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Abstract

Variations in land use and land cover (LULC) patterns are the principal driving factors affecting 
the ecosystem service value (ESV). Quantitatively exploring ESV variations is crucial for achieving 
sustainable development in typical regions. The uncontrolled area in the middle and lower reaches of 
the Yellow River (UAMLYR) is highly vulnerable to precipitation impacts, subsequently influencing 
the ESV of this area, in view of the absence of reservoirs for water interception and storage. Based 
on the LULC data from 1990, 2000, 2010, and 2020, the variations in LULC were analyzed using  
a LULC transition matrix. The driving factors of ESV spatial differentiation and their response to LULC 
variations were studied via the improved equivalent factor method, geographical detector, and Pearson 
correlation analysis. The patch-generating land use simulation (PLUS) model was employed to emulate 
the spatiotemporal evolution of LULC and ESV under four scenarios. The results indicate that farmland 
is a major LULC type in the research field, serving as the primary source for transitions to other 
LULC, with construction land being the type with the largest area of inflow. ESV in the region showed  
a downward trend from 1990 to 2020, and under four scenarios in 2030, the ESV was higher than that 
in 2020. Ecological conservation scenarios increased total ESV dramatically, while town development 
scenarios were more beneficial to the urbanization process. Soil erosion has the greatest impact on ESV, 
and human activities further enhance the impact on ESV. These research findings contribute to the 
construction of a new pattern of territorial spatial development and protection in the region and provide 
relevant references and theoretical foundations for ecosystem research in other similar regions around 
the world.
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Introduction

Ecosystem services (ES) mean tangible products and 
intangible services that humans obtain from ecosystems, 
which are designed to meet human survival, health, and 
well-being needs [1-3]. These services can be further 
divided into four types as per functions: cultural 
services (CS), supporting services (SS), regulating 
services (RS), and provisioning services (PS), each of 
which meets human living needs in different ways [4]. 
However, over the past few decades, human activities 
have significantly altered ecosystems, leading to nearly 
two-thirds of global natural resources being at risk 
of depletion [5-7]. LULC variations, as a result of the 
interaction between the natural environment and the 
temporal and spatial variations of human activities, 
play a crucial role in ES [8, 9]. As global urbanization 
accelerates and human activity frequency increases, 
LULC variations have become more pronounced, 
capable of significantly impacting the structure and 
function of ecosystems at the same time, thereby 
affecting ES provision [10]. The UAMLYR is not 
only a dense area of important ecological barriers in 
China but also a composite region of major mineral  
and grain production areas. Additionally, this region is 
a typical area where economic and social development 
and ecological environmental protection issues stand 
out prominently. Due to the lack of effective water 
conservancy control facilities, the region has insufficient 
water resource regulation capabilities, leading to  
a series of significant pressures, including imbalance in 
water-sediment relationships, sediment accumulation 
downstream, severe soil erosion, shortage of water and 
soil resources, and degradation of ecosystems. These 
directly affect LULC and constrain the development of 
ecosystem services. Therefore, strengthening studies 
about ESV in UAMLYR is a necessary requirement 
for propelling ecological protection and a high-quality 
development strategy in the Yellow River Basin, and  
a practical need to address prominent ecological issues 
and improve people’s living environments.

ESV is gradually becoming a key indicator for 
evaluating the effectiveness of ecological restoration and 
sustainable management. Globally, the interdisciplinary 
integration of ecology, environmental science, 
and economics has sparked widespread interest in 
research on ESV [11, 12]. In 1997, Costanza et al. [13] 
developed a global ESV equivalent factor table, laying 
a solid foundation for ESV assessment. Founded 
upon Costanza’s research, Xie et al. [14] structured 
a unit area ESV equivalent factor table for China’s 
terrestrial ecosystems, which has been widely applied 
in domestic studies due to its low data requirements, 
ease of operation, easy comparability of results, and 
comprehensive evaluation. Research on ESV focuses 
on theoretical foundations [5], driving forces [15-
17], spatiotemporal variations [18], and influencing 
factors [19]; the research scale covers multiple levels 
including national, regional, provincial, municipal, and 

county [20-24]; the research scope mainly concentrates 
on areas with high ESV including lakes [25], forests 
[26], wetlands [27], and watersheds [28]; whereas the 
research methods primarily include statistical analysis 
[29] and spatial analysis [30]. As research deepens, 
scholars are no longer satisfied with merely assessing 
the spatiotemporal evolution of ESV but place greater 
emphasis on using advanced models like Geographically 
Weighted Regression and Geographical Detectors to 
probe into factors influencing ESV spatial differentiation 
[31, 32], and to investigate how natural conditions 
[33], climate change [34], and human activities [35] 
jointly impact ESV evolution. When analyzing driving 
factors, although many studies have adopted different 
methods and drawn different conclusions at various 
spatiotemporal scales, the majority of views agree that 
comprehensive influences of natural and anthropogenic 
factors and their interactions significantly affect ESV 
spatiotemporal distribution [36-38].

Variations in LULC are both causes and 
consequences of environmental change, a process 
that is complex and multifaceted, spanning multiple 
dimensions of space and time, and influenced by 
numerous natural and social factors [39, 40]. To simulate 
LULC variations, it is necessary not only to deeply 
explore and refine the complex patterns of evolution but 
also to analyze the interactions of these multiple driving 
factors across spatial and temporal dimensions. Given 
its complexity, constructing an efficient and reasonable 
scenario simulation model has become a critical 
approach to studying LULC variations. Currently, 
widely used models include the CLUE-S model, suitable 
for medium and small scales [41], the CA-Markov model, 
which improves spatial simulation accuracy through 
neighborhood analysis [42], and the FLUS model that 
enhances simulation precision using neural network 
algorithms [40]. Compared with the aforementioned 
models, the PLUS model achieves high-precision and 
high-efficiency simulations of the evolution of various 
LULC types under large-scale and multiple scenarios 
by integrating types of random patch seed generation 
mechanisms and LULC expansion analysis strategies. 
This model has been successfully applied in LULC 
simulation studies under various spatial and temporal 
contexts. At present, existing multiple-scenario ESV 
simulation measurements are primarily based on current 
development trends, analyzing different scenarios 
by setting different emphases. However, there is still 
insufficient attention to the spatial differences in regional 
ESV caused by drastic variations in LULC types driven 
by national strategies.

The innovation of this study is to select the 
UAMLYR, a special area with a fragile ecosystem 
and frequent human activities, which effectively fills 
the gap of existing research in this specific area. 
Through multiple scenarios simulation, the impact 
of LULC change on ESV is systematically analyzed, 
which surpasses the limitations of traditional single 
scenario analysis. In addition, according to the regional 



3Study on the Impact of Land Use Variations...

characteristics, the key influencing factor of soil erosion 
was included in the ESV assessment system. Due to the 
special geomorphic characteristics and social conditions 
of the UAMLYR, the problem of soil erosion is 
particularly prominent, and this factor is often ignored 
in the previous research on the Yellow River Basin. The 
innovation of this study is helpful to more accurately 
evaluate the changes of ESV in the region, and provide 
a scientific basis for regional ecosystem management. 
The flowchart of this research is shown in Fig. 1. Based 
on four periods of LULC classification data from 1990, 
2000, 2010, and 2020 in the UAMLYR, this study uses  
a LULC transition matrix to investigate transitions 
among different LULC types. The PLUS model is 
employed to emulate LULC patterns under disparate 
scenarios. The equivalent factor method, geographical 
detector, and Pearson correlation analysis are utilized 
to explore the spatiotemporal evolution, spatial 
differentiation, and correlation with LULC of the ESV 
in the UAMLYR. 

The objectives of this study are: (1) to evaluate 
dynamic variations in LULC and ESV in UAMLYR 
from 1990 to 2020; (2) to simulate the impacts of LULC 
on ESV under different scenarios; (3) to survey driving 
factors influencing ESV.

Materials and Methods

Study Area and Data Sources

Study Area

UAMLYR (34°05′~35°21′N, 111°10′~113°43′E) 
is defined as an area without reservoir projects to 
intercept floods in terms of flood control. Specifically, 
it covers the region downstream of the Xiaolangdi 
Dam, below the Guxian Reservoir Dam on the Luo 
River, below the Luhun Reservoir Dam on the Yi River, 
plus the confluence zones of the Qin River and Sishui 
River, totaling 1.8×104 km2. After the operation of the 
Heikoucun Reservoir at the estuary of the Qin River, the 
total area has reached 1.44×104 km2 (Fig. 2). This region 
constitutes a complete natural geographic unit that 
includes mountains, hills, and plains, with distinctive 
regional characteristics. It is also a crucial core area for 
grain production and an important energy and chemical 
industry base in the Yellow River Basin, featuring 
comparatively advanced industrial and agricultural 
sectors and a dense population.

Data Source and Processing

LULC data for 1990, 2000, 2010, and 2020 
adopted herein were acquired from the Resource and 
Environmental Science Data Center of the Chinese 

Fig. 1. Flow chart of the work progress.
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Academy of Sciences, with a spatial resolution  
of 30 m. Following their LULC classification standards, 
LULC types for each year were classified into six  
major classes: farmland, forest land, grassland, water 
body, construction land, and unused land. Sown 
areas, yields, and selling prices of major food crops 
were sourced from the Henan Statistical Yearbook,  
the Henan Provincial Bureau of Statistics, and the 
National Agricultural Products Production Materials 
Compilation Data. Other specific data sources refer  
to Table 1.

Research Methods

LULC Transition Matrix

LULC transition matrix can calculate the quantity 
and direction of transitions between LULC types, and 
can describe the direction and extent of variations 
in various land types over a period of time [43]. The 
expression is:
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where S represents LULC area; i and j denote LULC 
types at initial and final periods of the research, 
respectively; n denotes the number of LULC types.

Assessment of ESV

In this study, the value of 1/7 of grain yield per 
unit area is defined as the unit value of agricultural 
ecosystem services based on the improved equivalent 
factor method proposed by Xie et al. [44]. Grain yield 
per unit area in UAMLYR from 1990 to 2020 was 
calculated to be 5646.12 kg/hm² as per the Henan 
Statistical Yearbook, the Henan Provincial Bureau of 
Statistics, and historical statistical data from various 
cities and counties. The grain price was calculated to be 
1.51 yuan/kg based on the average prices of rice, corn, 
and wheat from 1990 to 2020 as the actual grain prices. 
Assuming the value coefficient of construction land is 0 
[45], the unit area ESV coefficients for the research field 
were established (Table 2). The calculation formula is:
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where Ea stands for economic value of ES per unit area 
(yuan/hm2); i represents grain crop type; mi denotes 
average price of the i-th grain crop (yuan/kg); pi means 

Fig. 2. Study area.
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PLUS Model

PLUS model is a novel LULC simulation model 
founded upon raster grids that generates patches  
[46]. Compared to other LULC simulation models,  

the yield per unit area of the i-th grain crop (kg/hm2);  
qi represents planting area of the i-th grain crop (hm2); 
M is total planting area of grain crops (hm2).

Table 2. ESV coefficients per unit area for the UAMLYR /(yuan/hm2). 

Table 1. Land expansion and ESV spatial differentiation driving factors.

Category Data Source

Natural Environmental

DEM
RESDC

(http://www.resdc.cn/)Soil erosion intensity

Soil type

Slope Extracted from DEM Data

Annual average temperature
National Earth System Science Data Center

(https://www.geodata.cn/)Annual average precipitation

NDVI

Socioeconomic
Population density WorldPop

(https://www.worldpop.org/)

GDP RESDC
 (http://www.resdc.cn/)

Transportation 
Accessibility

Distance to the city

OpenStreetMap
(https://www.openstreet map.org/)

Distance to the railway

Distance to highway

Distance to water system

Distance to First-class road

Distance to Secondary road

Distance to Third-class road

Types of ES Types of LULC

Primary
Types

Secondary
Types

Farm
Land

Forest
Land

Grass
Land

Water
Body

Construction 
Land

Unused
Land

Provisioning 
Services

Food Production 1176.13 255.45 404.46 697.16 0.00 0.00

Raw Materials 260.77 580.08 596.05 388.50 0.00 0.00

Water Supply -1389.00 298.02 329.95 5790.18 0.00 0.00

Regulating
Services

Gas Regulation 947.29 1905.22 2096.81 1420.94 0.00 21.29

Climate Regulation 494.93 5710.35 5545.37 3134.57 0.00 0.00

Waste Treatment 143.69 1708.32 1830.72 4869.50 0.00 106.44

Hydrology Regulation 1591.23 4305.38 4065.90 67305.49 0.00 31.93

Supporting 
Services

Soil Conservation 553.47 2325.65 2554.49 1724.28 0.00 21.29

Nutrient Cycling 164.98 175.62 191.59 133.05 0.00 0.00

Biodiversity Protection 180.94 2118.10 2320.33 5545.37 0.00 21.29

Cultural
Services Aesthetic Landscape 79.83 931.32 1021.80 3523.07 0.00 10.64

Total 4204.26 20313.51 20957.47 94532.11 0.00 212.88
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the Cellular Automata model can perform high-precision 
simulations of patch evolution for various LULC types 
under complex scenarios [40-43]. We proposed a 
method combining the Cellular Automata model with 
a patch generation simulation strategy. It simulates 
future LULC conditions based on parameters such as 
development probability and neighborhood effects [46]. 
The calculation formula is:

	
(3)

where r denotes a random variable between 0 and 1; µk 
stands for the threshold for generating new patches of 
the k-th LULC type expected by the user in the model. 

The transition matrix is used to define whether 
conversions between LULC types are possible and to 
effectively constrain unreasonable conversions between 
LULC types. At the same time, a patch generation 
threshold decay coefficient is set to constrain the 
spontaneous growth process of LULC types and to 
determine the final LULC pattern [46]. The formula is 
as follows:
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Where n denotes total number of LULC types; Step 
stands for step size required to adjust PLUS model to 
fit LULC demand; l represents the number of threshold 
decay steps; τ means LULC growth threshold; Tc,k 
denotes transition matrix, defining whether LULC 
type c can be converted to type k, with a value of 1 
indicating allowed conversion and 0 indicating restricted 
conversion.

Geo-Detector Model

The Geo-Detector model refers to a statistical 
method used to analyze spatial phenomena and their 
driving factors [47]. Factor detector and interaction 
detector herein were utilized to evaluate the influence 
of natural and socioeconomic factors on ESV in the 
research field. The calculation formula is:
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Where q denotes the detection power of the 
influencing factors on ESV spatial heterogeneity, 
ranging from 0 to 1. A larger q value implies a stronger 
explanatory power of the factor on ESV spatial 
heterogeneity, while a smaller q value indicates weaker 
explanatory power; L stands for stratification of variable 
Y or factor X; N and σ2 denote total number of samples 
and overall variance in research field, respectively; Nh 
and σh

2 represent the number of samples and the variance 
in stratum h, respectively.

Pearson Correlation Analysis

Pearson correlation analysis refers to a statistical 
method adopted to accurately measure the degree of 
relationship between two variables [48]. The magnitude 
of the coefficient value reflects the strength of the linear 
correlation between the two variables. As to variables  
X = [x1, x2, …, xn]

T and Y = [y1, y2, …, yn]
T, the 

calculation formula is:
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Where x̅ and y̅ denote the means of the n data points; 
the range of the correlation coefficient r is (-1, 1).  
The closer the absolute value of r is to 1, the stronger the 
correlation between x and y; r = -1 or 1 implies perfect 
negative or positive linear correlation, respectively, 
and r = 0 implies no linear correlation; |r|≥0.8 implies 
a strong correlation, 0.5≤|r|<0.8 implies a moderate 
correlation, 0.3≤|r|<0.5 implies a weak correlation, and 
|r|<0.3 implies a very weak correlation, which may be 
nonlinear. 

Results

Characteristics of LULC and ESV 
Variations from 1990 to 2020

Characteristics of LULC Variations

The land use types in UAMLYR were reclassified 
via remote sensing data, with the area of each LULC 
type in the region (Table 3) and its spatial distribution 
structure obtained (Fig. 3).

From 1990 to 2020, farmland has been the major 
LULC type in the research field, covering more than 
60% of the total area. Specifically, the central and 
eastern regions are mainly composed of farmland and 
construction land, the western region is predominantly 
composed of grassland and forest land, water body is 
distributed rather sparsely, and unused land is primarily 
concentrated in the northwest. During the research 
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Table 3. Area and proportion of various LULC types from 1990 to 2020.

Year/Land Category Farm
Land

Forest
Land

Grass
Land

Water
Body

Construction 
Land

Unused
Land

1990
Area/km2 9176.11 1856.14 1624.07 574.25 1153.23 2.85

Scale/% 63.78 12.90 11.29 3.99 8.02 0.02

2000
Area/km2 9207.06 1901.36 1536.71 385.12 1352.04 4.71

Scale/% 64.00 13.22 10.68 2.68 9.40 0.03

2010
Area/km2 8829.33 1848.88 1308.59 455.87 1939.43 5.10

Scale/% 61.37 12.85 9.10 3.17 13.48 0.04

2020
Area/km2 8544.34 1848.56 1304.03 493.46 2190.79 5.99

Scale/% 59.39 12.85 9.06 3.43 15.23 0.04

Fig. 3. Spatial and temporal distribution of LULC types from 1990 to 2020.
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period, the areas of farmland and grassland decreased 
gradually, the areas of construction land and water body 
increased gradually, and the increase in construction 
land was relatively significant, whereas the areas  
of forest land and unused land remained largely 
unchanged.

The LULC transition from 1990 to 2020 is shown 
in Fig. 4. The total area of land conversion between 
different types of land in this area reached 2170.71 km², 
accounting for 1.09% of the total area of the research 
field. Among all LULC types, the conversion rate 
of farmland is the highest, reaching 57.81%, making  
it the primary source for the conversion into other LULC 
types. Construction land shows a significant expansion 
trend, with a transfer-in area as high as 1259.65 km², 
88.25% of which comes from farm land. Forest land, 
grassland, and water bodies are mainly converted to 
farmland and construction land, accounting for 74.88%, 
74.87%, and 95.27% of their related total conversion 
areas, respectively. In contrast, the transfer rate of 
unused land to other LULC types was relatively small, 
only 0.6 km².

Evaluation of ESV

From 1990 to 2020, the ESV in the UAMLYR were 
1646.06×107 yuan, 1459.45×107 yuan, 1451.98×107 yuan, 
and 1474.52×107 yuan, respectively, demonstrating a 
trend of decreasing followed by increasing (Table 4). 
From 1990 to 2000, the ESV decreased by 186.6×107 
yuan, mainly due to the reduction in ESV from water 
bodies. During the period from 2000 to 2010, with the 
acceleration of urbanization, population aggregation in 
town areas of the middle and lower reaches of the Yellow 
River led to construction land encroaching on large 
amounts of forest land and grassland, causing their ESV 
to decline rapidly. The steady recovery of ESV from 
2010 to 2020 indicates that the ecological governance 

work, which was carried out under the policy of 
ecological conservation and high-quality development 
in the Yellow River Basin, has made extraordinary 
achievements, leading to a significant expansion of 
water body areas and an improvement in the overall 
level of ESV. Among the primary categories of ES, the 
value of PS and RS increased, whereas the value of 
SS and CS slightly decreased. Among the secondary 
categories of ES, the value of water supply (WS), waste 
treatment (WT), hydrology regulation (HR), biodiversity 
protection (BP), and aesthetic landscape (AL) all 
demonstrated an increasing trend, whereas the value of 
the remaining ES decreased.

LULC and ESV Correlation Analysis

Pearson correlation analysis was employed to reveal 
intrinsic relationships between various types of ES and 
variations in disparate LULC types from 1990 to 2020 
(Fig. 5).

The overall ESV is positively correlated with 
variations in water body, grassland, and farmland, 
with correlation coefficients of 0.847, 0.725, and 0.448, 
respectively; it is negatively correlated with variations 
in unused land, construction land, and forest land, with 
correlation coefficients of -0.876, -0.654, and -0.218, 
respectively. Trends in the correlation between WT, HR, 
BP, and AL and variations in LULC are similar to those 
of the overall ESV. Food production (FP) is significantly 
positively correlated with variations in farm land  
(R = 0.985, p<0.1), and significantly negatively 
correlated with variations in construction land and 
unused land (p<0.05), with correlation coefficients  
of -0.995 and -0.878, respectively. Moreover, variations 
in the correlation between raw materials (RM)  
and different land types are similar to those of FP. 
Variations in grassland, construction land, and unused 
land have no significant impact on WS (p>0.05). Forest 

Fig. 4. LULC transition from 1990 to 2020 (km2).
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land shows a reverse trend compared to the overall 
ESV and services such as gas regulation (GR), climate 
regulation (CR), soil conservation (SC), and nutrient 

cycling (NC), while variations in water body show 
no significant correlation, and other land types show 
extremely significant correlations (p<0.05).

Fig. 5. The correlation between different LULC types and various ES types.

Table 4. ESV of various types from 1990 to 2020.

LULC Types
ESV/Year (×107 yuan)

1990 2000 2010 2020

Farm Land 385.79 387.09 371.21 359.23

Forest Land 377.05 386.23 375.57 375.51

Grass Land 340.36 322.06 274.25 273.29

Water Body 542.85 364.06 430.94 466.48

Construction Land 0.00 0.00 0.00 0.00

Unused Land 0.006 0.010 0.011 0.013

Total 1646.06 1459.45 1451.98 1474.52

ES Types
ESV/Year (×107 yuan)

1990 2000 2010 2020

Provisioning Services

Food Production 123.24 122.04 117.04 113.93

Raw Materials 46.61 45.69 43.32 42.69

Water Supply -83.32 -94.85 -86.42 -80.3

Regulating Services

Gas Regulation 164.5 161.14 152.78 150.51

Climate Regulation 259.47 251.43 236.13 235.63

Waste Treatment 102.59 92.6 90.43 91.77

Hydrology Regulation 678.46 550.06 580.13 600.7

Supporting Services

Soil Conservation 145.34 141.07 133.16 132.1

Nutrient Cycling 22.27 21.99 20.93 20.5

Biodiversity Protection 125.45 113.95 110.78 112.24

Cultural Services Aesthetic Landscape 61.44 54.33 53.7 54.75

Total 1646.05 1459.45 1451.98 1474.52
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Characteristics of LULC and ESV 
Variations Under Multiple Scenarios

LULC Variations Under Multiple Scenarios  
Simulations

To test the applicability of the model, the LULC data 
of the UAMLYR in 2010 were used, combined with the 
LULC expansion probability from 2000 to 2010, and 
the LULC situation in 2020 was simulated by the PLUS 
model, and compared and verified with the actual data, 
the Kappa coefficient was 0.939, the overall accuracy 
96.4%, indicating that the model had high accuracy 
and the results were reliable, which confirmed that the 
PLUS model was suitable for regional LULC. Based 
on LULC data of the UAMLYR for 2010 and 2020, 
LULC simulations were conducted for four different 
scenarios in 2030: natural development scenarios (NDs), 
ecological conservation scenarios (ECs), farmland 
conservation scenarios (FCs), and town development 
scenarios (TDs) (Fig. 6).

Compared to 2020, under an ND, the area of 
farmland decreased by 265.63 km², while the area of 
construction land expanded by 237.71 km², with little 
change in forest land, grassland, and unused land areas. 
Under the ECs, the areas of forest land and grassland 
steadily increase, whereas they decrease under other 
scenarios, with variations ranging from 0.49 to  
1.7 km² and 0.53 to 8.92 km², respectively. Despite  
this, the construction land area still increased by  
230.04 km², indicating that ECs policies failed to 
effectively control town expansion. Under the FCs, 
the farm land area significantly increased, with an 
increase ranging from 279.66 to 410.77 km². The areas 
of water body and construction land remained relatively 
stable compared to 2020 but decreased compared to 
other scenarios, with reductions ranging from 32.92 to 
34.02 km² and 238.53 to 382.75 km², respectively. In 
these scenarios, variations in forest land and grassland 
areas were consistent with those under the NDs; under  
the TDs, construction land area significantly increased 
by 374.26 km², whereas the farm land area decreased  

Fig. 6. LULC simulation under multiple scenarios for 2030.
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by 396.74 km², becoming the primary source for 
expansion of construction land (Table 5). 

ESV Calculation Under Multiple Scenarios  
Simulations

The ESV of the UAMLYR in 2030 under four 
scenarios – NDs, ECs, FCs, and TDs are 1495.24×107 
yuan, 1496.75×107 yuan, 1475.18×107 yuan, and 
1488.06×107 yuan, respectively (Table 6). Under the 
NDs, the ESV in 2030 increased by 20.72×107 yuan 
compared to that in 2020. The implementation of farm 
land protection policies resulted in a decrease in the ESV 
of farm land by 11.17×107 yuan, with slight reductions 
also observed in the ESV of forest land and grassland. 
However, ecological conservation and restoration 
measures resulted in an increase of 33.14×107 yuan  
in the ESV of water bodies. Under the ECs, the increase 
in the ESV of water bodies was 33.48×107 yuan, 
contributing to an overall increase in ESV of 22.23×107 
yuan. Under the FCs, the change in ESV compared 
to that in 2020 was minimal. A decrease of 31.82×107 

yuan in the ESV of water bodies was the main reason 
for the lower ESV. Under the TDs, the ESV decreased 
by 7.18×107 yuan compared to the NDs, primarily due to 
the expansion of construction land leading to reductions 
in the ESV of farmland, forest land, and grassland, 
especially with a reduction of 5.51×107 yuan in the ESV 
of farmland. 

Under the four scenarios for 2030, the values of PS, 
RS, and CS all increased, while in terms of SS, the ESV 
increased only under the ECs (Table 7). In the NDs, 
ECs, and TDs for 2030, the values of FP, RM, GR, 
CR, SC, and NC services all show a declining trend, 
while the values of other types of ESV show an upward 
trend. Among these, the decrease in FP is the largest, 
ranging from 2.8×107 to 4.47×107 yuan, while the value 
of HR increases the fastest, ranging from 16.35×107 to 
19.62×107 yuan. Under the four scenarios, the variations 
in various ecological service functions under the FCs are 
not significant compared to the baseline levels of 2020. 
Under the FCs, the values of WS, CR, WT, SC, and 
BP show a downward trend, with the largest decrease  
in CR, at 0.22×107 yuan. The values of other types of 

Table 5. LULC area and change rate under different scenarios in 2020 and 2030.

Table 6. Variations in ESV of various LULC under multiple scenarios (×107 yuan).

Year/Land Category Farm
Land

Forest
Land

Grass
Land

Water
Body

Construction 
Land

Unused
Land

2020 Area/km2 8544.34 1848.56 1304.03 493.46 2190.79 5.99

2030 NDs
Area/km2 8278.71 1847.36 1299.26 528.52 2428.50 4.26

Change rate/% -3.11 -0.07 -0.37 7.10 10.85 -28.92

2030 ECs
Area/km2 8281.99 1848.07 1303.50 528.88 2420.83 3.17 

Change rate/% -3.14 0.17 1.06 2.92 10.85 -25.72

2030 FCs
Area/km2 8558.37 1847.36 1299.26 494.86 2182.30 4.46

Change rate/% 0.16 -0.07 -0.37 0.28 -0.39 -25.54

2030 TDs
Area/km2 8147.60 1846.86 1295.11 527.78 2565.05 4.21 

Change rate/% -4.64 -0.09 -0.68 6.95 17.08 -29.71 

Year/Land Category Farm
Land

Forest
Land

Grass
Land

Water
Body

Construction 
Land

Unused
Land Total

2020 ESV 359.23 375.51 273.29 466.48 0.00 0.013 1474.52 

2030 NDs
ESV 348.06 375.26 272.29 499.62 0.00 0.009 1495.24

Rate of Change /% -3.11 -0.07 -0.37 7.10 0.00 -30.28 -26.73

2030 ECs
ESV 348.20 375.41 273.18 499.96 0.00 0.007 1496.75

Rate of Change /% -3.07 -0.03 -0.04 7.18 0.00 -48.09 1.51

2030 FCs
ESV 359.82 375.26 272.29 467.80 0.00 0.009 1475.18

Rate of Change /% 0.16 -0.07 -0.37 0.28 0.00 -26.96 -26.96

2030 TDs
ESV 342.55 375.16 271.42 498.92 0.00 0.009 1488.06

Rate of Change /% -4.64 -0.09 -0.68 6.95 0.00 -31.06 -29.52
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ESV show an upward trend, with the largest increase in 
the value of HR, at 0.92×107 yuan.

Characteristics of ESV Spatial Pattern  
Variations

Fig. 7 shows that the distribution of ESV in the 
UAMLYR is closely related to LULC, exhibiting  
a pattern of low in the middle and high in the east  
and west.

Distribution patterns of ESV under the four 
scenarios are similar to those in 2020, but there has been  
a reduction in medium and higher value areas, while 
high-value areas have significantly increased. High-value 
areas are mainly situated in the Yellow River Basin, 
higher-value areas are found downstream of the Luo 
River, and medium-value areas are widely distributed 
in forest land and grassland regions. Low-value and 
lower-value areas are mostly found in the central plains 
and town areas. Under the NDs, the high-value areas in 
the lower reaches of the Yellow River expand outward, 
and the low-value areas in the middle increase. Under 
the ECs, the low-value areas in the northeastern part 
decrease, whereas the high-value and higher-value 
areas increase. Some medium-value areas in the lower 
reaches of the Yellow River have turned into higher-
value areas, and some lower-value areas in the southwest 
have become medium-value areas. Under the FCs, the 
low-value areas have significantly increased. Under the 

TDs, the high-value areas have slightly decreased, while  
the low-value areas have significantly increased.

Analysis of Driving Forces behind 
ESV Spatial Differentiation

Factor Detection Results

To explore the driving factors affecting ESV in the 
Yellow River, we selected nine indicator factors that 
align with the characteristics of this study, based on 
the specific traits of the research area, data accessibility 
and applicability, and by referencing previous studies 
[49, 50]. Then, we used the factor detection module in 
the Geodetector to determine the contribution rate of 
each driving factor to the spatial differentiation of ESV 
(Table 8).

The contribution rate of soil erosion intensity is 
16.42%, making it the dominant factor affecting ESV 
spatial differentiation in the research field, mainly 
attributed to the insufficient flood control capacity and 
the reduced soil resistance to erosion due to heavy 
metal pollution [51]; the influence of LULC type upon 
ESV spatial distribution is also quite significant, with 
a contribution rate of 15.13%, which is closely related 
to ecosystems and LULC patterns and extent; the 
contribution rate of GDP is 13.12%, indicating that 
regions with higher economic development levels 
cause more severe damage to ecosystems, becoming  

Table 7. Individual ESV items from 2020 to 2030.

Primary
Types

Secondary
Types 2020 2030 NDs 2030 ECs 2030 FCs 2030 TDs

Provisioning
Services

Food 
Production 113.93 111.03 111.09 114.08 109.46

Raw 
Materials 42.69 42.10 42.14 42.70 41.73

Water 
Supply -80.30 -74.60 -74.61 -80.43 -72.83

Regulating
Services

Gas 
Regulation 150.51 148.37 148.51 150.54 147.02

Climate 
Regulation 235.63 235.08 235.38 235.41 234.15

Waste 
Treatment 91.77 92.98 93.09 91.74 92.67

Hydrology 
Regulation 600.70 619.82 620.32 601.62 617.05

Supporting 
Services

Soil
Conservation 132.10 131.09 131.24 132.05 130.23

Nutrient
Cycling 20.50 20.09 20.11 20.51 19.87

Biodiversity
Protection 112.24 113.56 113.70 112.20 113.18

Cultural
Services

Aesthetic 
Landscape 54.75 55.71 55.78 54.75 55.53
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a key factor in ESV spatial distribution differences; the 
contribution rates of NDVI, population density, and 
human activity intensity are close to 11.5%, making 
them relatively important factors in ESV spatial 
distribution differences; in contrast, the contribution 
rates of precipitation and temperature are about 9%, 
indicating a lesser impact on ESV spatial distribution; 
DEM variations within the research field are not 
significant, and thus have a weaker explanatory power 
regarding ESV spatial distribution (Fig. 8).

Interaction Detection Results

The mutual effect of the selected two variables on 
spatial distribution differences of regional ESV was 
analyzed by using the interaction detection function of 
the geographical detector (Fig. 9).

When the two sets of driving factors interact, their 
influence significantly outperforms the independent 
effects of single factors. Specifically, the interaction 
between human activity intensity and soil erosion 
intensity has a particularly prominent impact on spatial 
distribution differences of ESV in the research field, with 
a q value reaching 0.906; the interaction q value between 
NDVI and other factors is also high, further confirming 
the critical role of NDVI in spatial distribution 
differences of ESV; the interaction between LULC 
type and other factors also shows a clear enhancement 
effect, indicating that LULC methods significantly 
affect ESV spatial distribution; the interaction between 
annual mean temperature and other factors also exhibits 
a strong synergistic effect, highlighting the importance 
of climatic factors in ESV spatial distribution 
differences. In a word, the interaction between natural 

Factors Code q Value p Value Contribution Rate / % Rank

GDP X1 0.4576 0.00 13.12 3

Population Density X2 0.3991 0.00 11.44 6

Soil Erosion Intensity X3 0.5729 0.00 16.42 1

DEM X4 0.1084 0.00 3.11 9

Annual Average Temperature X5 0.3021 0.00 8.66 8

LULC X6 0.5278 0.00 15.13 2

Annual Average Precipitation X7 0.3212 0.00 9.20 7

Intensity of Human Activities X8 0.3996 0.00 11.45 5

NDVI X9 0.4004 0.00 11.48 4

Fig. 7. Spatial distribution of ESV from 2020 to 2030.

Table 8. Detection results of driving factors for spatial heterogeneity of ESV.
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Fig. 9. Interaction detection results of factors for spatial heterogeneity of ESV.

Fig. 8. Spatial distribution map of driving factors for ESV.
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environmental factors is significantly stronger than that 
of socio-economic factors, highlighting the decisive role 
of the natural environment in the spatial distribution 
differences of ESV. Based on these findings, it is essential 
to comprehensively consider the actual conditions of 
the natural environment and formulate development 
strategies that are adapted to local conditions while 
developing and utilizing the UAMLYR. It aims to 
minimize potential damage to natural ecosystems while 
maximizing their ES functions, better serving human 
society.

Discussion

Impact of LULC Variations on ESV

LULC variations are considered one of the key 
factors influencing global environmental change [52-54]. 
With the surge in population, accelerated urbanization, 
and intensified climate change, the service functions 
of global ecosystems are experiencing continuous 
degradation, which in turn has profound impacts on 
human well-being [55, 56]. Therefore, quantitatively 
assessing how LULC variations affect ESV is crucial 
for guiding the sustainable development of the global 
environment [57, 58].

We conducted an in-depth analysis of the LULC 
variations in the research field over the past three 
decades. The study found that LULC variations exhibit 
similar fluctuation trends to ESV variations. From 
1990 to 2000, the ESV in the region declined; from 
2000 to 2020, the ESV showed a slow upward trend, 
which aligned with the findings of Yin et al. [59].  
The research results indicate that farmland is the main 
land type in the region and is also the primary contributor 
to conversions to other land types, providing ES such as 
SC, FP, and BP [60]. Due to the process of urbanization, 
the ESV of farmland has decreased, clearly revealing 
the potential impact of farmland reduction on the ESV 
downstream [59]. Different LULC conversion categories 
can have both positive and negative impacts upon ESV 
[61]. The mutual conversion between farmland and 
other land types is the main driving force behind the 
variations in the region’s ESV, with the conversion of 
farmland to water bodies, construction land to farmland, 
and farmland to forest land being the primary types 
leading to an increase in ESV. Although water bodies 
and forest land occupy relatively smaller areas in the 
region, their expansion has driven up the total ESV of 
the region, indicating that increasing the area of these 
two land types can effectively improve the region’s ESV 
[62]. Therefore, greater emphasis on future development 
ought to be placed on the protection and management 
of water bodies and forest land [63, 64]. The conversion 
of farmland to construction land and the conversion 
of water bodies and forest land to farmland are the 
main factors leading to a decrease in ESV. Against 
the background of rapid urbanization, various laborers 

have migrated to towns, and the surge in housing and 
consumption needs has promoted the encroachment 
of construction land on farmland and forest land [65]. 
Implementing the policy to return farmland to forest 
land has also reduced the area of farmland to some 
extent [66], jointly leading to a decrease in ESV. 

In recent decades, global ES have declined by nearly 
60% due to population surges and urban expansion, and 
such a trend is expected to continue in the future [4, 5]. 
However, thanks to a series of ecological restoration 
and protection measures implemented by the Chinese 
government, forest land has been restored, and the 
expansion of farmland and construction land has been 
effectively controlled; thus, the pressure on regional 
ESV has been alleviated [67]. In this study, the total 
ESV in the region has slightly declined over the past 
30 years, showing a trend of rapid decline followed by 
a gradual increase, similar to the global trend of ESV 
variations [4].

The results show that all four ES demonstrated  
a slight downward trend, which was consistent with 
other studies [68]. Among different individual ES, the 
level of RS was the highest, which aligned with the ESV 
structure in provinces across China [69]. HR and CR 
are two key ES, ranking the highest among all types of 
ES. After experiencing a decline, HR services showed 
a recovery primarily due to the increase in water body 
area. However, CR services showed a yearly downward 
trend, possibly due to the large-scale conversion of 
forest land to farmland [70]. BP services, which form 
the foundation of ecosystem sustainability, showed an 
overall downward trend, indicating that the urbanization 
process in the region has had a negative impact on 
ecosystem diversity [71]. WS also showed a decline, 
likely related to increased water demand for agriculture 
and town use [72].

Pearson correlation analysis accurately calculated 
the correlation between ESV and LULC variations, 
thereby revealing the response patterns of ESV to 
LULC variations. This may be due to the high weight of 
water bodies in the equivalent factor, while unused land 
has a relatively lower weight, making these two land 
types the strongest in terms of positive and negative 
correlations with ESV. The results of this study show 
that correlation coefficients between total ESV variations 
and water body, as well as unused land, are both above 
0.8, indicating that ESV variations are significantly 
influenced by variations in water body and unused land. 
This finding conforms to the trends reported by Guo 
et al. [68]. Therefore, variations in unused land and 
water body areas can significantly affect the total ESV.  
At the same time, other LULC variations, such as those 
in grassland and construction land, also played a non-
negligible role.

This study delves into the relative importance 
of ESV driving factors within the research field and 
identifies the complex interactions among these factors. 
The analysis shows that ESV spatial differentiation in 
the research field results from the interaction of multiple 
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factors. Among the single factors, soil erosion intensity 
was identified as the primary driving factor. Soil erosion 
intensity was explicitly determined to be the main 
driver of this change process, which was inconsistent 
with existing studies. Zhang et al. [45] pointed out that 
in the Lower Yellow River region, the comprehensive 
human impact index is the primary factor causing ESV 
spatial differentiation. However, the differences in the 
results of this study mainly stem from the differences 
in the research background: this study focuses on 
specific ecological issues, where there is a lack of large-
scale ecological projects, and soil erosion problems are 
particularly severe, which have a long-term impact on 
the ecosystem; whereas the study of Zhang et al. is set 
within a broader socio-economic framework [45]. The 
differences in region and research scale may lead to 
significant differences in the identification of influencing 
factors. Further analysis reveals that the impact of 
natural factors stands out more prominently in this study 
at a smaller scale; whereas study of Zhang covers a vast 
area of the Lower Yellow River region, including 20 
prefecture-level cities in Henan and Shandong provinces, 
where the cumulative effects of human activities may be 
more pronounced at this larger scale [45]. Additionally, 
Tao et al. [73] conducted a quantitative assessment of 
soil erosion intensity in different regions of the Loess 
Plateau. Results showed that the soil erosion intensity in 
some cities in Henan Province was particularly severe, 
which basically matched the situation in the research 
field. This further validates soil erosion intensity as the 
main driving factor affecting ESV spatial differentiation.

Multi-scenarios LULC Based on  
the PLUS Model

The results of ESV have been widely applied to 
uphold LULC planning over the years [74]. Rational 
decision-making can only be achieved when it is 
possible to reliably predict the impact of various 
development scenarios on ESV [75]. In terms of 
territorial space optimization, this study utilized 
the PLUS model to simulate the LULC distribution 
patterns under various scenarios for the next decade in 
UAMLYR. The study considered multiple scenarios, 
including ecological civilization construction, farmland 
protection, and regional economic development, aiming 
to reveal the trends in ESV variations under four 
future scenarios and to offer an important reference for 
urban ecological construction and land expansion [62]. 
Previous studies have indicated that the PLUS model 
performs well in simulating the spatial distribution of 
LULC in regions and helps policymakers to coordinate 
the relationship between urbanization and ecologization, 
thereby ensuring the sustainable development of urban 
economies [76]. Overall, all four future scenarios show a 
reduction in forest land and grassland areas, an increase 
in water bodies, and a sharp expansion of construction 
land. Under different scenarios, the conversion patterns 
of various land types are constrained, resulting in 

varying degrees of positive or negative impacts on 
ESV. In the FCs, the expansion of construction land 
is suppressed, causing a significant decrease in the 
conversion of farmland to construction land, thereby 
slowing down the urbanization process. In the ECs, the 
overall ESV increases substantially, primarily in view of 
the increased conversion of all land types to ecological 
land. The conversion of farmland to water bodies and 
forest land significantly contributes to the improvement 
of ESV, which is closely related to the higher ES 
equivalent values of forest land and water bodies 
adjusted by Xie et al. [44] based on specific conditions 
in China. The study results indicate that the TDs and the 
ECs are more favorable for the future development of the 
region. In the TDs, the urbanization process accelerates, 
and the overall ESV grows slowly. In the ECs, the 
ecosystem quality of water bodies has significantly 
improved, and forest ecosystems are effectively restored, 
ultimately leading to a substantial increase in the 
overall ESV. Therefore, future development policies 
will comprehensively impact the service functions of 
the regional ecosystem. The pros and cons should be 
fully considered, and appropriate solutions suitable for 
the development of the UAMLYR should be chosen to 
propel future socio-economic development and enhance 
ESV when formulating policies [77].

Limitations and Future Work

The approaches proposed in this study aim to 
enhance the accuracy of research in this field, and the 
findings can provide important references for future 
studies on the rational utilization of land resources 
and ecological environment construction. However, 
due to the accuracy of the data and the dynamism and 
complexity of ecosystems, the method still has certain 
limitations. First, LULC variations are a complex and 
dynamic process, and a simple comparison of current 
and historical LULC fails to fully reflect the qualitative 
variations in LULC types [78] or fully consider the 
impact of multiple development goals. Second, under 
the same primary land use type, the investment returns 
of secondary land types may vary [79]. Additionally, 
the value coefficients for construction land in the 
ESV equivalent factor table have not actually been 
calculated, which affects the overall ESV. However, 
the limitations of this study need to be addressed in 
future research. Future research should comprehensively 
consider various human and natural factors to reveal the 
mechanisms of ESV variations and survey synergies and 
trade-offs between ES [80]. This study only investigated 
the driving factors of spatial distribution differences 
of ESV in the UAMLYR in 2020. Further analysis 
of driving factors can be extended to many years and 
different spatial scales to reveal the changing patterns 
of the impacts of different driving factors over time and 
across multiple spatial levels.

Finally, in the context of national spatial planning 
and ecological protection strategies, future research 
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ought to focus on the synergies and trade-offs of ES, the 
spatiotemporal matching of ES supply and demand, and 
the quantification of ES flows, so as to develop scientific 
responses for optimizing LULC patterns and landscape 
sustainability.

Conclusions

This study focuses on the LULC variations in 
the UAMLYR from 1990 to 2020, and uses the PLUS 
model to simulate the LULC pattern over the next ten 
years. The equivalent factor method was employed 
to estimate the variations in ESV. We found that over 
the past three decades, the region has experienced  
a sharp reduction in farmland and a rapid expansion  
of construction land. In this process, farmland 
became the primary source for the conversion to other 
LULC types, while construction land saw the largest 
increase in area. Four scenarios for the year 2030 were 
predicted, with a significant increase in water body area  
and a decrease in forest land and grassland areas.  
The ESV in the region showed a declining trend from 
1990 to 2020, but under all four scenarios for 2030,  
the ESV is expected to be higher than that in 2020.  
The RS and SS are the primary ecosystem functions  
in the research field, and the unit area ESV of water 
bodies and forests is higher than that of other land 
types. In the single-factor detection results, soil erosion 
intensity had the most significant impact on regional 
ES. Under the dual-factor interaction, the interaction 
effect between human activity intensity and soil erosion 
intensity was the greatest. In the LULC and ESV 
correlation analysis, grassland and water body showed 
a strong positive correlation with ESV, whereas unused 
land and construction land exhibited a strong negative 
correlation. 

The findings of this study aim to provide scientific 
guidance for coordinating regional economic 
development and ecological protection in fragile 
ecosystem areas, and to help relevant policymakers 
and scholars understand the future evolution patterns 
of LULC in the UAMLYR, and accordingly contribute 
to the sustainable socio-economic and ecosystem 
development of the region. 
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