0.1515

Gross output of foreign-owned companies + 0.2054

Number of foreign-owned companies + 0.2091

Green 
development

Emissions of waste

Discharge of industrial wastewater/functional industrial output - 0.0003

Industrial sulfur dioxide emissions/industrial output value - 0.0005

Industrial fume (dust) emissions/industrial output value - 0.0002

Sewage treatment

Comprehensive usage rate of general industrial solid rubbish + 0.0094

Centralized treatment rate of sewage disposal plants + 0.0049

Harmless disposal rate of domestic waste + 0.0072

Shared 
development

Social welfare

Number of physicians/population + 0.0168

Wages of employed workers + 0.0178

Urban greening rate + 0.0050

Consumption level Consumption of social retail goods/GDP + 0.0077

Government burden Fiscal expenditure/revenue + 0.0670
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Data

This paper uses panel data from 2005-2021, mainly 
from provincial statistical yearbooks, prefecture-level 
city statistical bureaus, and the China Urban Statistical 
Yearbook. Interpolation is adopted to complete some 
missing values.

The methods and steps used in this article are shown 
in Fig. 2.

This study has important social and policy value in 
evaluating the key determinants of ACE in the Yellow 
River Basin for HQD. By using the dynamic spatial 
Durbin model, the mediation effect, and a threshold 
effect model, this study explores the impact of HQD 
in the Yellow River Basin on ACE while controlling 
for variables such as fertilizer application intensity, 
rural energy infrastructure, agricultural economic 
development, and agricultural technological progress. 
By evaluating the impact of HQD on ACE and exploring 
whether industrial structure upgrading has a mediating 
effect, this study may provide a scientific basis for 
agricultural green transformation, industrial structure 
optimization, and efficient resource utilization. At 
the same time, threshold effect analysis can reveal 
key threshold values for economic development and 
urbanization, helping to implement precise policies and 
promote regional coordinated development. In addition, 
the research findings may provide a reference for global 
agricultural carbon reduction and climate change 

response, with economic, social, and environmental 
benefits.

Results

Spatio-temporal Characteristics of 
Agricultural Carbon Emissions

Temporal Trends

Carbon emissions from agricultural production in 
the Yellow River Basin present an inverted U-shaped 
increase curve, first rising and then descending over 
time, as displayed in Fig. 3a). Carbon emissions from 
chemical fertilizers are the highest, while agricultural 
machinery contributes the least to emissions. Fig. 3b) 
demonstrates the main grain-producing areas show  
a similar trend in agricultural carbon emissions with the 
total trend, and the carbon emissions in these areas are 
significantly higher than those in non-grain-producing 
areas. Notably, the degree of carbon reduction has been 
pronounced in recent years, which is mainly caused by 
the decrease in emissions from main grain-producing 
areas.

Fig. 2. The methods and steps.
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Spatial Characteristics

From the perspective of spatial distribution, ACE in 
the Yellow River Basin shows a trend of higher levels 
in the western part and lower levels in the eastern part 
(Fig. 4). Areas with high carbon emissions are primarily 
located in Henan and Shandong provinces. In terms 
of temporal characteristics, the agricultural carbon 
emissions in the western region consistently remained 
relatively low, while the central region has shown  
a significant increase. The eastern region has exhibited  
a trend of an initial increase followed by a decrease.

Both HQD and ACE display positive spatial 
agglomeration characteristics. Moran’s I of ACE shows 
a decreasing trend, from 0.383 in 2005 to 0.271 in 2021, 
indicating a decrease in their spatial agglomeration over 
time. Similarly, the spatial agglomeration of HQD also 
decreased from 0.341 in 2005 to 0.104 in 2021 at a faster 
speed, possibly due to government support policies and 
the increasing role of human factors in HQD.

Spatial Regression Analysis

Model Selection

Based on the previous content, it is known that 
both HQD and agricultural carbon emissions exhibit 
significant spatial agglomeration. Therefore, spatial 
effects need to be considered when analyzing the 
influence of HQD on agricultural carbon emissions. 
Results show that all the LM values pass the 
significance test at the 1% level, demonstrating that the 
spatial Durbin model (SDM) should be selected, which  
is a combination of the SAR and SER models.  
The Hausman test shows that the null hypothesis is 
rejected at the 1% significance level, which declares that 
a fixed-effect model is suitable for regression fitting. 
Both the Wald and LR tests refuse simplification from 
the SDM models to the SAR or SEM models. Therefore, 
the SDM model with fixed effects is used in this paper.

Fig. 3. Variations in agricultural carbon emissions: a) Agricultural input emissions, b) Sub-regional emissions.
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Regression Analysis Results

Both the static and dynamic Durbin models 
show that HQD plays a significant role in reducing 
agricultural carbon emissions. Table 3, Model (3), shows 
that the regression coefficient of time lag of agricultural 
carbon emissions (L.lnC) is 0.653, passing the 1% 
significance test, indicating that the agricultural carbon 
emissions correlate positively with the emissions of the 
previous period, which manifests that the agricultural 
carbon emissions possess the “time inertia”. It may be 
because some agricultural technologies and practices 
will only show their advantages after being used in 
the current period, as they require time to accumulate. 
The coefficient of spatio-temporal lag of agricultural 
carbon emissions (L.WlnC) is -0.072, significant at the 
1% statistical level, showing that the previous carbon 

emissions in the surrounding areas negatively affect 
the local emissions. This result supports ACE’s spatial 
and temporal dependence, suggesting that the spatial 
spillover effect is dynamic and continuous. This may be 
because high ACE in neighboring areas triggers local 
government attention, prompting them to take measures 
to mitigate high emissions. Meanwhile, these measures 
can also serve as a reference for surrounding areas.

The estimated coefficients of HQD are -0.638 and 
-0.263 in the static Durbin and dynamic Durbin models, 
respectively, passing the 5% significance test. These 
results indicate that HQD has a negative effect on carbon 
emissions, supporting Hypothesis 1. For the control 
variables, fertilizer application intensity, rural energy 
infrastructure, and agricultural technological progress 
all positively affect carbon emissions, with significance 
tests at the 1% statistical level. Specifically, increasing 

Table 3. Results of the static and dynamic Durbin models with the adjacency weight matrix.

Variables

(1) (2) (3) (4)

Static SDM Dynamic SDM

x W×x x W×x

L.lnC - -
0.653***

-
(32.60)

L.WlnC - -
-0.072**

-
(-1.99)

HQD
-0.638*** -0.324 -0.263** -0.377**

(-4.35) (-1.45) (-2.26) (-2.16)

lnFI
0.260*** -0.116*** 0.105*** -0.040*

(15.08) (-4.08) (7.50) (-1.79)

lnRE
0.065*** 0.205*** 0.036*** 0.099***

(5.23) (9.56) (3.67) (5.84)

lnAED
0.085 0.546*** 0.023 0.270***

(1.54) (8.18) (0.49) (4.78)

lnAT
0.057*** -0.026 0.044*** -0.023

(4.88) (-1.37) (4.84) (-1.55)

Id fixed Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes

rho
0.287***

-
0.135***

-
(8.67) (3.79)

sigma2_e -
0.009***

-
0.005***

(25.26) (26.17)

Obs 1,292 1,292 1,216 1,216

R2 0.420 0.420 0.871 0.871

N 76 76 76 76

Note: C: agricultural carbon emissions; HQD: high-quality development; FI: fertilizer application intensity; RE: rural energy 
infrastructure; AED: agricultural economic development; AT: agricultural technological progress. *, **, *** indicate significance 
at the 10%, 5%, and 1% levels, respectively. 
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fertilizer intensity signifies greater fertilizer use per unit 
area, thereby increasing agricultural carbon emissions. 
Similarly, increasing rural energy infrastructure implies 
higher energy consumption, which, given its reliance 
on fossil fuel combustion, also contributes to increased 
carbon emissions. While technological advances in 
agriculture have improved agricultural productivity, 
they may also expand the scale of cultivation, leading to 
an increase in the consumption of agricultural factors, 
thereby increasing agricultural carbon emissions. 
Nevertheless, agricultural economic development has 
no significant influence on carbon emissions, which is 
likely due to the weak effect on technological innovation.

Spatial Decomposition Effects

Studies have demonstrated that the dynamic Durbin 
model exhibits superior significance and fit compared to 
the static Durbin model, thereby justifying its selection 
for further analysis. Based on LeSage and Pace [49], the 
model requires differential processing when assessing 
the spatial effect of factors on the explained variable. 

Fig. 5 gives an intuitive presentation of the effects 
of HQD on agricultural carbon emissions. The direct 
effects of HQD are -0.263 and -0.771 for the short-
term and long-term, respectively, both passing the 5% 
significance level. The results confirm that HQD can 
significantly reduce agricultural carbon emissions. 
Notably, the long-term coefficient is higher than the 
short-term coefficient, suggesting a more profound 
and enduring negative impact of HQD on agricultural 
carbon emissions. This can be attributed to the fact that 
HQD promotes the adoption of agricultural production 
methods and technological innovations, such as high-
efficiency water-saving irrigation and intelligent 
agricultural management systems, and introducing these 
technologies will continue to reduce agricultural carbon 
emissions.

In terms of the indirect effect of HQD on carbon 
emissions, the short-term and long-term coefficients 
are -0.469 and -1.461, respectively, both passing the 
statistical significance test at the 1% level. This result 
suggests that HQD exhibits significant negative spatial 
spillover effects, meaning that HQD in surrounding areas 
has a significant influence on reducing local agricultural 
carbon emissions. Hypothesis 2 was confirmed. 
Furthermore, the long-term coefficient of HQD is more 
than three times that of the short-term, indicating  
a more pronounced long-term negative impact of HQD 
on agricultural carbon emissions in surrounding areas. 
This can be attributed to the promotion of advanced 
agricultural technology dissemination from surrounding 
areas to the local region by HQD, which prompts  
a transition of production mode from high emissions 
to low carbon. However, the technology transfer may 
require a certain amount of time and an adaptation 
period, thus resulting in a more significant long-term 
carbon reduction effect. 

As for the control variables, fertilizer application 
intensity significantly positively influences carbon 
emissions in both the short term and the long term, 
indicating that increased fertilizer application intensity 
can lead to higher agricultural carbon emissions. 
Notably, the long-term direct effect coefficient of 
fertilizer application intensity exceeds that of the short-
term. This can be attributed to the fact that the high 
intensity of fertilizer application damages soil health 
and reduces the soil’s carbon sink capacity, resulting in 
a significant increase in ACE over time. 

Rural energy infrastructure is positively related to 
agricultural carbon emissions at the 1% significance 
level both in the short and long term. That means the 
rural energy infrastructure facilitates agricultural 
production while it promotes energy consumption and 
emits more carbon dioxide. Furthermore, the short-term 
and long-term indirect effects are significantly positive. 

Fig. 5. The coefficients of explanatory variables.
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This study indicates that rural energy infrastructure 
can also increase carbon emissions in the local region.  
It may be attributed to rural energy infrastructure, which 
still relies on traditional energy sources for heating 
greenhouses and agricultural irrigation, affecting the 
surrounding development patterns and consequently 
leading to higher carbon emissions.

Agricultural economic development has a positive 
indirect effect on both short and long-term carbon 
emissions. It indicates that the development of 
the agricultural economy in neighboring regions 
can increase carbon emissions in the local region. 
However, the long-term coefficient is higher than that 
of the short-term. The reason is likely that agricultural 
economic development is usually accompanied by 
the transportation and industrial-scale expansion of 
agricultural products, increasing the local region’s 
agricultural carbon emissions. From the long-run 
perspective, as the scale of agricultural products expands 
and stabilizes, the related transportation requirements 
will also increase, making the long-term effect more 
pronounced. 

Agricultural technological progress positively 
affects the growth of carbon emissions, with coefficients 
of 0.043 in the short term and 0.124 in the long term. 
This phenomenon may be attributed to the fact that 
technological progress in agriculture promotes the scale 
of agricultural cultivation, increases the consumption of 
agricultural materials, and thus boosts the increase in 
carbon emissions. 

Robustness Tests

Some substitutions, such as the spatial weight 
matrix, core explanatory factor, and explained factor, are 
employed to examine the robustness of the regression 
results (Table 4). HQD’s influences on agricultural 
carbon emissions remain significantly negative, whether 

in the short and long terms or the direct and indirect 
effects. These findings suggest that the model results are 
robust and reliable.

Results of Mediating Effects

According to the theoretical analysis and research 
hypotheses above, HQD likely affects agricultural carbon 
emissions through industrial structure upgrading. Based 
on the Hausman test (statistic of 293.08, p-value of 0), 
the fixed mediating effect model is selected to verify the 
pathway through which HQD affects agricultural carbon 
emissions.

HQD can affect agricultural carbon emissions by 
upgrading industrial structures. Model (2) in Table 5 
shows that the estimated coefficient of HQD is 1.325, 
significant at the 1% level, indicating that HQD can 
effectively promote industrial structure upgrading. 
Combined with the Model (3) in Table 5, the estimated 
coefficient of industrial structure upgrading is -0.175, 
and the estimated coefficient of HQD is -0.271, both 
significant at the 1% and 10% levels. The results show 
that HQD can promote industrial structure upgrading, 
which in turn suppresses carbon emissions, supporting 
Hypothesis 3.

Analysis of the Panel Threshold Model

Urbanization and economic development are 
selected as threshold variables, and a panel threshold 
model is adopted to verify the non-linear relationships 
between HQD and agricultural carbon emissions.  
We employ the Bootstrap method with 1000 samples. 
The double threshold test of urbanization passes  
the 10% significance test, while the triple threshold test 
fails. Economic development passes the single threshold 
test at the 5% significance level but fails the double 
threshold test. The threshold values for urbanization  

Table 4. Robustness test.

Substitutions

Coefficients of HQD

rho sigma2_eShort-term Long-term

Direct Indirect Direct Indirect

Replacement of spatial 
weight matrix

Distance spatial weight matrix -0.223**

(-2.05)
-0.488**

(-2.10)
-0.752**

(-1.97)
-1.517*

(-1.89)
0.108**

(2.4)
0.005***

(26.17)
Economic distance spatial 

weight matrix
-0.231**

(-2.13)
-1.701**

(-2.53)
-0.704*

(-1.89)
-2.562*

(-1.81)
0.230*

(1.79)
0.005***

(26.21)
Replacement of core 

explanatory HQD is deflated by 5% -0.263**

(-2.38)
-0.469***

(-2.64)
-0.771**

(-2.40)
-1.461***

(-2.66)
0.135***

(3.79)
0.005***

(26.17)
Replacement of 

explained variables C/GDP -0.665**

(-1.97)
-3.241***

(-4.78)
-1.065*

(-1.82)
-5.030***

(-4.60)
0.346***

(10.42)
0.048***

(25.89)

Control Yes Yes Yes Yes - -

Id fixed Yes Yes Yes Yes - -

Year fixed Yes Yes Yes Yes - -
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are 46.80 and 54.25, respectively, while the threshold 
value for economic development is 1946.35. The LR 
test is conducted to further validate the threshold test. 
Results show that the minimum value is below 7.35, 
indicating the validity of our threshold estimation values 
in this study. 

Urbanization exhibits a threshold effect on the 
impact of HQD on agricultural carbon emissions.  
As shown in Model (1) of Table 6, when the urbanization 
rate is below the first threshold of 46.8, the coefficient 
of HQD is 0.730, passing the 5% significance test. 
When the urbanization rate is between 46.8 and 54, 
the coefficient of HQD turns negative. However, when 
the urbanization rate surpasses 54, the coefficient of 
HQD drops to -0.723, with a 1% significance level. 
These results indicate that HQD significantly promotes 
agricultural carbon emissions before the first threshold 
while significantly suppressing carbon emissions after 
the second threshold. Hypothesis 4 was validated.

Economic development also exhibits a threshold 
effect on the relationship between HQD and agricultural 
carbon emissions. Model (2) in Table 6 demonstrates 
that when the level of economy is below the threshold of 
1946.53, the coefficient of HQD on agricultural carbon 
emissions is 0.658, significant at the 5% level, which 
indicates a significant promotion of HQD on emissions 

before the threshold. Conversely, when economic 
development surpasses the threshold of 1946.53, 
the coefficient of HQD falls to -0.400 and remains 
significant. The result signifies a reduction of HQD on 
emissions. Hypothesis 5 was confirmed.

Discussion

Accounting of Agricultural Carbon Emissions

Carbon emissions and carbon footprint may vary 
significantly due to differences in sources and carbon 
emission coefficients [50]. For example, Li et al. [51] 
hold that the sources of agricultural carbon emissions 
mainly come from farmland inputs and rice planting 
and growing. By contrast, Xiong et al. [52] and Zhang 
et al. [53] calculated agricultural carbon emissions 

Table 5. Mechanism test.

Variables
(1) (2) (3)

lnC lnISU lnC

lnISU - -
-0.175***

(-9.78)

HQD
-0.502*** 1.325*** -0.271*

(-2.99) (5.10) (-1.66)

lnFI
0.330*** 0.052* 0.339***

(17.22) (1.75) (18.35)

lnRE
0.063*** 0.055** 0.073***

(4.00) (2.26) (4.78)

lnAED
0.187*** 1.024*** 0.365***

(8.01) (28.37) (12.63)

lnAT
0.086*** -0.096*** 0.069***

(6.80) (-4.91) (5.62)

Constant
-3.127*** -0.934*** -3.290***

(-17.55) (-3.38) (-19.08)

Id fixed Yes Yes Yes

Year fixed Yes Yes Yes

Obs 1,292 1,292 1,292

N 76 76 76

R2 0.415 0.688 0.458

Table 6. Threshold model regression results.

Variables
(1) (2)

lnC lnC

HQD (Urban ≤ 46.8)
0.730**

-
(2.46)

HQD (46.8 < Urban ≤ 54)
-0.013

-
(-0.06)

HQD (Urban > 54)
-0.723***

-
(-2.91)

HQD (GDP ≤ 1946.53) -
0.658**

(2.15)

HQD (GDP > 1946.53) -
-0.400*

(-1.85)

lnFI
0.267*** 0.268***

(3.93) (3.86)

lnRE
0.065* 0.069*

(1.71) (1.78)

lnAED
0.429*** 0.423***

(3.04) (2.78)

lnAT
0.077*** 0.072**

(2.78) (2.49)

Constant
-3.639*** -3.583***

(-5.67) (-5.32)

Id fixed Yes Yes

Year fixed Yes Yes

Obs 1,292 1,292

N 76 76

R2 0.564 0.550
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considering six main agricultural production activities. 
Existing studies also show inconsistencies regarding 
the carbon emission coefficient. For instance, Duan 
et al. [54] used 266.48 kg hm−2 as the coefficient 
of agricultural irrigation, while Xie et al. [55] took  
the coefficient of 20.476 kg hm−2, which is widely 
adopted and also used in our studies. These differences 
in carbon sources and coefficients can lead to variations 
in calculation results. However, our calculation results 
can be verified. The trend of agricultural carbon 
emissions presents an inverse U-shaped curve, with high 
emissions mainly occurring from 2012-2016, reaching 
nearly 2500 t C. All these characteristics are consistent 
with Ren et al. [56], confirming the credibility of our 
results.

Trends in Agricultural Carbon Emissions

Overall, agricultural carbon emissions first increased 
and then decreased, consistent with the national trend 
[57]. Agricultural carbon emissions began to decline 
around 2016. China put forward an agricultural 
transformation strategy in 2015 to promote green, 
ecological, and sustainable agricultural development. 
Meanwhile, the Ministry of Agriculture launched  
a “weight loss and drug reduction” campaign to improve 
fertilizer use efficiency and control the use of pesticides. 
In 2016, an ecological civilization evaluation index 
system was established, in which fertilizer and pesticide 
use became key focuses. Policies guiding the transition 
of agricultural production activities to eco-friendly and 
sustainable modes contribute to agricultural carbon 
reduction.

From the spatial map, areas with high agricultural 
carbon emissions are primarily located in Shandong  
and Henan provinces, consistent with Zhang et al. [53]. 
As major grain-producing regions, Shandong and Henan 
have abundant cultivated land resources. The need to 
increase food production has driven material input 
for agricultural production, thereby causing a rise in 
carbon emissions. Additionally, carbon emissions show 
significant spatial agglomeration, which aligns with 
the findings of Jin et al. [58]. The results confirm that 
models considering geographic relationships are more 
suitable for revealing the influencing factors.

Influence of HQD on Agricultural  
Carbon Emissions

HQD affects agricultural carbon emissions 
negatively, both directly and indirectly. This means 
that HQD can significantly reduce agricultural carbon 
emissions in local and surrounding areas. Moreover, 
the long-term inhibitory effect is greater than the short-
term effect. Zeng et al. [59] stated that a high level of 
green investment has the impetus to develop a high-
quality economy and reduce carbon intensity. While 
promoting green technology, the synergy between 
carbon emission efficiency and HQD generally rises 

[60]. Green technology innovation is a major driver of 
industrial structure upgrading [61]. HQD influences 
agricultural carbon emissions by upgrading industrial 
structure, which is similar to the conclusion of Wu et al. 
[62]. Besides, HQD can potentially restrain agricultural 
carbon emissions in neighboring regions through 
demonstration learning effects, technology spillover 
effects, and interregional factor flows. In addition, the 
long-term inhibition effect of HQD is bigger than the 
short-term effect. Notably, HQD has a threshold effect 
on agricultural carbon emissions.

High-quality development has a threshold effect on 
agricultural carbon emissions. Urbanization and the 
economy play a role in the relationship between high-
quality development and agricultural carbon emissions. 
With the rise in urbanization and the economy, the 
impact of high-quality development has shifted from 
positive to negative. That means that, in the early 
stages of economic development and urbanization, the 
economic benefits of agriculture were more emphasized. 
When economic development and urbanization reach 
a certain level, ecological and environmental benefits 
become more prominent, environmental regulation is 
strengthened, and green innovation gains momentum 
[63]. Then, agricultural carbon emissions are promising 
to decline. As a result, the level of urbanization 
and economic development leads to an inverted-U 
relationship. 

In terms of spatial heterogeneity, high-quality 
development has a significantly negative effect on 
agricultural carbon emissions in the major grain-
producing areas and the lower reaches of the Yellow 
River basin. Major grain-producing areas bear 
the burden of national food security due to their 
dominant agricultural production resources and 
natural endowments [64]. In order to tap the greater 
potential of agricultural production, the intensity 
of agricultural input is increased, leading to higher 
pollution emissions. Similarly, the lower reaches of the 
Yellow River basin have better natural endowments in 
agricultural production than those of upper and lower 
regions, resulting in different impacts of high-quality 
development on agricultural carbon emissions.

Policy Suggestions

Specific policy recommendations are provided to 
help policymakers, practitioners, and stakeholders 
clearly understand how to apply the research findings to 
address real-world problems. This helps transform the 
academic value of research into practical social benefits 
and ensures its effective utilization.

Firstly, promote the development of a high-quality 
economy. HQD significantly reduces agricultural carbon 
emissions, both in the short term and long term. Effective 
strategic planning should be formulated and adopted 
to accelerate HQD, such as leveraging local strengths 
and consulting experienced experts. The promotion of 
HQD facilitates the adoption of advanced agricultural 
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technologies, such as precision agriculture, organic 
agriculture, and water-fertilizer integration, which is 
supported for research and development, technology 
promotion, and application to boost production efficiency 
in agriculture. Additionally, regional cooperation should 
be strengthened to maximize resource utilization and 
intensify technological exchanges in order to break 
down technological barriers among regions.

Secondly, upgrade the industrial structure.  
The rise in HQD correlates with the decline of 
agricultural carbon emissions, with industrial 
structure upgrading acting as a key driver and bridge 
between the two. Thus, optimizing and upgrading the 
industrial structure is an important pathway to mitigate 
agricultural carbon emissions. The key to upgrading the 
industrial structure is establishing policies and measures 
promoting technological innovation and accelerating the 
transition to high-end, intelligent, and green industries. 
The specific approaches include transforming traditional 
industries, fostering emerging industries, accelerating 
technological progress, optimizing the service sector, 
and supporting the development of small and micro 
enterprises.

Thirdly, it accelerates urbanization and regional 
economic development. Urban planning and 
development should be rigorous and well-structured, 
with the integrated development of urban and rural 
areas. Urbanization refers not only to population 
urbanization but also to the coordinated evolution of 
population, economy, society, land, and other aspects. 
The accessibility and coverage of public services need 
to be expanded to improve public service facilities 
and fully realize their potential to contribute to HQD 
through high-level urbanization and reduced carbon 
emissions.

Finally, ramp up investment in agricultural 
technology and innovation in major grain-producing 
areas. Agricultural production technology with energy 
saving and environmental protection contributes to 
reducing carbon emissions. Due to the high emissions 
in major grain-producing areas, as well as in the middle 
and lower reaches of the Yellow River, it is imperative 
to adjust resource allocation policies to ensure these 
regions receive adequate technical, financial, and policy 
support. In addition, incentive policies aimed at reducing 
agricultural carbon emissions should be tailored to local 
conditions to effectively guide and curb agricultural 
carbon emissions.

Conclusions

This study aims to explore the impact of HQD in the 
Yellow River Basin on ACE and its determining factors. 
As an important grain production base and economic 
region in China, the Yellow River Basin faces dual 
environmental and development pressures. HQD aims 
to achieve comprehensive and sustainable economic, 
social, and environmental development through 

innovative, green, coordinated, open, and shared 
development concepts. However, implementing HQD  
in the agricultural sector, especially in terms of its 
impact on ACE, still requires further research.

Utilizing the panel data of 76 prefecture-level cities 
in the Yellow River Basin from 2005 to 2021, the effect 
of high-quality development (HQD) on agricultural 
carbon emissions was revealed. The static and dynamic 
Durbin models were compared to quantify the influence 
of HQD on carbon emissions. The main conclusions 
are summarized. (1) An inverse U-shaped trend was 
found in agricultural carbon emissions in the Yellow 
River Basin; that is, emissions first increased and then 
decreased. From a spatial perspective, areas with high 
emissions were primarily located in Shandong and 
Henan provinces, and significant spatial agglomeration 
appeared. This indicates that the agricultural activities 
in these regions share strong homogeneity and similar 
agricultural production methods, resulting in similar 
levels of carbon emissions. (2) Agricultural carbon 
emissions exhibited obvious heterogeneity. Carbon 
emissions from fertilizer application accounted for 
more than 70%, far exceeding other emissions. Major 
grain-producing areas emitted more than twice as much 
carbon dioxide as non-major grain-producing areas.  
This reflects that the main grain-producing areas 
may have higher intensity in fertilizer application 
and mechanized operations, leading to higher carbon 
emissions. (3) HQD significantly negatively affected 
agricultural carbon emissions, both the direct and 
spillover effects. Specifically, the long-term effect of 
HQD was higher than that of the short-term. This 
indicates that the effects of HQD become more significant 
over time. In the short term, some new technologies 
and management methods may take time to adapt and 
optimize, but over time, the effects of these methods 
will gradually become apparent. (4) There was a non-
linear effect of HQD on agricultural carbon emissions. 
High-quality development increased agricultural carbon 
emissions if the level of urbanization and economic 
development was lower than the threshold value.  
When urbanization and economic development reached 
a certain level, the rise in HQD played a role in reducing 
carbon emissions. This may be because, in the primary 
stage, HQD may be accompanied by more infrastructure 
construction and industrial development, increasing 
ACE. However, when urbanization and economic 
development reach a certain level, improvements in 
technology and management methods will significantly 
reduce carbon emissions.

Possible research contributions to this article are 
twofold. (1) The theoretical contribution lies in applying 
the theory of HQD to the issue of ACE, expanding  
the scope of theoretical application, and demonstrating 
that HQD is not only a novel economic concept but 
also a crucial pathway for sustainable agricultural 
development. (2) The policy contribution is to provide 
a scientific basis for agricultural carbon reduction  
in the Yellow River Basin. Policymakers can refer  
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to the conclusions to formulate precise policies and 
promote green agricultural development. 
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