
Introduction

Carbon dioxide is one of the main greenhouse gases. 
In 2022, the global CO2 emissions of the transportation 
industry reached 7.95 Gt, among which the proportion 
of road transportation was 74%, with substantial 

potential for carbon reduction [1]. Mountainous plateau 
areas exhibit relatively high ecosystem vulnerability 
and are frequently affected by climate change [2, 
3]. With economic and societal development, the 
number of motor vehicles in use will continue to grow.  
In the Stated Policies Scenario, electric vehicles will 
account for > 10% of the road vehicle fleet by 2030 
[4]. Although the process of vehicle electrification is 
gradually accelerating, fuel vehicles will still dominate 
in the coming period. Vehicle CO2 emissions exacerbate 
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Abstract

We selected a 288 km expressway in the western Sichuan Plateau mountainous area to reveal  
the factors influencing CO2 emissions from light-duty vehicles and establish a localized prediction 
model. Instantaneous CO2 emission data (9,381 sets) were obtained through real-vehicle emission tests. 
The influential characteristics of CO2 emission rates under different environmental characteristics, 
alignment conditions, and operational states were analyzed. CO2 emission prediction models based 
on random forest (RF) and model-agnostic meta-learning (MAML) algorithms were constructed, 
compared, and analyzed. The findings indicated that: (1) Vehicle-specific power (VSP) was  
the most important factor determining the CO2 emission rate. The feature importance of VSP  
in the upslope and downslope directions was 0.25 and 0.22, respectively; (2) The CO2 emission rate 
distribution patterns were approximated by a Gamma distribution within different grade and angle 
change rate intervals. At grades < -1%, between -1 and 1%, and > 1%, CO2 emission rates decreased, 
stabilized, and increased, respectively, with increasing angle change rate intervals; (3) The evaluation 
metrics for the MAML model outperformed those of the RF model, indicating higher adaptability  
to unknown tasks.
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model-agnostic meta-learning, influencing factors

Pol. J. Environ. Stud. Vol. XX, No. X (XXXX), 1-14



Jianping Gao, et al.2

the greenhouse effect and have a profound impact 
on the ecosystem in mountainous plateau areas [5]. 
Investigating the influencing characteristics of CO2 
emissions from vehicles on expressways in mountainous 
plateau areas and constructing a localized CO2 prediction 
model are conducive to the effective accounting and 
control of CO2 emissions.

Mountainous plateau areas have complex 
topographies and harsh climatic conditions. The 
impact of the vehicle operating environment and the 
road alignment on CO2 emissions is more prominent 
compared to that in low-altitude areas. Real driving 
emission (RDE) tests indicate that the CO2 emission 
rates nearly triple when the altitude increases from 
2,000 to 4,500 m [6]. Some studies suggest that there is 
no unified pattern between altitude and CO2 emissions 
in RDE tests [7]. Although RDE tests provide a more 
accurate representation of actual emission levels than 
indoor tests, they introduce additional variables during 
the testing process, which add greater uncertainty to 
analyses of CO2 emissions relative to altitude changes. 
The changes in temperature and humidity along  
a highway have a significant impact on vehicle CO2 
emissions; CO2 emissions significantly increase at 
high and low ambient temperatures [8, 9]. Real-vehicle 
tests and indoor simulation tests indicate that at an 
ambient temperature of -20℃, the CO2 concentration 
of vehicle emissions at an idle state exceeds 16% [10]. 
When the relative humidity increases from 10 to 40%, 
the CO2 emission rate of the light-duty vehicle (LDV) 
decreases from 4.2 to 3.6 g/s [6]. Furthermore, road 
alignment indicators substantially influence vehicle CO2 
emissions. Dong et al. [11], through real-vehicle tests, 
concluded that the minimum radius of circular curves 
affecting vehicle carbon emissions was 500 m. A strong 
correlation exists between the road grade and carbon 
emissions [12], whereby carbon emissions increase 
significantly when the road grade exceeds 3% [13]. On 
a 3-km section with a slope, where the driving speed 
of a vehicle decreases by > 20 km/h, fuel consumption 
is 5-fold greater than when the speed decreases by  
≤10 km/h [14]. Moreover, the design of vertical curves on 
highways significantly affects vehicle carbon emissions. 
The design of vertical curves with gentle curvatures 
provides environmental and economic benefits for the 
entire lifespan of a highway [15]. Currently, research 
on the impact characteristics of road alignment 
conditions on vehicle CO2 emissions has focused on 
grade. However, horizontal alignment is the basis for 
determining the vehicle operating speed. The continuity 
of horizontal alignment is equally important for vehicle 
CO2 emissions, with a lack of research on this topic. 

The results of RDE tests are generally higher than the 
indoor test values under the international LDV emission 
test cycles and the calculated values by CO2 emission 
models (such as MOVES and COPERT). Some studies 
have carried out research on CO2 emission prediction 
models based on RDE test data. Vehicle CO2 emissions 
are a multifaceted issue influenced by alignment 

conditions, environmental characteristics, and operating 
states. Traditional multiple linear regression analysis 
cannot reflect the complex nonlinear relationship 
between emissions and various factors [16]. Some 
studies have improved the accuracy and interpretability 
of predictions by constructing machine learning models 
for vehicle instantaneous emissions [6, 17, 18]. However, 
the adaptability of the existing machine learning 
models is limited by the quality and representativeness 
of the test data. In the mountainous plateau areas, the 
operating environment of vehicles is complex and 
changeable, with prominent differential characteristics 
varying with altitude and seasons. Additionally, within 
the same altitude range, there are significant differences 
in road alignment conditions, which are restricted by 
topographic and geological conditions. Therefore, the 
model construction based on the real-vehicle emission 
test data is undoubtedly a few-shot problem, and it 
requires higher generalization ability and stability of the 
model.

This study aims to conduct real-vehicle emission 
tests of LDVs in mountainous plateau areas, analyze CO2 
emissions from LDVs, and construct a localized CO2 
emission prediction model based on the model-agnostic 
meta-learning (MAML) algorithm. Our research 
contributes to the design, planning, and management of 
expressways in mountainous plateau areas as follows. 
1) Due to the steep terrain in the mountainous plateau 
areas, vehicles show notable differences in engine load 
and operating conditions between the upslope and 
downslope directions, and the influencing characteristics 
of CO2 emissions vary accordingly. We quantify the 
influence of various factors on CO2 emissions from 
LDVs when driving upslope and downslope using the 
built-in feature importance and partial dependence 
of random forest (RF), and analyze the variation law 
of CO2 emissions with different influencing factors;  
2) The road alignment determines the operating state 
of vehicles. By analyzing the distribution patterns and 
variation trends of vehicle CO2 emissions under different 
horizontal and vertical alignment conditions, data 
support can be provided for the low-carbon alignment 
design of expressways in mountainous plateau areas; 
3) We explore the variation law of CO2 emissions 
from LDVs in the same Vehicle-specific power (VSP) 
interval with the increase of altitude, and analyze the 
characteristics of vehicle CO2 emissions in response to 
the changes in operating environment; 4) We improve 
the generalization of the CO2 emission prediction model 
in unknown altitude scenarios and realize effective 
predictions of CO2 emissions for LDVs on mountainous 
plateau expressways by adopting a few-shot learning 
strategy and constructing a regression model based 
on the MAML algorithm. This study contributes to 
addressing knowledge gaps in CO2 emissions from 
LDVs traveling on expressways in mountainous plateau 
areas, specifically considering upslope and downslope 
driving, road horizontal alignment, and altitude. 
The study findings can be applied to the formulation 
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of CO2 emission management policies for highway 
transportation and the optimization of low-carbon road 
engineering in mountainous plateau areas, providing 
fundamental support for the development of low-carbon 
transportation on expressways in mountainous plateau 
areas.

Materials and Methods

Test Instrumentation

Real-vehicle tests were conducted using a portable 
emission measurement system (PEMS). The test 
instrument was a SEMTECH Fuel Economy Meter, 
which included components such as a flow tube, gas 
analyzer, global positioning system (GPS), power 
supply, and weather probe (Fig. 1). The flow tube 
primarily employed a Pitot tube based on Bernoulli’s 
principle to calculate the mass flow rate by measuring 
the pressure difference in the gas flow. The gas analyzer 
utilized nondispersive infrared technology to analyze 
dried and filtered samples and measure CO and CO2 
concentrations in exhaust gas.

Data obtained from the test consisted of the exhaust 
emission rate, CO2 concentration, exhaust temperature, 
GPS three-dimensional coordinates, instantaneous 
speed, acceleration, atmospheric pressure, ambient 
temperature, and relative humidity. The test cycle lasted 
for 1 s.

Data Processing

Alignment Conditions

(1) Angle change rate (ACR)
ACR represents the change in the deflection angle (°) 

per unit length (m) traveled by the vehicle within each 
second. The change in the unit deflection angle was 
calculated based on the difference in the azimuth angles 
during adjacent periods:
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where ACRi is the deflection angle change rate at the i-th 
second (°/m), azii~i+1 is the azimuth angle from the i-th 
second to the (i + 1)-th second (°), and vi is the vehicle 
speed at the i-th second (m/s).
(2) Road grade (t)

In this study, t was calculated based on the mileage 
traveled by the vehicle per second and the altitude 
difference:
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where t is the vertical rise/slope length and alti is the 
altitude at the i-th second (m).

Operating States

VSP represents the instantaneous output power of 
a vehicle when moving one unit of mass, which was 
computed based on Equations (3)-(6) [19]: 
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Fig. 1. Test instrumentation.
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 g( ) 0.93A H h W= − ⋅ ⋅
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where m is vehicle mass (t), s is time (s), a is vehicle 
acceleration (m/s2), εi is the mass factor, g is the 
acceleration of gravity (m/s2), CR is the coefficient of 
rolling resistance, CD is the drag coefficient, A is the 
frontal area of the vehicle (m2), ρa is the ambient air 
density (kg/m3), vW is the headwind into the vehicle 
(m/s), H is vehicle height (m), hg is ground clearance 
(m), W is vehicle width (m), P is standard atmospheric 
pressure (kPa), P1 is atmospheric pressure (kPa), and T1  
is ambient temperature (K).

Based on the total mass of the test vehicle, its external 
dimensions, and the relevant technical parameters, a 
formula for the VSP of the test vehicle was derived:

   
(7)

CO2 Emissions Rate

Using data on the exhaust emission rate, temperature, 
CO2 wet concentration, and atmospheric pressure,  
the CO2 emission rate was calculated as follows [20]:
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where φCO2wct is the CO2 wet concentration (%), φCO2dry 
is the CO2 dry concentration (%), kW is the dry–wet 
correction factor, λ is the H molar ratio, Ha is the 
absolute humidity of the intake air (H2O/dry air) (g/kg),  
RH is the relative humidity (%), and Ps is the saturation 
vapor pressure (kPa). We then obtained the following:

  (13)

  (14)

where ERCO2
 is the CO2 emission rate (g/s), EER is the 

exhaust emission rate (L/s), ρCO2
 is the CO2 density (g/L), 

P2 is the exhaust pressure (Pa), M is the molar mass 
(mol), R is the gas constant (8,314 Pa/[mol·K]), and T2 is 
the exhaust temperature (K). 

Test Route

A 288-km expressway section in the mountainous 
areas of the western Sichuan Plateau was selected as the 
real-vehicle emission test route, including the Ande‒Zhe 
Gu Mount section of the Chengdu‒Changdu Expressway 
G4217, and the Shuanjinsi‒Rangkou and Aba‒Jiuzhi 
sections of the Jiuzhi‒Barkam Expressway G0615  
(Fig. 2).

Fig. 2. Test route and distribution of a) altitude, b) angle change rate, and c) grade. ACR: angle change rate; t: road grade. 
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MAE is the mean value of the absolute errors 
between the predicted and actual values, calculated as 
follows:

 1
MAE ˆ1 N

i i
i

Y Y
N =

= ∑ −
 (17)

Results and Discussion

Factors Influencing CO2 Emissions

The main factors influencing the CO2 emissions 
of vehicles on expressways in mountainous plateau 
areas included the VSP, speed, acceleration, altitude, 
atmospheric pressure, air density, temperature, humidity, 
grade, and ACR. Among these factors, differences 
in the altitude and ACR may have led to variations in 
environmental conditions and vehicle operating states, 
thereby further affecting vehicular CO2 emissions.  
This study analyzed the characteristics influencing each 
factor for the vehicle CO2 emission rate from direct and 
indirect perspectives.

Direct Factors

When the vehicle was driven in the downslope 
direction, the slope component of the gravitational force 
performed positive work, and there were more idle 
driving conditions than when the vehicle was driven 
in the upslope direction. The influence of the various 
factors on CO2 emissions differed. Therefore, based 
on vehicle CO2 emission data in the Ande‒Jiuzhi and 
Jiuzhi‒Ande directions, RF models were constructed to 
analyze the influence of various factors when the vehicle 
was driving in the upslope and downslope directions.

The adopted RF algorithm comprised decision 
trees and a bagging algorithm, based on various 
independent tree-shaped classifiers [21]. Each decision 
tree was trained using randomly selected subsamples 
and features to ensure high model diversity. The main 
model parameters included the number of estimators, 
maximum depth, minimum sample split, minimum 
sample leaf, and maximum features of the decision trees 
(Fig. 3).
(1) Feature importance analysis

The built-in feature importance in an RF is a measure 
for evaluating the degree of influence of the features  

Fig. 2a) shows that the altitude of the Ande‒Zhe 
Gu Mount section increases from 760 to 3,240 m, that 
of the Shuanjinsi‒Rangkog section increases from 
3,350 to 3,550 m, and that of the Aba‒Jiuzhi section 
increases from 3,350 to 3,700 m. Fig. 2b) indicates 
that the ACR distribution exhibited a decreasing trend, 
with the 80th percentile at 0.103 °/m. Fig. 2c) shows 
that the interquartile range of the grade in the upslope 
direction from Ande to Jiuzhi was (0.37%, 1.97%), and 
the interquartile range of the grade in the downslope 
direction from Jiuzhi to Ande was (-1.89%, 0%).  
The real-vehicle test used sections of open roads as  
the research object and excluded tunnel sections.  
A total of 9,381 datasets were collected, of which  
4,513 sets were in the upslope direction from Ande to Jiuzhi  
and 4,868 sets were in the downslope direction from 
Jiuzhi to Ande.

Test Vehicles

A light gasoline pick-up truck was used in the real-
vehicle emission tests. During the test period, all fuel 
for the vehicle was sourced from the same gas station. 
Moreover, the same local driver operated identical CO2 
emission testing instruments to complete the tests from 
March 10-12, 2024. Detailed parameters of the test 
vehicle are provided in Table 1.

Model Evaluation Indicators

The accuracy of the CO2 emissions prediction  
model was evaluated using the mean squared error 
(MSE), root mean squared error (RMSE), and mean 
absolute error (MAE). MSE is the mean value of  
the squares of the differences between the predicted  
and actual values:
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where N is the sample size, Yi is the actual value, and Ŷi  
is the predicted value. RMSE is the square root of the 
MSE, calculated as follows:
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Table 1. Vehicle parameters.

Vehicle type Overall dimensions 
(mm) Age (year) Wheelbase 

(mm) Front track (mm) Rear track 
(mm)

Great Wall-
CC1030UA21A 5,635 × 1,880 × 1,855 1/2023 y 3,410 1,570 1,570

Curb weight (kg) Gross weight (kg) Displacement (mL) Fuel type Emission standard Power (kw)

2,035 2,450 1,967 (2.0 T) gasoline China VI-B 145
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on the prediction results [22]. This study utilized built-in 
feature importance to quantify the degree of influence 
of each influencing factor on the target feature CO2 
emission rate (Fig. 4). A comparative analysis was then 
conducted on the differences in feature importance for 
each influencing factor in the upslope and downslope 
directions.

Fig. 4 shows that when the vehicle was driving in the 
upslope and downslope directions, the top three factors 
ranked in descending order of feature importance were 
VSP > air density > atmospheric pressure. The feature 
importance of VSP in the upslope and downslope 
directions was 0.25 and 0.22, respectively, and those of 
air density and atmospheric pressure were approximately 
60% of that of the VSP. Using the standard deviation 
method, importance was divided into high-, medium-, 
and low-importance groups according to the ranges  
(0, X̅ -S), (X̅ -S, X̅ +S), and (X̅ +S,1), respectively  
(Table 2). Among them, VSP was the only factor in the 
high-importance group, which was the most important 
factor in determining the CO2 emission rate of the LDV 
in mountainous plateau areas.

When the vehicle was driving in the downslope 
direction, the feature importance of the grade was 9% 
lower than that when the vehicle was driving in the 
upslope direction. The influence of the grade on the CO2 
emission rate not only involved changes in the operating 
state of the engine, but was also reflected in vehicle speed 
variations at different grades. When driving downslope, 
the vehicle operating speed could be more easily 
maintained at the expected level, the speed distribution 
was more concentrated, and moving downslope was 
advantageous for the engine load. Therefore, the degree 
of influence of the grade was lower in the downslope 
direction than in the upslope direction.

Additionally, when the vehicle was driving in the 
upslope direction, the factor exhibiting the largest 
change rate in feature importance compared with 
the downslope direction was speed, which decreased 
by approximately 43%. This was primarily related 
to differences in the vehicle operating states in the 
upslope and downslope directions (Fig. 5). The speed 
distribution of the vehicles in the upslope direction was 
more dispersed than that in the downslope direction. 

Fig. 3. Visualization of top tree in random forest (RF). VSP: vehicle-specific power.

Fig. 4. Feature importance of downslope and upslope. VSP: vehicle-specific power.
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When the vehicle was driving in the upslope direction, 
the percentage of speeds > 80 km/h decreased by 11% 
compared to that when the vehicle was driving in the 
downslope direction, resulting in a lower proportion 
of high-speed operating conditions; consequently, the 
influence of speed on the CO2 emission rate decreased.
(2) Partial dependence analysis

Partial dependence characterizes the overall 
influence of each factor on the prediction results of the 
model when the values of the other features are averaged. 
By fixing the other features, the predicted values of all 
samples were computed under a series of values for a 
certain feature. The average of the predicted values was 
used to obtain the corresponding partial dependence 
values [23]. Fig. 6 shows the partial dependence curves 
for each influencing factor.

Fig. 6 shows that the partial dependence values of 
each factor when the vehicle was traveling in the upslope 
direction were greater than those when the vehicle 
was driving in the downslope direction. The partial 
dependence curves for acceleration, air density, relative 
humidity, atmospheric pressure, grade, and VSP in the 
upslope and downslope directions were similar. Among 
them, the partial dependence curve for acceleration 
displayed an “S shape”. The CO2 emission rates of the 
vehicle under different operating conditions increased 
from deceleration < uniform speed < acceleration, with 
a maximum difference of 0.9 g/s in the CO2 emission 
rate under acceleration and deceleration conditions. 
Additionally, the partial dependence curve for the 
relative humidity exhibited a stair-step increasing trend. 
A high-humidity environment is likely to affect the 
working efficiency of an engine, with critical humidity 

Group Low-Importance Medium-Importance High-Importance

Downslope t a 1 1, , , , ,ρ P RH T v a  

 

a 1, , , ,ρ P RH a t  

VSP

Upslope 1,T v

a 1 1, , , , ,ρ P RH T v a  

 

a 1, , , ,ρ P RH a t  VSP

Table 2. Feature importance grouping

Fig. 5. Speed and acceleration distribution.

Fig. 6. Partial dependency curves. VSP: vehicle-specific power; t: road grade.
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levels for the main steps in the upslope and downslope 
directions of 40 and 60%, respectively. Partial 
dependence curves for the grade and VSP showed non-
linear increasing trends, with maximum differences in 
partial dependence values for the upslope direction of 
0.33 and 1.43 g/s, respectively, and 0.34 and 1.28 g/s, 
respectively, for the downslope direction.

There was a significant difference in the partial 
dependence curves of temperature and speed when 
the vehicle was driving in the upslope and downslope 
directions. When driving in the downslope direction, the 
variation in the amplitude of the CO2 emission rate with 
increasing temperature and speed was greater than that 
when the vehicle was driving in the upslope direction. 
The CO2 emission rate increased by 0.5 g/s when  
the temperature in the downslope direction increased 
from 4.8 to 15.7°C. However, the maximum difference 
in the CO2 emission rate was only 0.1 g/s when the 
temperature in the upslope direction increased from 
1.3 to 11.7°C. Additionally, the CO2 emission rate was 
the lowest when the minimum speed in the downslope 
direction was 77 km/h, similar to the economical vehicle 
speed. The maximum difference in the CO2 emission 
rate was 0.4 g/s. The CO2 emission rate in the upslope 
direction showed a single-peak curve with an increase 

in speed, reaching its peak at 92 km/h; however, the 
maximum difference in the CO2 emission rate was only 
0.1 g/s.

Indirect Factors

(1) Variation in CO2 emissions with ACR
The per-second ACR reflects the vehicle operating 

states under different horizontal alignment conditions 
and is related to the vehicle driving speed and 
deflection angles of horizontal curves. Grade intervals 
were categorized based on t < -1%, -1% ≤ t < 1%,  
and t ≥ 1%. Similarly, ACR intervals were defined as 
ACR < 0.0143 °/m, 0.0143 °/m ≤ ACR < 0.0286 °/m, 
0.0286 °/m ≤ ACR < 0.0409 °/m, 0.0409 °/m ≤ ACR  
< 0.0716 °/m, and ACR ≥ 0.0716 °/m. This analysis 
focused on the distribution patterns of vehicle CO2 
emission rates within different grades and ACR intervals, 
as well as the variations in their mean distributions with 
the ACR (Figs. 7 and 8).

Fig. 7 shows that the distribution patterns of 
the CO2 emission rates at different grades and ACR 
intervals exhibited a single-peak shape, with their  
25-75% quantile intervals primarily located on the right 
side of the peak. The distribution pattern was similar 

Fig. 7. Distribution pattern of CO2 emission rates in different grade and angle change rate intervals. P*: statistical significance (p-value); 
IQR: interquartile range; α: shape parameter; β: inverse scale parameter; t: road grade; ACR: angle change rate.
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to a Gamma distribution, with all p-values for the 
distribution fitting > 0.01; notably, 67% of the intervals 
had a p-value > 0.05. The probability density function is 
given as follows: 

  (18)

where α is the shape parameter, β is the inverse scale 
parameter, and Г(α) is the Gamma function. In the same 
ACR interval, when t ≥ 1%, the α and β values of the 
CO2 emission rate distribution were larger than those 
when t < -1%. This resulted in a more symmetrical 
distribution pattern, with a shorter tail, a rightward shift 
in the distribution centre, and an increased distribution 
concentration.

Fig. 8 shows that the mean CO2 emission rate 
distribution within the same ACR interval increased 
with an increase in grade intervals. When ACR > 
0.0716 °/m, the difference in the mean CO2 emission rate 
distribution between t ≥ 1% and t < -1% was the largest, 
with a maximum difference of 1.5 g/s.

Furthermore, variation trends in the mean CO2 
emission rate distribution within the different grade 
interval differed with increasing ACR intervals. When 
t < -1%, the mean vehicle CO2 emission rate distribution 
exhibited an overall decreasing trend with increasing 
ACR, with a range of 0.28 g/s. When -1% ≤ t < 1%, the 
mean vehicle CO2 emission rate distribution fluctuated 
slightly as ACR increased, with a range of 0.07 g/s. 
When t ≥ 1%, the mean vehicle CO2 emission rate 
distribution showed an overall increasing trend with 
increasing ACR, with a range of 0.17 g/s. This may 
have been because the importance of acceleration in 
the upslope sections was higher than that of speed.  
The initial speed of the vehicle entering the curved 
unit was relatively low, and the acceleration gradient 

upon exiting the curved unit increased as the radius 
decreased, leading to a corresponding increase in the 
CO2 emission rates. In contrast, in downslope sections, 
the importance of speed slightly outweighed that of 
acceleration. The initial speed of the vehicle entering the 
curve unit was relatively high; the smaller the radius, 
the lower the vehicle operating speed, such that it was 
closer to the economical vehicle speed, resulting in  
a decrease in the CO2 emission rates.
(2) Variation in CO2 emissions with altitude

There were differences in the air density, 
atmospheric pressure, ambient temperature, and relative 
humidity across different altitude ranges, all of which 
had significant effects on vehicular CO2 emissions. Air 
density and atmospheric pressure decreased as altitude 
increased, and the air resistance acting on the vehicle 
diminished; however, the engine air:fuel ratio decreased, 
resulting in reduced vehicle power performance. 
Additionally, temperature and humidity fluctuations 
may have influenced the heat released during fuel 
combustion. These factors collectively contributed to 
variations in the vehicle CO2 emissions.

VSP intervals were classified as follows: VSP < 
0 kW/t, 0 kW/t ≤ VSP < 6 kW/t, 6 kW/t ≤ VSP < 12 
kW/t, 12 kW/t ≤ VSP < 18 kW/t, and VSP ≥ 18 kW/t. 
This analysis aimed to examine the trends in the CO2 
emission rates for vehicles within the same VSP interval 
on the upslope and downslope sections with changes in 
altitude (Fig. 9).

Fig. 9 shows that within the same VSP interval, the 
CO2 emission rate decreased as the altitude increased, 
and the reduction amplitude of the CO2 emission rate 
became more pronounced with an increasing VSP. 
When VSP ≥ 18 kW/t and the altitude increased from 
< 1,000 to > 3,000 m, the CO2 emission rates on the 
upslope and downslope sections decreased by 32 and 
50%, respectively.

Real-vehicle tests conducted in the altitude 
simulation chamber indicated that when the temperature 
and humidity were set at 25ºC and 40%, respectively, 
during the high-speed operation phase of the WLTC 
for a naturally aspirated test vehicle, the CO2 emission 
factor decreased by 13.5% when the altitude increased 
from 0 to 2,500 m [24]. This reduction was mainly due 
to decreased air resistance; however, the reduction in the 
air:fuel ratio was more likely to lead to an increase in 
the CO2 emissions. In this RDE test on the expressway 
in mountainous plateau areas, the ambient temperature 
and humidity of the test section exhibited significant 
changes with increased altitude (Fig. 10).

Fig. 10 shows that the overall mean ambient 
temperature and relative humidity exhibited decreasing 
trends with an increase in altitude. The temperature and 
relative humidity distribution intervals on the upslope 
and downslope sections were essentially the same, with 
a temperature distribution interval of (4°C, 16°C) and 
a humidity distribution interval of (20%, 80%). Within 
the same VSP interval, ambient temperature and relative 
humidity were among the primary factors influencing 

Fig. 8. Distribution mean of CO2 emission rates in different 
grade and angle change rate intervals. t: road grade; ACR: angle 
change rate.
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the CO2 emissions of vehicles on expressways in 
mountainous plateau areas. Furthermore, within the 
temperature and humidity distribution ranges of the 
test section, a lower ambient temperature and humidity 
corresponded to lower vehicle CO2 emission rates.

Comparative Analysis of CO2 Emission Prediction 
Models Based on MAML and RF Algorithms

Traditional learning methods are restricted by the 
scarcity of data in the analysis of few-shot problems 
and have difficulty in effectively extracting and 
representing data features. Consequently, they perform 
poorly in performance dimensions such as accuracy, 
generalization ability, and stability of the models. 
The MAML algorithm is a meta-learning approach 
that rapidly learns to adapt model parameters through 
gradient descent. It uses prior knowledge and experience 
to guide the learning of new tasks, thereby endowing 
the network with the ability to learn [25]. This method 
does not introduce learning parameters specific to meta-
learning and is compatible with any model trained 
via gradient descent, making it applicable to few-shot 
learning problems. The mathematical expression for  
a single task in the algorithm is expressed as follows:

T = T = {{LL 1 1 1 1{ ( , , , , ), ( ), ( | , ), }iH i iH q q H+= …x a x a x x x aT L
(19)

where T is the task, L is the loss function, x is the 
observations, a is the output, q(x1) is the distribution 
over initial observations, q(xi+1|xi,ai) is the transition 
distribution, and H is the episode length. A schematic of 
the algorithm is presented in Fig. 11a) [26]. 

Fig. 11a) shows that when adapting to a new task 
Ti, the model’s parameters θ become θi

', calculated as 
follows:

 ( )i fθ θθ θ α∇′ = − TL  (20)

where ∇L is the gradient descent update, α is the step 
size, and fθ is the parametrized function. The objective 
of the MAML algorithm is to determine a set of 
parameters for θ that have representative capabilities for 
multiple tasks. The update of θ comprises two stages: 
the update and optimization for a specific task and 
optimization of the MAML model. 

The MAML algorithm was employed for model 
training and evaluation to construct a CO2 emissions 
prediction model based on a neural network model 
architecture composed of multiple linear layers and a 
ReLU activation function. Fig. 11b) illustrates the model 
framework. The main processes included meta-training, 
in which the MSE loss function, nn.MSELoss, was 
used to measure the difference between the predicted 
and actual values. The torch.optim.Adam optimizer 
was selected to adaptively adjust the learning rate of 
the parameters. The model was optimized based on the 
learning rate (alpha) and weight decay (weightdecay), 
as well as hyperparameter optimization, whereby the 
hp.loguniform function in the Hyperopt library was 
used to define the hyperparameter search space. The 
hyperparameters of the model were optimized by 
processing the data from multiple tasks and calculating 
the MSE. A new task testing was implemented when the 
trained model was utilized to obtain the predicted values 
on new tasks, and the evaluation metrics (i.e., MSE, 
MAE, and RMSE) of the model were calculated.

The RF and MAML CO2 emission prediction models 
were constructed using 8,431 sets of real-vehicle test data 
within the altitude range from 600-3,550 m as the model 
training and validation sets. Fig. 12 shows the predicted 
and actual values of the models in the validation set. 
The results demonstrated that the correlation between 
the predicted and actual values of the MAML model on 
the validation set was superior to that of the RF model, 
with R2 values of 0.72 and 0.69, respectively.

We used 950 sets of real-vehicle test data within an 
altitude range of 3,550-3,730 m as the test set for the 
model in the new scenario. Compared to the training 

Fig. 9. When the road grade was a) ≥ 0% or b) < 0%, the mean distribution of CO2 emission rates in different vehicle-specific power 
intervals varied with altitude. VSP: vehicle-specific power.

LLTT
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task, the new task operated at a higher altitude, resulting 
in significant differences in the atmospheric pressure 
and air density distributions (Fig. 13). Fig. 14 presents 
the evaluation metrics of the model on the validation 
and test sets.

Although the pressure and air density distributions 
of the new task contained data that were not observed 
or were only minimally covered during training, the 

predicted total CO2 emissions on the test set from 
the RF and MAML models were 2,333 and 2,327 g, 
respectively, both of which reached 99% of the actual 
total CO2 emissions. The constructed CO2 emission 
prediction model demonstrated high precision and 
could be utilized for the calculation and management of 
the total CO2 emissions of the LDV on expressways in 
mountainous plateau areas.

Fig. 10. Variation curve of ambient temperature and relative humidity with altitude from a) t ≥ 0% and b) t < 0%. VSP: vehicle-specific 
power; t: road grade.

Fig. 11. Structure of the model-agnostic meta-learning model. θ: the model’s parameters; ∇L: gradient descent updates; MAML: model-
agnostic meta-learning.
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Furthermore, the MSE, MAE, and RMSE evaluation 
metrics of the MAML model on the validation and test 
sets outperformed those of the RF model. Specifically, 
the MSE, MAE, and RMSE for the validation set 
were reduced by 14, 6, and 7%, respectively; whereas, 

those for the test set were reduced by 6, 4, and 3%, 
respectively. The RF model was more limited to the 
training and prediction of the current task, whereas the 
generalization ability of the MAML model was superior, 
resulting in a higher adaptability to unknown tasks.

Fig. 12. Comparison between predictions and true values. RF: random forest; MAML: model-agnostic meta-learning.

Fig. 13. Comparison of a) pressure and b) air density between training and new tasks.

Fig. 14. Evaluation metrics of random forest (RF) and model-agnostic meta-learning (MAML) models on validation (Val) and test sets. 
MSE: mean squared error; RMSE: root mean squared error; MAE: mean absolute error.
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Conclusions

This study conducted CO2 emission tests of 
LDV on expressways in the western Sichuan Plateau 
mountainous areas using a PEMS, leading to the 
following conclusions.

First, the results of the feature importance analysis 
based on the RF model exhibited significant differences 
between the upslope and downslope directions. Speed 
had the greatest importance change, decreasing 
by approximately 43% from the downslope to the 
upslope directions. The feature importance of VSP 
in the upslope and downslope directions was 0.25 and 
0.22, respectively. VSP was the most critical factor 
determining the CO2 emission rate compared with 
the environmental and road-related factors in the 
mountainous plateau areas. Second, the variations 
in the mean CO2 emission rate distribution within 
the different grade interval differed with increasing 
ACR intervals. In the intervals of t < -1%, -1% ≤ t 
< 1%, and t ≥ 1%, the trends were decreasing, stable,  
and increasing, respectively, with ranges of 0.28, 0.07, 
and 0.17 g/s, respectively. This indicates that the steeper 
the grade, the more notable the influence of ACR  
on the CO2 emission rate. Third, the mean CO2 
emission rate within the same VSP interval decreased 
as the altitude increased, which was associated  
with the temperature and humidity distribution 
characteristics along the test section. The amplitude 
of this decrease became more pronounced with an 
increasing VSP. Finally, the MAML model demonstrated 
a significantly enhanced generalization capability for 
unknown tasks compared to the RF model, as evidenced 
by its superior performance in predicting CO2 emission 
rates, with MSE, MAE, and RMSE values decreasing by 
6, 4, and 3%, respectively. The model can be effectively 
applied to the accounting and assessment of CO2 
emissions during both highway design and operational 
phases.

In terms of research prospects, this study was limited 
to an examination of the CO2 emission characteristics 
of LDVs. In the future, tests and analyses of other 
types of vehicles can be supplemented to enrich the 
accounting methods and management strategies for 
the CO2 emissions of vehicles on mountainous plateau 
expressways. 
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