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Abstract

A comprehensive analysis of the regional and temporal distribution characteristics of carbon 
sequestration ecological carrying capacity (ESC), along with their affecting factors, is crucial for 
attaining the “double carbon” objective. This study analyzes the regional and temporal distribution of 
ESC in Anhui Province from 2008 to 2022, employing the Moran index and cold hotspot analysis.  
The principal social, economic, and environmental influencing factors of 16 prefectural-level cities  
in Anhui Province have been identified using the Random Forest Model (RFM), and the spatial effects of 
these factors have been examined through the Spatial Durbin Model (SDM). The ESC in Anhui Province 
revealed that southern Anhui had a bigger capacity than central Anhui, which surpasses northern 
Anhui. The ESC in Anhui Province from 2008 to 2022 demonstrated an initial increase, followed by 
a subsequent decline. The ESC in Anhui Province exhibits significant geographic aggregation effects, 
with no discernible areas of low ESC and a more stable hotspot region throughout the study period. 
Subsequent study indicates that water network density and population size are the primary determinants 
of ESC across 5-, 10-, and 15-year intervals, exhibiting notable regional spillover effects. The study’s 
results offer significant theoretical insights for examining regional ESC  and developing low-carbon 
solutions.

Keywords: carbon sequestration ecological carrying capacity, spatial and temporal evolution, influencing 
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Introduction

Greenhouse gas emissions, especially carbon dioxide 
from human activities, are a primary factor in global 
warming, threatening the world’s ecological balance and 
stability [1]. International accords, such as the United 
Nations Framework Convention on Climate Change, 
the Kyoto Protocol, and the Paris Agreement, have 
been implemented, instituting regulatory limitations 
on greenhouse gas (GHG) emissions. Developed and 
developing nations have the responsibility and obligation 
to reduce carbon emissions. China wants to reach  
a “dual carbon” goal of a carbon peak by 2030 and 
carbon neutrality by 2060. This goal serves as both a 
plan for going green and reducing carbon emissions in 
China and a strong sign of China’s commitment to taking 
an active role in managing climate change and meeting 
its international obligations. The proposed execution of 
this objective further underscores China’s leadership 
and contribution to global climate governance. China 
has engaged in the negotiation and execution of the 
Paris Agreement, pledging to restrict the rise in global 
average temperature to 2ºC and endeavoring to reduce 
it to 1.5ºC. The “dual-carbon” objective embodies this 
commitment. Consequently, examining the relationship 
between land use carbon emissions and carbon 
sequestration can furnish a theoretical foundation for 
achieving the “double carbon” objective.

The term “carrying capacity” was initially 
established in physics to denote the maximum load 
an object can sustain without incurring harm [2].  
In 1921, Park et al. [3] introduced the notion of carrying 
capacity, defined as the greatest number of persons that 
may persist in a given territory under stable ecological 
conditions (e.g., territorial space, accessible natural 
resources, etc.). The notion of environmental carrying 
capacity was initially introduced by Catton in 1986 
and subsequently broadened to encompass ecological 
carrying capacity. International researchers characterize 
ecological carrying capacity as the maximum human 
population that a specific place can sustain without 
detrimental effects on its environment [4]. The 
prevalence of issues such as land degradation, resource 
scarcity, environmental contamination, and population 
expansion has prompted the active consideration of the 
notion of carrying capacity in numerous domains of 
environmental and ecological research. For instance, 
the carrying capacity of water resources, the carrying 
capacity of land resources, and the carrying capacity of 
water resources, among others. Xiao et al. [5] initially 
introduced the notion of carbon carrying capacity 
in 2013, characterizing it as the quantity of CO2 that 
may be sequestered through photosynthesis by plants. 
Subsequently, the concept of carbon carrying capacity 
was further refined, leading to the emergence of studies 
on carbon sequestration ecological carrying capacity [6]. 
A review of pertinent studies conducted by domestic 
and international experts reveals that research has 
evolved from examining the isolated effects of land use 

change [7, 8] to investigating the combined implications 
of urban sprawl [9, 10], climate change [11], and human 
activities [12, 13]. Research on carbon emissions has 
examined various aspects of carbon. This encompasses 
the application of spatial autocorrelation models, center 
of mass models, and additional methodologies to 
investigate the geographical and temporal distribution 
properties of carbon emissions [14-16]. Carbon 
emissions are quantified in accordance with the IPCC 
2006 measuring methodology. The entropy weight 
method and coupling coordination degree are utilized to 
evaluate carbon emissions efficiency [17, 18], alongside 
identifying critical areas for developing a scientific 
and comprehensive carbon compensation mechanism 
by establishing the object, value, and priority of 
carbon compensation [19-21]. The aforementioned 
investigations have yielded specific outcomes regarding 
land use carbon balance and have offered insights for 
carbon sequestration and emission reduction. To achieve 
the objective of “dual-carbon”, it is essential to enhance 
the carbon sequestration ecological carrying capacity 
(ESC). Given the insufficient exploration of urban ESC, 
it is crucial to investigate the development landscape of 
ESC in China to provide a baseline for urban ESC. 

ESCs in various places display distinct properties. 
Significant geographical disparities exist in China’s 
carbon sources and sinks, including total carbon 
emissions, total carbon sequestration, and carbon 
carrying capacity metrics. Anhui Province is a 
geographically representative province in the central 
area. Municipalities exhibit considerable disparities 
in industry composition, economic advancement, and 
energy consumption trends. It is crucial in advancing 
the development of ESC in the central area. In 2022, 
Anhui Province’s total carbon emissions will constitute 
4.00% of the national total emissions. The average 
annual growth rate of carbon emissions from 2016 to 
2022 is 3.50%, exceeding the national average of 2.80% 
by 25 percentage points for the same timeframe. Anhui 
Province confronts a significant difficulty in reaching 
the carbon peak target by 2030, according to current 
development trajectory forecasts. By the conclusion of 
2022, the forest coverage rate in Anhui Province will 
reach 28.65%, and the total annual carbon sink will 
be maintained at 5.70 × 10^7 tons of CO2 equivalent. 
The growth trajectory of carbon sinks exhibits distinct 
phases: the growth rate is projected to stay elevated 
throughout the 13th Five-Year Plan period from 2016 to 
2020, followed by a substantial fall from 2021 to 2022. 
The rationale is that the development of forestable 
land resources is nearing the theoretical saturation 
point (about 90%), with available space for additional 
afforestation totaling less than 300,000 hectares. 
Anhui Province is confronted with dual challenges on 
the way to carbon neutrality: managing the persistent 
increase in carbon emissions while simultaneously 
overcoming the ecological constraints to develop carbon 
sinks. The current literature predominantly examines 
the carbon emissions from various sectors, including 
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agriculture and industry, in Anhui Province [22-24]. 
The regional and temporal distribution characteristics 
of ESC and its driving variables in Anhui Province 
remain underexplored. Consequently, utilizing the 
CLCD dataset alongside economic, social, and 
environmental information, this article assesses the 
carbon sequestration ecological carrying capability of 
Anhui Province and investigates the subsequent aspects:  
(1) Employing the Moran Index and cold hotspot analysis 
to investigate the spatial and temporal distribution and 
clustering characteristics of ESC at the municipal level; 
(2) Developing the random forest method and spatial 
Durbin model to identify the primary influencing factors 
of the ESC in Anhui Province across various time scales. 
Additionally, investigate the spatial impact of these 
influencing elements. Our objective was to enhance the 
research on the ESC  at both provincial and municipal 
levels, thereby offering a foundational reference for the 
future low-carbon sustainable development of Anhui 
Province.

Overview of the Study Area

Anhui Province, located in East China, is an 
important section of the Yangtze River Delta economic 
belt, an important energy-exporting province in China, 
and a typical area for carbon emission and carbon 
sink research. Fig. 1 illustrates that its geographical 
coordinates are situated between 29º41′ and 34º38′ 
north latitude and 114º54′ and 119º37′ east longitude.  
The landscape features diverse and intricate topography, 
with mountains, hills, plateaus, and plains, with 
mountains and hills constituting a predominant share. 
The province’s geography is elevated in the southwest 
and diminished in the northeast, exhibiting significant 
variation from north to south. The northern region of 
Anhui Province is characterized by the Huaibei Plain, 
where agricultural land predominates. The southern 
region of the province is characterized by the southern 
Anhui mountains. Forestry predominates land use, 
with wooded land comprising 29.2% of the total land 
area. The overall land area of Anhui Province is around 
1.401 million hectares, including 4.22 million hectares 
of arable land, 3.29 million hectares of forest land, and 
1.05 million hectares of water surface in the province. 
Agricultural land constitutes 80% of the total land 
area, with arable land being 40.9% of agricultural land. 
Unutilized land resources are minimal, representing 
only 2.3% of the province’s total land area, far lower 
than the national average of 25.8%. The average annual 
temperature in Anhui Province fluctuates between 
13ºC and 22ºC, with an average annual precipitation 
of 1967.450 mm, indicating a temperate and humid 
climate. The predominant soil type in Anhui Province is 
red soil, encompassing an area of 438,032,000 hectares, 
primarily located in the central and lower regions of the 
hills and foothills in western and southern Anhui. Rice 
soil constitutes the most prevalent agricultural soil, with 
29.42% of the province’s total soil area. Consequently, 

Anhui Province is recognized as the “grain repository 
of the Yangtze River and Huaihe River”. As Anhui 
Province assimilates into the Yangtze River Delta 
economic belt, it has undergone swift industrialization 
and urbanization, resulting in economic advancement 
alongside substantial rises in carbon emissions and 
environmental issues.

Materials and Methods

Data Sources

This study utilizes panel data from 16 prefecture-
level cities in Anhui Province spanning the years 2008 
to 2022 as the research sample. The Anhui Provincial 
Statistical Yearbook (2008-2022) is where the energy 
consumption numbers and measures used in this 
paper come from. The 16 prefectural cities’ statistical 
yearbooks and bulletins are where the socio-economic 
variables are found. The land use data is sourced from 
the China Land Cover Dataset (CLCD), created by 
Xin Huang’s team at Wuhan University. This dataset 
offers high-precision information on China’s land cover 
and is applicable in geographic information systems 
(GIS), environmental monitoring, urban planning, and 
various other research domains. The National Land 
Cover Classification System (CLCD) is utilized in the 
Ecological Decade Remote Sensing Monitoring. ArcGIS 
was employed to extract CLCD data and statistically 
produce land use data for 16 prefecture-level cities in 
Anhui Province. The unprocessed data for the other 
indicators were sourced from the China Statistical 
Yearbook, Anhui Provincial Statistical Yearbook, Anhui 
Provincial Urban Statistical Yearbook, and the National 
Economic and Social Development Statistical Bulletin 
for the respective study years. Certain missing numbers 
are addressed using linear interpolation and the method 
of approximate annual average. Furthermore, previous 
research indicates adherence to the notion of non-
redundancy of information among indicators. Ten 
factors, including population size, urbanization rate, 
environmental regulation, GDP per capita, industrial 
structure, fixed asset investment, scientific and 
technological innovation, average annual temperature, 
water network density, and air quality attainment rate, 
are chosen for the analysis of key influencing factors. 
The pertinent data originate from credible sources, and 
the analytical outcomes possess significant reliability 
and explanatory capacity.

Research Strategy

This work systematically assesses the dynamic 
evolution characteristics of carbon sequestration, 
carbon emissions, and carbon sequestration carrying 
capacity (ESC) utilizing time series data from 2008 
to 2022. Initially, the spatial autocorrelation analysis 
technique is employed to examine the spatial correlation 
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pattern of ESCs utilizing the global/local Moran index.  
The spatio-temporal cold hotspot detection technique is 
subsequently employed to uncover large concentration 
areas of ESCs, their evolutionary trajectories, and 
to characterize their spatio-temporal heterogeneity 
characteristics and spatial differentiation patterns.  
In the examination of driving mechanisms, multivariate 
machine learning models, including ridge regression, 
XGBoost, gradient boosted regression trees, support 
vector regression, and random forest, are developed  

for comparative analysis. The random forest model is 
chosen for its optimal performance in quantitatively 
assessing the influence of several multidimensional 
factors, including social, economic, and natural 
geographic aspects, on ESC. The geographic Durbin 
Model (SDM) is employed to analyze the geographic 
spillover effects of the primary influencing elements of 
ESC, taking into account the transmission mechanism of 
the spatial effect. Conduct a comprehensive examination 
of its operational trajectory and spatial interaction 

Fig. 1. Research methodology.
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Estimation of Ecological Carrying Capacity 
for Carbon Sequestration (ESC)

The ESC indicates the extent of carbon sequestration 
potential in this location, specifically expressed as 
follows [27]:

	 	 (3)

Where Cn denotes the carbon sequestration of the 
nth city, while C represents that of Anhui Province; 
En signifies the carbon emission of the nth city, while 
E denotes that of Anhui Province. ESC>1 signifies a 
high carbon sequestration ecological carrying capacity 
coefficient, indicating robust carbon sequestration 
ecological carrying capacity within the ecosystem; 
0<ESC<1 denotes a low carbon sequestration ecological 
carrying capacity coefficient, reflecting diminished 
carbon sequestration ecological carrying capacity. 

Moran Index

Global Moran Index

The global Moran’s I index and Moran scatterplot 
are used to measure the regional spatial layout 
characteristics and agglomeration. The formula is as 
follows:

	 	 (4)

where I denotes the global Moran index of Anhui 
Province, n denotes the number of prefecture-level cities 
(n = 16), xi and xj denote the ESC of the i-th and j-th 
cities in Anhui Province, respectively, x̅ is the mean 
value of carbon sequestration ecological carrying 
capacity of each city in Anhui Province, ωij is the spatial 
weight matrix of cities i and j, and S is the sample 
variance value.

Localized Moran Index

Local autocorrelation was tested using the local 
Moran index to further characterize the spatial 
clustering, heterogeneity, or random distribution of the 
ESC.

	 	 (5)

A local Moran index exceeding 0 signifies 
spatial agglomeration between the city’s ESC and its 

mechanism, ultimately establishing a systematic 
analytical framework of “factor-driven - spatial 
response” (Fig. 1).

Research Methodology

Estimation of Ecological Carrying 
Capacity for Carbon Sequestration

Estimation of Carbon Sequestration

ArcGIS was employed to delineate the areas of six 
land use categories – cropland, forest land, grassland, 
watershed, unutilized land, and construction land  
– across 16 cities in Anhui Province annually from 
2008 to 2022. Arable land and developed land served  
as carbon sources. Forested areas, grasslands, 
watersheds, and unused land serve as carbon sinks. 
The carbon sequestration of forest land, grassland, 
watersheds, and unused land was assessed utilizing 
the direct carbon emission factor approach with  
the following formula:

	 	 (1)

Where En is the direct carbon emissions of the nth 
city; Ei, Si, φi are the carbon emissions, area, and carbon 
emission coefficients of the i-th land use type, and the 
carbon absorption coefficients of forest land, grassland, 
watershed, and unutilized land are 0.644, 0.021, 0.253, 
and 0.005 t/hm2, respectively [25].

Estimation of Carbon Emissions

The carbon emissions from cropland, considered 
as a carbon source alongside construction land, are 
determined through direct estimation using formula (1), 
with a carbon emission coefficient of 0.422 for cropland. 
Construction land encompasses numerous human 
activities, typically assessed indirectly via the energy 
consumption associated with its use. Based on the 
current research findings [26, 27], the carbon emissions 
from construction land in each city were indirectly 
computed using the energy consumption per unit of 
GDP. While the carbon emissions from arable land and 
construction land were determined using the following 
formula:

	 	 (2)

Where Cn, Ccro, En, GDPn, Eg are indirect carbon 
emissions, carbon emissions from arable land, total 
energy consumption, gross regional product, and energy 
consumption per unit of GDP of the nth city; Scro, φcro, 
Φ are the carbon emission coefficients for cropland area 
and cropland carbon emission coefficients for standard 
coal, respectively. 
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surroundings, with larger values indicating a more 
pronounced agglomeration effect. Conversely, a local 
Moran index below 0 denotes spatial dispersion of the 
city’s carbon sequestration ecological carrying capacity, 
with smaller values reflecting a stronger radiative 
effect. An index equal to 0 indicates the absence of 
spatial correlation, resulting in a stochastic distribution  
of the city’s ESC.

Cold Hot Spot Analysis

This paper uses the Getis-Ord Gi* coefficient  
to determine the significant aggregation zones of 
ESC in Anhui Province. Monitor the evolution or 
alteration of ESC hotspot regions over time. To identify  
spatio-temporal hotspots and examine the distinct 
geographical distribution pattern. The standardized 
Z-value can be utilized to assess the statistical 
significance of Getis-Ord Gi*. A positive Z-value  
and an elevated value signify that the aggregation 
of high values (hotspots) is more compact, whereas 
a negative Z-value and a diminished value suggest 
that the aggregation of low values (coldspots) is more 
compact.

	

	 	 (6)

	 	 (7)

	 	 (8)

xj represents the recognized ESC of city j; Wij  
and n are consistent with Eq. (4); Gi* denotes  
the aggregation index of patch i. A positive and 
significant Getis-Ord Gi* index signifies that the 
value around city i is comparatively high, categorizing  
it as a hotspot area; conversely, a negative index 
shows that the value is relatively low, designating it 
as a coldspot area. Wij represents the spatial weights 
between rasters i and j; if the distance between raster 
i and raster j falls within the defined range, then  
Wij = 1; otherwise, Wij = 0. n represents the total number 
of patches; it denotes the mean value of all panels within 
the space; S signifies the standard deviation of all patch 
attribute values.

Random Forests

The random forest algorithm, introduced by Breiman 
in 2001, is an ensemble learning technique grounded 
in decision trees. It is straightforward to build and 
possesses high interpretability relative to other machine 
learning methods, and it is more adept at addressing 
multicollinearity across variables and mitigating model 
overfitting. The algorithm can manage various data 
formats and assess feature significance, demonstrating 
robust prediction capability [28]. In the processing of 
unstructured data, it markedly enhances classification 
accuracy relative to linear approaches and fulfills the 
engineering requirements of land surveys. This paper 
employs Python software to implement a random forest 
model for constructing a regression analysis model for 
each city in Anhui Province, incorporating relevant 
social, economic, and natural factors, and identifying 
the principal influences on the variation of ESC.

Spatial Durbin Model

To explore the key influencing factors of ESC and 
its mechanism of action, the spatial spillover effect of 
ESC should be considered. In view of this, this paper 
constructs the spatial Durbin model (SDM). The spatial 
Durbin model addresses the pseudo-independence 
assumption inherent in classic linear regression by 
incorporating the spatial effect endogenously, hence 
providing a more accurate representation of spatial 
interactions in regional ESC. The model expression is as 
follows:

	 	 (9)

where X is the influencing factors in “social-economic-
environmental”, Y is the ESC of each city in Anhui 
Province, i is each city in Anhui Province, t is time, α 
represents individual effects, β represents individual 
effects ω is the spatial weight matrix, μ is the regression 
coefficient, θ is the coefficient of the spatial lag term, λ  
is the coefficient of the spatial interaction term, and ε is 
the random perturbation term.

Results

Carbon Sequestration, Carbon Emission, 
and ESC Time Series Change

The examination of the time series data on carbon 
sequestration and carbon emissions in Anhui Province 
from 2008 to 2022 (Table 1, Fig. 2 Ⅰa)) indicates that the 
carbon sink system in the research area exhibits notable 
spatial differentiation and dynamic evolution patterns. 
The province’s overall carbon sequestration exhibits 
a gradual decline, with a 3.3% reduction from 2008 to 
2022. Forest land, as the primary carbon sink, accounts 
for about 90% of carbon absorption; yet, its relative 
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contribution rate exhibits a declining trend annually. 
Carbon sequestration in aquatic environments exhibits 
substantial development, but carbon sequestration in 
grasslands and uncultivated land remains rather steady. 
Carbon sequestration exhibits a gradient distribution: 
southern Anhui (>60%), central Anhui (≈37%), and 
northern Anhui (<3%). The carbon absorption in the three 
regions exhibited a persistent decline. Central Anhui has 
the most significant yearly average decline rate at 4.4%, 
followed by northern Anhui at 2.3% and southern Anhui 
at 2.6%, indicating a continuous reduction in regional 
carbon sink capacity. Anhui Province exhibited a rapid 
increase in carbon emissions during the research period 
(Table 1, Fig. 2 Ib)). The overall quantity increased 

from 6.700×107 tons to 15.231×107 tons. The proportion 
of emissions attributed to construction land increased 
from 94.6% to 97.6%, underscoring the impact of 
urbanization on carbon emissions. Regional carbon 
emissions exhibit considerable variability: northern 
Anhui experienced the highest growth rate (2.32×106 t 
in 2008, representing 34.7%; 38.2% in 2022), followed 
by central Anhui (increasing from 35.4% to 37.5%). 
Central Anhui exhibits the second-highest growth 
rate, increasing from 35.4% to 37.5%. Conversely, the 
proportion of the southern Anhui region dropped by 
5 percentage points. Anhui Province has established 
a classification of its emission pattern as “high in the 
north and low in the south”. This spatial heterogeneity 

Table 1. Carbon Emissions, Carbon Sequestration, and ESC Levels in Anhui Province.

Year Carbon Sequestration
/106t

Carbon footprint
/107t ESC Year Carbon Sequestration

/106t
Carbon footprint

/107t ESC

2008 2.598 6.700 3.496 2016 2.561 11.129 4.168

2009 2.608 6.305 3.199 2017 2.566 12.767 3.788

2010 2.611 8.627 3.116 2018 2.558 13.122 3.985

2011 2.618 9.729 3.130 2019 2.539 14.312 3.907

2012 2.607 9.874 2.995 2020 2.527 13.547 3.506

2013 2.575 10.289 2.972 2021 2.524 14.323 3.439

2014 2.567 10.269 4.171 2022 2.512 15.231 2.727

2015 2.561 10.684 3.730 – – – –

Fig. 2. Temporal and spatial variation of ESC in Anhui province.
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is significantly correlated with the gradient of regional 
economic development and the alteration of industrial 
structure.

The examination of the temporal evolution of 
the ecological carrying capacity (ESC) for carbon 
sequestration in Anhui Province from 2008 to 2022 is 
presented in Fig. 2 Ⅱ). The analysis indicates that the 
province’s overall ESC exhibits a declining trend and is 
marked by considerable regional variability. Sub-regional 
analyses indicated that the spatial distribution of ESC 
was as follows: southern Anhui urban agglomeration 
(7.20)>central Anhui urban agglomeration (1.54)> 
northern Anhui urban agglomeration (0.12), with inter-
regional disparities of 3.77 (southern Anhui - northern 
Anhui) and 1.42 (central Anhui - northern Anhui). 
The southern Anhui region exhibits a phased evolution 
characterized by an initial rise followed by a decline, 
accompanied by notable internal disparities. Huangshan 
City, Xuancheng City, and Chizhou City form a high-
value cluster, exhibiting an average ESC of 7.20 during 
the study period. The City of Yellowstone experienced 
a substantial increase post-2014, with an average ESC 
value of 16.90 from 2014 to 2022. This represents  
a 169% increase from the prior period (2008-2013:  
6.0-10.0). Conversely, the cities of Maanshan, Wuhu, and 
Tongling continuously have low values (0-1), signifying 
a structural imbalance in the biological function of 
carbon sinks within the region. The evolution of ESC 
in central Anhui exhibits regional differentiation: 
Lu’an and Anqing form a region of relatively high 
values (ESC>2.00), whereas Hefei and Chuzhou 
consistently display low values (ESC<1.00). The ESC 
level in the regional core city of Hefei did not exceed the 
threshold value of 1, indicating a substantial restriction 
on ecological carbon sequestration due to growing 
urbanization. The ESC depression of the province 
indicates that the northern Anhui region exhibits 
typical “M”-type bimodal fluctuation characteristics 
in its dynamic evolution. The extreme value of the six 
cities’ ESC consistently remains below 0.12, exhibiting 
a magnitude difference of 3.77 compared to the 

southern Anhui region. The ongoing low level of ESC 
in this region underscores the necessity for ecological 
restoration amid the transition of resource-oriented 
communities.

Characterization of Spatial Autocorrelation 
and Agglomeration of ESC

Table 2 presents the outcomes of the global Moran 
index test, Moran’s I indicates the extent of connection 
between the similarity and spatial proximity of attribute 
values within spatial units. The p-value signifies the 
likelihood of witnessing the present or more extreme 
Moran’s index assuming the null hypothesis of no spatial 
autocorrelation is true. Z-value is the standardized 
difference between Moran’s index and its expectation. 
A z-value indicates significant spatial autocorrelation 
when it exceeds 1.96 or is below -1.96, equivalent to 
a p-value of less than 0.05. If the p-value is less than 
0.05, considerable spatial autocorrelation is deemed 
to exist. This indicates that the Moran index remains 
positive throughout the study period, with a gradual 
general decline observed. From 2008 to 2022, the 
global spatial autocorrelation analysis index was above 
the 1% significance threshold, indicating a significant 
positive spatial autocorrelation in the ESC throughout 
the sixteen cities in Anhui Province. The Moran’s 
I index declines from 0.511 in 2008 to 0.312 in 2022, 
indicating a gradual lowering of spatial autocorrelation 
of ESC in Anhui Province over the study period. Cities 
exhibiting high ESC are spatially clustered with adjacent 
high-value cities, while those with low ESC  cluster 
with neighboring low-value cities, with the degree of 
clustering diminishing annually. This may result from 
the variability in land area alterations among the 16 
cities in Anhui Province from 2008 to 2022.

Fig. 3 Ⅰ) illustrates that the proportion of cities 
in Anhui Province exhibiting ESC in quadrants I 
and III during the years 2008, 2012, 2017, and 2022 
exceeds 80% in 16 cities, signifying a predominantly 
favorable global spatial correlation in these regions. 

Table 2. Results of Moran’s I test.

Year Moran’s I P Z Year Moran’s I P Z

2008 0.511*** 0.000 3.871 2016 0.305*** 0.000 3.925

2009 0.515*** 0.000 3.984 2017 0.380*** 0.000 4.018 

2010 0.490*** 0.000 3.933 2018 0.324*** 0.000 4.009 

2011 0.496*** 0.000 4.008 2019 0.313*** 0.000 4.075

2012 0.504*** 0.000 4.031 2020 0.330*** 0.000 4.137

2013 0.499*** 0.000 4.028 2021 0.380*** 0.000 4.163

2014 0.356*** 0.000 3.898 2022 0.312*** 0.000 3.938

2015 0.323*** 0.001 3.332

Note: ***, **, * means passing the significance test of 1%, 5%, and 10% respectively.
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Huangshan, Xuancheng, Chizhou, and Anqing are 
regions of significant agglomeration, characterized 
by a land use pattern predominantly comprising 
ecological land types, including forest land, grassland, 
and water bodies. Forested terrain comprises 87.25% 
of Huangshan’s total area, 61% of Xuancheng’s, and 
65.81% of Chizhou’s. Anqing’s arable land encompasses 
a greater expanse, with its aquatic area reaching 125,200 
hectares. The superior ecological conditions of the four 

cities significantly enhance the ESC. 66.7% of cities 
in the third sector are situated in northern Anhui. In 
2022, the population density in northern Anhui will 
reach 538 people per square kilometer, higher than the 
provincial average of 216 people per square kilometer. 
In the past 10 years, there has been a net decrease of 
142,000 hectares of arable land, 68% of which has 
been converted into industrial and residential land. 
In 2022, 15.7% of the area will be forested, which  

Fig. 3. Spatial correlation analysis of ESC in Anhui province.
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is below the provincial average of 5.8% and the national 
average of 7.3%. The proportion of strategic emerging 
industries is less than 20%, the capacity of scientific 
and technological innovation is weak, and the intensity 
of R&D investment is lower than the average level of 
the province. The industrial framework is characterized 
by significant heaviness, elevated energy consumption, 
and pronounced emission issues, with the energy 
consumption intensity in northern Anhui exceeding the 
provincial average by 15% in 2022. The overloading 
of land resources and the expansion of construction 
land under rapid urbanization in northern Anhui, 
superimposed on the weak ecological background 
and resource constraints, have led to the ecological 
carrying capacity of carbon sequestration at a low 
level. Huainan is the prototypical low-low aggregation 
area. As of 2022, the cumulative area of coal mining 
subsidence in Huainan is about 290 square kilometers, 
and the urbanization rate is about 61%. The expansion of 
construction land results in an amplified carbon source 
effect. The carbon sink effect is relatively weakened, 
resulting in a low level of ESC. In the unusual regions of 
quadrants 2 and 4, just one city, Lu’an, has a high level 
of carbon sequestration ecological carrying capacity, 
encircled by areas with poor carbon sequestration 
ecological carrying capacity. The types of land in Lu’an 
are mainly farmland and forest land. The proportion 
of cultivated land is about 40-45%, and the proportion 
of forest land is about 30-35%. It possesses a favorable 
humanistic environment and abundant natural resources; 
yet, the radiation impact on its neighboring areas is 
minimal. Wuhu, being an industrial city, depends on 
high-energy-consumption industries for its economic 
development, resulting in substantial carbon emissions 
during production. It accounts for more than 60% of the 
city’s total carbon emissions. Tongling is a quintessential 
resource-dependent metropolis. The industrial structure 
is inefficient. Resource-based sectors, including non-

ferrous, chemical, and construction materials, constitute 
over 70%, while coal usage represents more than 85% 
of overall energy consumption. The irrationalization of 
both the industrial and energy structures has resulted in 
a decline in ESC.

Cold hotspot analysis effectively detects spatial 
correlations in ESC patterns using the Getis-Ord Gi* 
index, which addresses the limitations of Moran’s I in 
uncovering spatial characteristics and enhances the 
detailed structure of autocorrelation. Hot and cold spot 
research can elucidate the geographical relationship 
between a municipality and its adjacent municipalities 
regarding ESC. This facilitates the discovery of hot 
and cold areas, namely spatial groups of high- or low-
value items, within the study area. The findings of the 
cold hotspot analysis (Fig. 3 II)) indicate that the regions 
with high ESC in Anhui Province are predominantly 
located in southern Anhui, characterized by a favorable 
ecological environment. Their primary distribution 
is in Chizhou City, Huangshan City, and Xuancheng 
City. This aligns with the findings of the local Moran 
index investigation. The data indicate that the ESC in 
these locations is not only elevated but also exhibits a 
notable spatial concentration of high values. The ESC 
of these places much exceeds the average, resulting in 
the formation of a high-high hotspot. Furthermore, the 
study indicates that in 2008 and 2012, regions with low 
ESC in Anhui Province were predominantly located in 
areas characterized by robust industrial and economic 
activity, specifically in Bozhou City and Bengbu City. 
Post-2012, Anhui Province exhibits no discernible 
regions of low ESC, nor does it contain any low-low 
cold spots. This indicates that the ESC in the majority 
of the province is near or above the average level.  
No location exhibits a much lower than average ESC. 
The regional distribution of ESC is very equitable.  
In areas with comparatively low carrying capacity, 
the degree of carbon sequestration ecological carrying 

Table 3. Factors influencing the ESC.

Symbol   Indicator Indicator Description Unit

Social

X1  Population size Statistical Yearbook 10,000 
persons

X2 Urbanization rate Statistical Yearbook %

X3 Environmental regulation Environmental protection inputs/environmental 
pollution index -

Economic

X4 GDP per capita GDP/population Yuan
X5 Industrial structure  Value added of secondary industry as % of GDP %
X6 Fixed Asset Investment Fixed Asset Investment as % of GDP %

X7  Science and Technology 
Innovation

Share of Science and Technology Expenditure in 
Total Fiscal Expenditure %

Environmental

X8 Annual average temperature Statistical Yearbook ℃

X9 Density of water network (Ariv×River length/area + Alak×Water area + 
Ares×Water resources/area) / 3 -

X10 Air quality attainment rate Statistical Yearbook %
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capacity  is inadequate to create statistically significant 
low-low cold patches.

ESC Key Impact Factor Driver Analysis

Existing studies [29] examine the impact of 
social, economic, and environmental factors on ESC.  
The variables chosen for this investigation, along 
with data accessibility, are presented in Table 3. To 
guarantee data processing accuracy and enhance 
model performance, the data were standardized and 
outliers addressed, followed by the construction of 
Ridge regression (Ridge), eXtreme Gradient Boosting 
(XGBoost), Gradient Boosted Regression Tree (GBRT), 
Support Vector Regressor (SVR), and Random Forest 
model (RF). Upon evaluating the performance of these 
five models on the test set, it was determined that the 
Random Forest model exhibited a goodness-of-fit (R²) 
of 0.895, whereas Ridge Regression achieved an R² 
of 0.740, XGBoost recorded an R² of 0.859, Gradient 

Boosted Regression Tree (GBRT) attained an R² of 
0.872, and Support Vector Regression (SVR) reached 
an R² of 0.881, with Random Forest significantly 
outperforming the other four models. Furthermore, 
regarding prediction error (RMSE), the random forest 
model exhibited an RMSE of 0.517, which was inferior 
to that of the other four models. Consequently, the 
random forest model shows superior performance in 
elucidating the principal determinants impacting carbon 
sequestration ecological carrying capacity in Anhui 
Province, with enhanced model accuracy.

ESC in the short term may be enhanced in long 
time scales. And vice versa, such changes may lead to 
different main influences on ESC under different time 
scales [30]. Three time scales of 5, 10, and 15 years 
were selected, and the driving mechanism of ecological 
carrying capacity (ESC) of carbon sequestration under 
different time scales was analyzed based on the random 
forest model (Fig. 4). In the 5-year scale analysis, 
water network density showed significant dominance 

Fig. 4. Analysis of ESC driving factors in Anhui Province.
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(contribution = 0.81, p<0.001). Its unit increment  
(0.1 km/km²) enhances ESC by 12.3%. This is closely 
related to the efficient carbon sequestration capacity and 
microclimate regulation effect of watershed ecosystems. 
Among the second-order drivers, population density 
(contribution = 0.09) and air quality attainment 
(contribution = 0.07) showed negative (β = -0.21) and 
positive (β = +0.17) bias, respectively. The carbon 
source intensity of the overpopulated area (>540 people/

km²) amounted to 1.82 tCO2/million yuan, which was 
significantly higher than that of the low-density area. 
At the 10-year time scale, the dominant role of water 
network density showed a marginal decreasing trend 
(contribution decreased to 0.63, Δ = -22.2%), and its 
elasticity coefficient decreased from 0.81 (5 years) to 
0.67 (p<0.01). At this time, the effect of population size 
(contribution 0.13, β = -0.29) and air quality attainment 
rate (contribution 0.13, β = +0.35) was significantly 
stronger. In particular, a 10 μg/m³ decrease in the annual 
average PM2.5 concentration could increase the efficiency 
of the vegetation carbon sink by 7%. In the 15-year 
scale analysis, the urbanization rate (contribution 0.19, 
β = -0.41) replaced the air quality attainment rate as 
the second driver (Fig. 4 I) and II)). The contribution 
of water network density further declined to 0.51  
(Δ = -37.0%) and its coefficient of variation narrowed 
to 0.08, indicating that water resources development 
is close to the regional threshold (water resources per 
capita <500 m³). A 1% increase in the urbanization rate 
leads to a 0.7% increase in the rate of cropland loss, and 

(Ⅰ) regression results (Ⅱ) decomposition of influence effect

(1)
ind

(2)
time

(3)
both

 (1) LR
 Direct

(2) LR 
Indirect

(3) LR
Total

wx1 -0.762
(-1.06)

-0.438***
(-3.97)

-0.0533
(-0.08) X1 -0.958***

(-4.09)
-0.462*
(-2.23)

-0.142*
(-2.31)

wx2 0.109**
(2.90)

-0.297*
(-2.45)

0.0458
(0.91) X2 -0.394*

(2.05)
-0.402**

(3.14)
-0.488***

(3.46)

wx3 -0.0214
(-0.87)

0.0224**
(2.96)

-0.0481
(-1.82) X3 0.0506***

(3.70)
0.0270**

(2.34)
0.0533***

(3.98)

wx4 -0.0243
(1.92) -0.0951

(0.46)

-0.055**
(3.20) X4 0.0607

(0.68)
0.0105
(0.50)

0.0166
(0.70)

wx5 8.303
(0.52)

-49.52***
(-3.99)

-52.22**
(-2.88) X5 -34.29***

(-5.35)
-70.2***
(-3.43)

-104.5***
(-4.38)

wx6 0.619
(0.56)

 -0.125*
(2.39)

-0.909
(-0.62) X6 -0.185*

(2.29)
-0.426*
(2.46)

0.661*
(2.15)

wx7 10.78***
(4.39)

2.548**
(2.87)

8.655**
(2.95) X7 -8.119***

(-3.61)
2.480***

(4.48)
-5.639***

(-4.16)

wx8 0.174*
(2.08)

0.0913
(0.74)

0.0910
(0.97) X8 0.0923

(1.60)
0.0854
(0.67)

0.178
(1.20)

wx9 10.62***
(3.61)

 4.049**
(3.31)

7.961*
(2.45) X9 10.04***

(4.80)
4.043**
(2.59)

10.47***
(4.06)

wx10 -0.0516*
(-2.54)

0.143**
(3.26)

0.129***
(3.91) X10 0.157***

(7.78)
0.148***

(3.30)
0.305***

(6.91)

rho 0.263**
(2.75)

0.0152
(0.14)

0.0424
(0.40) N 240 240 240

sigma2 e 1.158***
(10.83)

2.141***
(10.95)

0.900***
(10.95) – – – –

r2 0.334 0.569 0.309 – – – –
N 240 240 240 – – – –

Note: t-values in parentheses, ***, **, * represent statistically significant at the 1%, 5%, and 10% levels, respectively.

Table 4. LM, Hausman, LR test results.

Test Statistic P-value

LM test 27.65*** 0.000

Hausman test 673.15*** 0.000

Ind-LR test 17.00 0.454

Time-LR test 548.65*** 0.000

Note: ***, **, * indicate passing 1%, 5%, and 10% 
significance tests, respectively.

Table 5. ESC regression results and influence effect decomposition.
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it is worth noting that the long-term effect of population 
size (contribution of 0.11) is flattened by increasing 
aging (26.3% of the population over 60 years of age). 
The annual average PM2.5 concentration in Anhui 
Province in 2022 is μg/m³, a decrease of about 46% 
from 2015. The air deterioration is strongly controlled, 
and air quality is significantly improved on a long-term 
scale. In addition, the increase of water network density 
can improve the local climate and promote the growth 
of vegetation, while good air quality is conducive to 
plant photosynthesis, and the synergistic effect of the 
two can significantly enhance the carbon sequestration 
capacity of forests and green spaces, and improve the 
ESC. The influence of the role of the ESC in Anhui 
Province gradually decreases. While the population size 
and urbanization rate on ESC show a significant growth 
trend, the total population fluctuation is small, the 
urbanization rate increased significantly by 19.7%, and 
the energy demand of the urban population continues 
to increase. Population size and urbanization rate work 
together to produce a superimposed effect on ESC, with 
urbanization taking up more land and exacerbating the 
pressure of population growth on forests and green 
spaces. Weakening the carbon absorption capacity of 
forests and green spaces together suppresses ESC.

ESC Spatial Response Analysis

The findings of Moran’s I test in Table 2 indicate 
a substantial regional association of ESC  in Anhui 
Province. To further examine the spatial association of 
factors impacting ESC and the spatial spillover effect. 
The regression findings underwent the LM test, the 
Hausman test, and a two-way fixed effects likelihood 
ratio test. We conducted the regression analysis using the 
three fixed effects in the appropriate order. The LR test 
findings and the importance of each variable indicate that 
the regression of time-fixed effects is optimal (Table 4). 
The time-fixed effect spatial Durbin model (SDM) was 
ultimately chosen to regressively evaluate the impacts of 
social, economic, and environmental factors on the ESC 
in Anhui Province.

Table 5 (Ⅰ) displays the outcomes of the three 
regressions concerning carbon sequestration’s ecological 
carrying capacity. Table 5 Ⅰ Column (2) presents the 
impact of each explanatory variable on ESC and its 
relevance. The population size, urbanization rate, 
industrial structure, and fixed asset investment exert  
a substantial negative inhibitory influence on the ESC. 
The influence coefficient of industrial structure was 
-49.52, signifying that an increased proportion of 
secondary industry in GDP correlates with a diminished 
ESC. This is due to the elevated energy consumption 
and emission profiles of the secondary industry, 
particularly within a coal-centric energy framework, 
where energy usage and carbon emissions have 
escalated, hence diminishing the ecological potential 
for carbon absorption. Environmental control, scientific 
and technological innovation, water network density, 

and air quality compliance rate significantly enhance 
ESC. The coefficient of influence of water network 
density is 4.049, which predominates in enhancing 
ESC. The second factor is scientific and technological 
innovation, exhibiting an impact coefficient of 2.548. 
Innovations in science and technology can augment 
regional ESC by refining industrial structures, 
enhancing energy efficiency, and promoting the 
digitalization and intelligence of ecological governance. 
Four influential factors – population size, urbanization 
rate, water network density, and air quality attainment 
rate – demonstrated substantial effects, aligning with the 
findings of the random forest regression.

The spatial lag component in the spatial Durbin model 
inhibits conventional point estimates from effectively 
reflecting the spillover effects of explanatory factors. 
Consequently, more comprehensive methodologies are 
required to examine the impacts of these variables. 
The overall spatial spillover effect is categorized into 
direct and indirect effects. The direct effect denotes 
the extent to which local explanatory variables impact 
the carbon sequestration ecological carrying capacity. 
The indirect effect denotes the extent to which the 
explanatory factors in adjacent regions impact the 
carbon sequestration  ecological carrying capacity. 
Table 5 Ⅱ displays the outcomes of the decomposition 
of particular spatial effects. Table 5 Ⅱ illustrates that 
the direct and spatial spillover effects of population size 
(X1), urbanization rate (X2), industrial structure (X5), 
and fixed asset investment (X6) are markedly negative. 
The coefficients for the direct effects are -0.958, -0.394, 
-34.29, and -0.185, whereas the coefficients for the 
geographical spillover effects are -0.462, -0.402, -70.23, 
and -0.426, respectively. The spatial spillover impact of 
X5 exhibits significant inhibition, demonstrating that a 
1% increase in X5 decreases the local ESC by 34.29% 
(direct effect) and concurrently diminishes the nearby 
ESC by 70.23% via industrial gradient transfer. The rise 
of X1, X2, X5, and X6 in each region of Anhui Province 
significantly hampers the growth of ESC in that region 
and its adjacent territories. It indicates that areas with 
high ESC are encircled by regions characterized by 
comparatively low population, urbanization rates, 
secondary industry contributions to GDP, and fixed asset 
investments. The escalation of these elements obstructs 
the advancement of ESC in Anhui Province by elevating 
resource usage and carbon emissions and diminishing 
ecological space. The direct and spatial spillover 
effects of environmental legislation (X3), scientific and 
technological innovation (X7), water network density 
(X9), and air quality attainment rate (X10) are notably 
positive. The values for direct effects were 0.0506, 
0.0607, 10.04, and 0.157, whereas the coefficients for 
spatial spillover effects were 0.0270, 2.480, 4.043, 
and 0.148, respectively. Regions X3, X7, X9, and X10  
in Anhui Province substantially boost ESC in the 
region and its vicinity. The geographical spillover effect 
also positively influences adjacent places, collectively 
enhancing the improvement of ESC in the region and 
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beyond. The spatial spillover impact of X9 demonstrates 
a significant enhancement, suggesting that a 1% increase 
in X9 results in a 10.04% improvement in the local ESC 
and a 4.043% enhancement in the surrounding ESC.

Discussion 

This research initially assesses the carbon 
sequestration, carbon emissions, and the ESC in Anhui 
Province from 2008 to 2022. Carbon sequestration 
is 2.598×106 t in 2008 and decreases to 2.512×106 t in 
2022. Carbon emissions are rising significantly, with 
a cumulative increase of 127%. the overall ESC is 
showing a downward trend. The regional distribution 
of ESC is examined. The findings indicate a marginal 
decline in carbon absorption in Anhui Province. Carbon 
emissions rose markedly. The ESC  initially rises 
and subsequently declines. The ESC  exhibits notable 
regional clustering. High-high clustering regions are 
predominantly located in southern Anhui, while low-
low clustering regions are primarily found in northern 
Anhui. This exhibits both the same agglomeration 
and the contrasting pattern of regional and temporal 
differentiation of carbon emissions in Anhui Province 
[31-35]. Between 2008 and 2012, regions exhibiting 
low ESC were primarily located in northern Anhui, 
characterized by elevated urbanization rates and  
a significant proportion of secondary industry, alongside 
substantial consumption of coal and other fossil fuels. 
Post-2013, no areas with low ESC were identified. The 
areas of ESC in Anhui Province are predominantly 
located in southern Anhui, characterized by a significant 
share of cultivated land, and are spread sporadically. It 
demonstrates a robust geographical association. This 
contradicts the finding that carbon emission hotspots 
are primarily located in the northern region of Anhui 
Province, while cold spot areas are predominantly 
found in the southern and western mountainous regions, 
exhibiting a progressively declining tendency [36-38]. 
This signifies that the  ESC  diminishes in areas with 
elevated carbon emissions, and conversely. The article 
utilizes the combination of the direct carbon emission 
factor method and the indirect estimation method to 
estimate the carbon sequestration, carbon emission, 
and ESC level in Anhui Province. However, the static 
carbon sequestration estimation method still lacks the 
consideration of spatial scale error, industrial structure 
bias, and dynamic changes. Further exploring the 
spatial and temporal evolution of ESC, the shrinking 
trend of the carbon emission cold spot area (southern 
mountainous area) contradicts the persistence of the 
ESC hot spot area. It may reflect the carbon leakage 
effect caused by ecotourism development, which needs 
more in-depth analysis and research.

This paper examines the primary factors influencing 
the carbon sequestration  ecological carrying capacity 
in Anhui Province, considering the region’s natural 
geographic distribution, economic, and social 

development trends, alongside findings from prior 
research [39-42]. Potential factors influencing the 
carbon sequestration  ecological carrying capacity  in 
Anhui Province are categorized into three dimensions: 
economic, social, and environmental. In contrast to the 
singular examination of influencing factors [43-46], 
this paper utilizes random forest and spatial Durbin 
models. Starting from both factor-driven and spatial 
response. It contains different time scales and different 
spatial dimensions to explore in depth the complex links 
between economic and social development, natural 
geographic differences, and ESC in Anhui Province. 
This paper employs random forest and spatial Durbin 
models, considering various temporal dimensions and 
geographic influence effects. Previous studies [47-
49] indicate that industrial structure and economic 
development have increasingly emerged as significant 
elements contributing to the escalation of carbon 
emissions. This study indicates that the industrial 
structure and economic development in Anhui Province 
exert minimal influence on the ESC. The primary 
determinants influencing the ESC  in Anhui Province 
include water network density, population size, air 
quality compliance rate, and urbanization rate. The 
research identified a threshold influence on the ESC. 
This aligns with the result of Wang et al. that when 
influencing factors rise, the research subject ultimately 
stabilizes, exhibiting neither a distinct positive nor 
negative effect [6]. The air quality attainment rate can 
only make a substantial beneficial impact if it is above a 
specific threshold. Moreover, the spatial Durbin model, 
although corroborating the findings from random forests, 
further establishes that there exists a considerable 
spatial spillover impact of these influencing elements. 
When the article explores the influencing factors of ESC 
in Anhui Province, the 10 key factors selected do not 
include all the influencing factors. Subsequent studies 
should explore the complex relationship between factors 
such as technological bottlenecks, insufficient funds, 
regional development imbalance, traditional industry 
dependence, green technology application, ecological 
resource transformation, policy support, and regional 
synergy and ESC in Anhui Province.

Conclusions

This article utilizes the CLCD dataset alongside 
economic, social, and environmental statistics within 
the framework of the dual-carbon target. This study 
assesses the carbon sequestration  ecological carrying 
capacity  in Anhui Province and examines the spatial 
and temporal distribution patterns of this capacity, along 
with its affecting elements at the municipal level. The 
study deduces the subsequent findings.

(1) Carbon sequestration in Anhui Province 
exhibited a generally stable albeit variable declining 
trend throughout the study period, with an average 
annual reduction of 0.26%. Conversely, carbon 
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emissions persisted in their ascent, with an average 
annual growth rate of 6.8%, culminating in a cumulative 
increase of 127%, which led to an overall decline of 
22.00% in the ESC index. The ESC in Anhui Province 
exhibits spatial distribution patterns characterized by 
“higher in the south and lower in the north” and “higher 
in the east and lower in the west”. The regions with 
low ESC are situated within the industrially developed 
northern Anhui urban agglomerations, whereas the 
areas with high ESC are located in the southern Anhui 
urban agglomerations, which possess a more favorable 
ecological environment. Anhui Province continues to 
encounter substantial obstacles in attaining the “double 
carbon” objective. The north-central region of Anhui 
Province is a critical focus for future ESC improvement. 
The extent of green space must be augmented to prevent 
the unchecked proliferation of urban development.  
To enhance spatial aggregation of ESCs, it is essential 
to bolster regional carbon management collaboration, 
particularly in areas characterized by large carbon 
emissions and low ESC levels. Advocate for regional 
collaboration in scientific and technological innovation 
as well as environmental stewardship. Implement the 
three pillars of industrial rebuilding in northern Anhui, 
value realization in southern Anhui, and standard 
leadership in central Anhui. Develop a multi-tiered, 
nested carbon-neutral route system. Anhui Province 
must address the deficiency in green investment by 
prioritizing industrial technical reform and ecological 
restoration. Furthermore, we must seize the chance 
for technical advancement. Leveraging the benefits of 
the new energy industry chain and the facilitation of 
digital technology, the achievement of the “dual-carbon” 
objective necessitates overcoming the “high-carbon 
lock-in effect” and the “ecology-economy dichotomy” 
through synergistic innovation among technology, 
funding, and institutions.

(2) The extent of ESC in Anhui Province is 
considerably influenced by the density of the water 
network, population size, air quality compliance rate, 
and urbanization rate. The impacts of each component 
on ESC are characterized by dynamic variations in 
distinct time frames. As they ascend to a specific 
threshold, ESC will ultimately stabilize. These primary 
components have considerable regional spillover effects. 
The swift urbanization of Anhui Province has resulted 
in a population concentration in urban areas. Moreover, 
transportation, building, and other sectors exhibit 
significant energy consumption and elevated carbon 
emission intensity. This exacerbates the challenge of 
mitigating emissions in Anhui Province. Anhui Province 
serves as a significant region in the central area, 
facilitating the connection between the north and south. 
ESC-enhancing measures should be tailored according 
to climatic and regional variables. It should concentrate 
on regulating urban expansion, decreasing population 
density, and enhancing urban spatial organization. 
Creating a platform for the coordinated management of 
water networks and improving the spatial equilibrium 

of carbon sequestration via an intercity water dispatch 
compensation system. Correlate the urbanization rate 
with carbon sink reserves. Implement the linking 
mechanism for “carbon footprint - household registration 
points”. Recognize population density limitations and 
spatial reconfiguration. Offer theoretical justification for 
the achievement of global climate objectives.

 Acknowledgements

This article is funded by the following programs: 
1. National Natural Science Foundation of China 
(72271005); 2. Philosophy and Social Science Planning 
Project in Anhui Province (AHSKY2022D124);  
3. University Student Entrepreneurship Fund of AUST 
(2024cx2163).

Conflict of Interest

The authors declare no conflict of interest. 

References 

1.	 HUANG H.Z., JIA J.S., CHEN D.L., LIU S.T. Evolution 
of spatial network structure for land-use carbon emission 
sand carbon balance zoningin Jiangxi Province: A social 
network analysis perspective. Ecological Indicators. 158, 
111508, 2024. 

2.	 XU L.F., YANG X.L. Progress of ecological carrying 
capacity research. Ecological Environment. 15 (5), 1111, 
2006.

3.	 PARK R.E. Introduction to the Science of Sociology. 
Chicago: University of Chicago Press, 1921.

4.	 HUANG X., GE X.L. Progress of ecological carrying 
capacity research. Journal of Huaihai. (3), 27, 2022.

5.	 XIAO L., ZHAO X.G., XU H.X. Dynamic study of carbon 
footprint and carbon carrying capacity in Shandong 
Province. Journal of Ecology and Rural Environment. 29 
(2), 18, 2013.

6.	 WANG Q.L., LI S.S. Characterization of spatial and 
temporal evolution of carbon emissions in Yunnan 
Province and analysis of influencing factors. China 
Environmental Science. 16 (17), 7565, 2024.

7.	 ZHANG M.M., CHEN E.Q., ZHANG C., LIU C., LI 
J.X. Multi-Scenario Simulation of Land Use Change and 
Ecosystem Service Value Based on the Markov–FLUS 
Model in Ezhou City, China. Sustainability. 16 (14), 6237, 
2024.

8.	 HU C.G., ZHANG M.M., HUANG G.L., LI Z.Q., SUN 
Y.C., ZHAO J.Q. Tracking the impact of the land cover 
change on the spatial-temporal distribution of the thermal 
comfort: Insights from the Qinhuai River Basin, China. 
Sustainable Cities and Society. 116, 105916, 2024.

9.	 ZHANG M.M., TAN S.K., CHEN E.Q., LI J.X. Spatio-
temporal characteristics and influencing factors of land 
disputes in China: Do socio-economic factors matter?. 
Ecological Indicators. 160, 111938, 2024.

10.	 CHEN Y., ROSA L.D., YUE W.Z. Does urban sprawl 
lessen green space exposure? Evidence from Chinese 
cities. Landscape and Urban Planning. 257, 105319, 2025.



Gang He, et al.16

11.	 CAO J.X., ZHANG M.M., CHEN E.Q. The Dynamic 
Effects of Ecosystem Services Supply and Demand on Air 
Quality: A Case Study of the Yellow River Basin, China. 
Polish Journal of Environmental Studies. 2025.

12.	WANG J.L., LIU Y., WANG W.L., WU H.T. Does 
artificial intelligence improve enterprise carbon emission 
performance? Evidence from an intelligent transformation 
policy in China. Technology in Society. 79, 102751, 2024.

13.	 WANG J.L., LIU Y., WANG W.L., WU H.T. The effects 
of “machine replacing human” on carbon emissions in the 
context of population aging – Evidence from China. Urban 
Climate. 49, 101519, 2023.

14.	 ZHOU X., LIANG Y., LI L., CHAI D., GU X.K., YANG 
L. Analysis of spatial and temporal characteristics and 
influence mechanisms of carbon emissions in China’s, 
1997–2017. Journal of Cleaner Production. 485, 144411, 
2024.

15.	 WANG X., LI Z., KEE T. Spatial and temporal correlation 
between green space landscape pattern and carbon 
emission—Three major coastal urban agglomerations in 
China. Urban Climate. 58, 102222, 2024.

16.	 SUN Y.H., HAO S.Y., LONG X.F. A study on the 
measurement and influencing factors of carbon emissions 
in China’s construction sector. Building and Environment. 
229, 109912, 2023. 

17.	 DU W., LIU X.N., LIU Y.Y., XIE J.P. Digital Economy 
and carbon emission efficiency in three major urban 
agglomerations of China: A U-shaped journey 
towards green development. Journal of Environmental 
Management. 373, 123571, 2025.

18.	 YU K., LI Z. Coupling coordination and spatial network 
characteristics of carbon emission efficiency and urban 
green innovation in the Yellow River Basin, China. 
Scientific Reports. 14 (1), 27690, 2024.

19.	 LIANG J.S., ZHANG M.M., YIN Z.Q., NIU K.R., LI 
Y., ZHI K.T., HUANG S.G., YANG J., XU M. Tripartite 
evolutionary game analysis and simulation research on 
zero-carbon production supervision of marine ranching 
against a carbon-neutral background. Frontiers in Ecology 
and Evolution. 11, 19048, 2023.

20.	CHEN W., MENG Y. Intercity carbon compensation 
mechanism based on value-added captured responsibility 
allocation. Journal of Environmental Management. 371, 
123091, 2024.

21.	 FAN Z., XIA W., YU H., LIU J., LIU B.H. Land Use 
Carbon Budget Pattern and Carbon Compensation 
Mechanism of Counties in the Pearl River Basin: A 
Perspective Based on Fiscal Imbalance. Land. 13 (8), 1141, 
2024.

22.	HU F.G., LIU H.J., GUO Y.X., DING H.P., WANG K. 
Coupling and Coordinated Development of Carbon 
Emission Efficiency in Industrial Enterprises and the 
Digital Economy: Empirical Evidence from Anhui, China. 
Sustainability. 16 (14), 6248, 2024.

23.	QI Y.W., LIU H.L., ZHAO J.B., ZHANG S.Z., ZHANG 
X.J., ZHANG W.L., WANG Y.K., XU J.J., LI J., DING 
Y.L. Trends and driving forces of agricultural carbon 
emissions: A case study of Anhui, China. PLoS One. 19 
(2), e0292523, 2024.

24.	ZHANG M.H., DONG S.C., LI F.J., XU S.J., GUO 
K.X., LIU Q. Spatial–Temporal Evolution and 
Improvement Measures of Embodied Carbon Emissions 
in Interprovincial Trade for Coal Energy Supply Bases: 
Case Study of Anhui, China. International Journal of 
Environmental Research and Public Health. 19 (24), 17033, 
2022.

25.	ZHAO P., SUN Y., ZHAO S.Y., RUAN X.D., CHANG 
J., ZHOU J. Spatial and temporal changes of land use 
carbon emissions and influencing factors in Chaohu Lake 
Basin. Journal of Hefei University of Technology (Natural 
Science Edition). 47 (4), 433, 2024.

26.	WANG Z., ZHOU K., FAN J. Carbon emission accounting 
and analysis of main functional areas in counties in 
western region--Taking Sichuan Province as an example. 
Journal of Ecology. 42 (21), 8664, 2022.

27.	 CHEN J.S., ZHANG J.J., LI J.L., LI S. Changes in spatial 
and temporal patterns of carbon emissions and their 
driving factors in Beijing-Tianjin-Hebei region. Journal of 
Ecology. 44 (6), 2270, 2024.

28.	HOU Q., MA K., YU X. Interannual variations in 
grassland carbon fluxes and attribution of influencing 
factors in Qilian Mountains, China. Science of the Total 
Environment. 957, 177786, 2024.

29.	 JIANG Y.C., LI Y.Y., WANG S.P., YANG Y.X. Analysis of 
factors affecting regional carbon emissions in China based 
on emission reduction level index. Environmental Science. 
1, 2024.

30.	ZHU Q., WEI Q., BAI Z.J., MIN X.T. Quantification of 
agricultural drought recovery time and analysis of its 
influencing factors under different time scales in the 
Yangtze River Basin. Journal of Southeast University 
(Natural Science Edition). 54 (3), 675, 2024.

31.	 LU Y.F., XUAN W., ZHAO L.W. Evolution of spatio-
temporal pattern of carbon emission and prediction of 
carbon peak pathway in Anhui Province - Based on 
STIRPAT extended model and ridge regression model. 
Geographic Research and Development. 43 (1), 146, 2024.

32.	PENG W.F., ZHOU J.M., XU X.L., LUO H.L., ZHAO J.F. 
YANG C.J. Spatio-temporal pattern of carbon emission 
and carbon footprint effect in Sichuan Province based on 
land use change. Journal of Ecology. 36 (22), 7244, 2016.

33.	 ZHANG J., FANG Y., WEI J.D., LIN J.T., CHEN P.B, 
ZHU C.Z. Spatial and temporal differences of carbon 
sources/sinks in farmland ecosystems in Anhui Province 
based on carbon footprint. Fujian Journal of Agriculture. 
36 (1), 78, 2021.

34.	WU H.J., YUAN Z.W., G Y., REN J.Z., JIANG S.Y., 
SHENG H., GAO L.M. Spatial and temporal trends 
and spatial patterns of energy utilization efficiency and 
greenhouse gas emissions in crop production in Anhui 
Province, China. Energy. 133, 955, 2017.

35.	 ZHANG T., CHEN L.Q., YU Z.Q., ZANG J.Y., LI L. 
Spatiotemporal Evolution Characteristics of Carbon 
Emissions from Industrial Land in Anhui Province, China. 
Land. 11 (11), 2084, 2022.

36.	JING X. Study on spatiotemporal distribution 
characteristics and driving factors of carbon emission in 
Anhui Province. Scientific Reports. 13 (1), 2023.

37.	 LI Y.M., SHEN Y.S., WANG S.H. Spatial and temporal 
characteristics and effects of terrestrial carbon emissions 
in Anhui Province based on land use change. Journal of 
Soil and Water Conservation. 36 (1), 182, 2022.

38.	WANG Y., HE Y.F. Spatiotemporal dynamics and 
influencing factors of provincial carbon emissions in 
China. World Regional Studies. 29 (3), 512, 2020.

39.	 LI Y.Y., ZHANG S. Spatio-temporal evolution of carbon 
emission intensity in Chinese cities and spatio-temporal 
heterogeneity of influencing factors. China Environmental 
Science. 43 (6), 3244, 2023.

40.	ZHANG X.S., NIE D.W., CHEN Z.Z., WANG R.Z., SU J. 
Characteristics of spatial and temporal evolution of carbon 
emissions from the construction industry in the western 



17Spatial and Temporal Dynamics of Carbon...

region and analysis of influencing factors. Environmental 
Science. 1, 2024. 

41.	 LI J.L., ZENG T. Analysis of carbon emission factors in 
Yunnan based on Kaya method. Science and Technology 
Management Research. 36 (19), 260, 2016.

42.	YAN Z.H., REN L.Y., LIU Y.Q., SONG J.X. Research 
on spatio-temporal pattern of carbon emissions and 
influencing factors in Zhejiang Province. Yangtze River 
Basin Resources and Environment. 26 (9), 1427, 2017.

43.	 ZHU Y.J., GUO Y.H., CHEN Y.F., MA J.G., ZHANG D. 
Factors Influencing Carbon Emission and Low-Carbon 
Development Levels in Shandong Province: Method 
Analysis Based on Improved Random Forest Partial Least 
Squares Structural Equation Model and Entropy Weight 
Method. Sustainability. 16 (19), 8488, 2024.

44.	CHEN Y., CHEN Y.R., CHEN K., LIU M. 
Multidimensional analysis of the characteristics and 
drivers of carbon deficit heterogeneity in urban land use in 
China. Journal of Agricultural Engineering. 1, 2024. 

45.	 LIN Y., CHEN L.G., YANG X.Y., WANG X.Y, SANG Y.T., 
PAN Y.S. Spatial and temporal variability of carbon effects 

of village land use change and analysis of influencing 
factors: a case study of Jiangsu Province. Journal of 
Ecology and Rural Environment. 1, 2024. 

46.	CHEN J.D., LI S.P., LI L.Y., PENG X., ZHANG J.W. 
Factors and structural paths of the changes in carbon 
emissions in China’s provincial construction industries. 
Journal of Environmental Management. 371, 123292, 
2024.

47.	 LI J.B., HUANG X.J., TUI X.W., SUN S.C. Analysis of 
spatial and temporal characteristics and influencing factors 
of carbon emission efficiency in Yangtze River Delta. 
Yangtze River Basin Resources and Environment. 29 (7), 
1486, 2020.

48.	LI S.Y., YAO L.L, ZHNAG Y.C., ZHAO Y.X., SUN 
L. China’s provincial carbon emission driving factors 
analysis and scenario forecasting. Environmental and 
Sustainability Indicators. 22, 100390, 2024.

49.	 WANG J.F., ZHAO G.Z., SUN L.X. Research on the path 
of developing low carbon economy in Yunnan Province. 
Ecological Economy. 30 (1), 57, 2014.


