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Abstract

By leveraging drone remote sensing technology, this study addresses the limitations of traditional 
monitoring methods in expansive water bodies, such as restricted sampling points, data acquisition 
challenges, and insufficient spatiotemporal resolution. It overcomes challenges, including synchronous 
data acquisition in dynamic tidal bore environments and nonlinear relationship modeling. Focusing on 
Qibao and Yanguan stations along the Qiantang River, the research integrates in-situ water quality data 
and multispectral remote sensing images during tidal bores. Machine learning models—Support Vector 
Machine Regression (SVR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—were 
developed to invert suspended sediment concentration (SSC) and turbidity. Bayesian Optimization was 
applied to enhance model performance. Results demonstrate that the XGBoost model optimized by the 
Bayesian algorithm achieved superior accuracy, with determination coefficients (R²) of 0.89 (SSC) and 
0.93 (turbidity), and reduced root mean square errors to 310.54 mg/L and 33.36 NTU, confirming model 
stability and predictive capability. Inversion results revealed abrupt SSC and turbidity surges near bridge 
piers during flood tides (peaking at 6000 mg/L and 820 NTU), indicating intense bed scouring by tidal 
bore dynamics. The model effectively captures spatiotemporal patterns of water quality parameters and 
provides an efficient solution for dynamic tidal bore monitoring, highlighting the potential of integrating 
multispectral imagery with machine learning. This approach offers a novel framework for high-
frequency water quality assessment in turbulent hydrodynamic environments.
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Introduction

The Qiantang River, which is the largest water 
system in Zhejiang Province, China, is known as the 
world-famous Qianjiang Tidal Bore [1]. This magnificent 
natural spectacle is caused by the rapid narrowing of 
the river surface and the rapid uplift of the riverbed 
after tidal waves from the East China Sea surge into 
Hangzhou Bay. While the tidal bore gives the Qiantang 
River its unique natural landscape, it also has a direct 
and significant impact on water quality [2, 3]. The 
periodic changes in water flow caused by the tidal bore 
bring a large amount of seawater, sediment, and other 
materials, severely affecting the spatial and temporal 
distribution patterns of various water quality parameters 
such as salinity [4, 5], suspended solids concentration 
[6, 7], and turbidity [8] in the Qiantang River. This, in 
turn, leads to issues such as sediment deposition and 
water pollution, which adversely affect the sustainable 
economic and social development of coastal areas, 
the health of ecosystems, drinking water safety for 
residents, and agricultural irrigation [9-12]. Therefore, it 
is crucial to monitor the water quality of the Qiantang 
River during the tidal bore.

Currently, water quality monitoring of the Qiantang 
River tidal bore mainly relies on two methods: on-site 
manual sampling and laboratory analysis and water 
quality automatic monitoring stations [13, 14]. On-site 
manual sampling involves collecting water samples in 
the field and analyzing them in a laboratory to monitor 
water quality. Although this method can provide 
detailed and accurate water quality data, the monitoring 
and analysis process is complex, time-consuming, and 
expensive, and the results only reflect the water quality 
at specific sampling points [15]. Especially during tidal 
periods, traditional manual sampling methods face 
significant challenges, and accurate measurements are 
almost impossible. On the other hand, water quality 
automatic monitoring stations rely on fixed observation 
stations to monitor the water quality of the Qiantang 
River in real-time throughout the day. However, in actual 
operation, there are issues such as high maintenance 
costs, susceptibility of monitoring instruments to 
strong tides, damage, and limited monitoring station 
locations [16]. Therefore, it is necessary to find more 
effective monitoring methods to meet the water quality 
monitoring requirements during the Qiantang River 
tidal bore.

Due to its capability for straightforward 
dynamic monitoring, researchers have increasingly 
adopted remote sensing technology to address real-
world challenges. For instance, Morakot et al. [17] 
utilized satellite imagery combined with supervised 
classification and change detection techniques to 
quantify the persistent agricultural land loss over 
two decades in a Thai province, providing a scientific 
basis for regional sustainable development. Compared 
to various remote sensing technologies, drone-based 
remote sensing has emerged as a promising tool for 

water quality monitoring due to its advantages in low 
cost, portability, flexible deployment, and operational 
independence from fixed locations or strict scheduling 
[18-20]. This method not only reduces the risks 
associated with sampling but also enhances monitoring 
safety and environmental friendliness. It enables quick 
response and real-time monitoring of the dynamic 
changes in the Qiantang River tidal bore water quality, 
providing rich and comprehensive information on water 
quality conditions and spatial distribution [21-23]. 
Traditional remote sensing inversion methodologies 
predominantly encompass analytical approaches [24], 
empirical techniques [25], and semi-empirical methods 
[26]. The evolution of artificial intelligence technology 
has led to a growing number of studies integrating 
machine learning principles into water quality remote 
sensing monitoring [27-29]. Machine learning boasts 
attributes such as adaptability, self-learning capabilities, 
high efficiency, and fault tolerance, positioning it 
as a potent strategy for addressing intricate issues 
characterized by multiple variables and non-linearity. 
It holds certain advantages in estimating water quality 
[30-32]. For instance, Rabsh et al. [33] developed 
an index prediction model using Artificial Neural 
Networks (ANN) and conducted a comparative analysis 
of three models – Recurrent Fuzzy Networks (RFN), 
Backpropagation Networks (BPN), and Feedforward 
Neural Networks (FNN)—ultimately identifying the 
FNN model as the most effective for water quality 
prediction in the Klang River, offering a scalable, 
intelligent tool for river management. The predictive 
capabilities of machine learning further extend to 
forecasting future scenarios of water quality parameters. 
For example, Jantira et al. [34] integrated satellite 
imagery with a CA-Markov model to analyze 30-year 
land use and land cover dynamics in the Bandung Bay 
region and projected trends for the subsequent three 
decades. These cases collectively demonstrate the 
feasibility of combining remote sensing technology with 
algorithmic models for robust water quality estimation.

In water quality studies, the integrated impact of 
multiple parameters on aquatic ecosystem functions 
warrants critical attention. There has been growing 
interest in water quality classification research based 
on statistical models and comprehensive evaluation 
methods in recent years. For instance, Kieu et al. 
[35] evaluated surface water quality in Can Tho 
City, Vietnam, by analyzing 18 parameters across 
38 monitoring sites during the dry and rainy seasons 
using the Eutrophication Index (EI), Harmony Degree 
Equation (HDE), and entropy-weighted TOPSIS 
method. Their findings revealed persistent exceedances 
of total suspended solids (TSS) and fecal coliform levels 
in both seasons. While such methods offer novel insights 
into multi-parameter synergistic assessment and priority 
management, their applicability to highly dynamic tidal 
bore environments with pronounced spatiotemporal 
variability remains underexplored.
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This study addresses three core challenges in tidal 
bore monitoring. (1) Synchronization of dynamic 
data acquisition: The ephemeral nature of tidal bores 
necessitates precise spatiotemporal alignment between 
rapid image capture and high-frequency water sampling. 
(2) Mitigation of spectral interference: Intense tidal 
currents induce ripple-induced distortions and uneven 
suspended sediment distribution, amplifying noise in 
multispectral reflectance data. (3) Enhanced model 
generalizability: Conventional machine learning models, 
though effective in static water bodies, struggle with 
the complex nonlinear relationships between spectral 
features and water quality parameters under turbulent 
tidal bore conditions, often leading to overfitting.

To overcome these challenges, three targeted 
strategies were implemented. (1) Dynamic coordinated 
sampling system: Integrating real-time kinematic (RTK) 
positioning with tidal forecasting minimizes temporal 
mismatches. (2) Noise-adaptive spectral correction: 
Statistical averaging mitigated local fluctuations, while 
radiometric compensation addressed illumination 
variability. (3) Dual-layer feature optimization: A hybrid 
approach combining Pearson correlation coefficient 
analysis and random forest-based recursive feature 
elimination (RF-RFE) was employed to select optimal 
spectral predictors. This informed the development 
of a Bayesian-optimized XGBoost hybrid model 
(BO-XGBoost), which efficiently identifies global 
hyperparameter optima within limited iterations, 

significantly enhancing model stability in transient 
hydrodynamic environments.

Based on the aforementioned context, this study 
selects the Qiantang River’s Qibao Station and Yanguan 
Station as the research areas. Integrating the actual water 
quality data gathered during two tidal bore events on 
November 16th and 28th, 2023, with the synchronized 
multispectral remote sensing image data, a machine 
learning-based inversion model for suspended solids 
concentration and turbidity is constructed. The laws of 
spatiotemporal variation and influencing mechanisms are 
analyzed. The research findings validate the feasibility 
of multispectral imagery and machine learning inversion 
models in tidal bore water quality monitoring, providing 
a new thought process and method for tidal bore water 
quality monitoring endeavors.

Materials and Methods

Study Area

The research was conducted within the Qiantang 
River basin, situated in Zhejiang Province, China. The 
basin encompasses an area from 117°37’ to 121°52’ 
E longitude and from 28°10’ to 30°48’ N latitude, 
characterized by a subtropical monsoon climate with 
an average annual temperature of 17°C. The tidal 
reach of the Qiantang River, extending 291 km from 
the Fuchun River Power Station to Hangzhou Bay, is 

Fig. 1. Study area: (a) the entire Qiantang River basin; (b) distribution of sampling points at Qibao station; (c) distribution of sampling 
points at Yanguan station.
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designated as the Qiantang River Estuary. This estuary 
is a prototypical strong tidal estuary, subjected to the 
interplay of river runoff and tidal currents. The water 
quality parameters in this region demonstrate significant 
spatiotemporal variations closely linked to the rise and 
fall of tidal bores. Therefore, this study selected two 
representative sites within the estuarine zone, Qibao 
and Yanguan, as the research areas (Fig. 1). Both sites 
are affected by tidal bores, with Yanguan positioned 
downstream experiencing more pronounced impacts 
from tidal bores.

Technical Roadmap

To achieve effective remote sensing monitoring of 
tidal water quality in the Qiantang River, the entire 
process can be summarized into five stages (Fig. 2): 
field investigation, data acquisition, data preprocessing, 
technical applications and methodological research, and 
results analysis.

Fig. 2. Technical roadmap.
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Data Acquisition and Preprocessing

Sub-subsection

The initial water sampling was executed at the 
Qiantang River Qibao Station on November 16, 2023, 
between 8:00 and 17:00 (lunar calendar, the 4th day of 
the 10th month, coinciding with the spring tide period). 
A total of ten rounds of sampling were conducted 
hourly from sampling points A to E, encompassing 
both the flood and ebb tide processes. However, the 
surge intensity was notably diminished on the actual 
sampling date due to unexpectedly strong winds. To 
maintain the integrity of the data, additional sampling 
was performed at Yanguan Station, which experienced 
a more pronounced surge on November 28, from 11:30 
to 14:00 (lunar calendar, the 16th day of the 10th month, 
during the spring tide). The sampling at Yanguan Station 
primarily focused on the period immediately before 
and after the flood tide. Data collection was conducted 
every 20 minutes before the surge's arrival to precisely 
capture the data fluctuations during the flood tide, 
totaling three instances. It was observed on-site that the 
surge arrived after the third sampling, at which time the 
sampling frequency was increased to every 5 minutes 
and sustained for a continuous span of 20 samplings.

During the collection of water samples, sampling 
point locations were accessed by a survey boat. Once 
the water flow stabilized, a professional water pump 
extracted 1000mL of water at a depth of 0.5 meters 
below the surface. These water samples were then 
transferred into pre-prepared, dry, and clean water 
sample bottles, labeled, and reserved for subsequent 
analysis of suspended solids concentration and turbidity. 
The on-site parameters of this sampling site were 
simultaneously recorded. These on-site parameters 
include sampling time, sample number, latitude and 
longitude coordinates, light intensity, and other factors. 
The water samples were promptly transported to the 
laboratory for concentration measurements following 
standardized testing procedures. The measurement 
of suspended solids concentration adhered strictly to 
the national standard GB17378.4-2007, utilizing the 

gravimetric method. The turbidity of the samples was 
assessed using a HACH2100Q portable turbidity meter, 
with three replicate measurements conducted for each 
sample, and the average value was calculated.

Acquisition and Preprocessing of Multispectral Imagery

The acquisition of Unmanned Aerial Vehicle (UAV) 
multispectral imagery and water quality sampling is 
conducted simultaneously. The DJI M300 RTK UAV 
(DJI Innovations Technology Company, Shenzhen, 
Guangdong, China) was equipped with the MS600 Pro 
multispectral camera (Changguang Yuchen Information 
Technology and Equipment Co., Ltd., Qingdao, 
Shandong, China) as an image acquisition platform 
(Fig. 3). Fixed-point aerial photography was separately 
conducted at sampling points of the Qibao Station and 
Yanguan Station. The flight altitude was set at 80m, 
with a ground spatial resolution of 5.77cm/pixel and 
an imaging swath of 74m×55m. A total of 538 sets 
of multispectral images with RTK positioning were 
obtained.

Following data acquisition, preprocessing 
was performed on the raw multispectral imagery, 
encompassing band registration, image stitching, 
radiometric correction, and other procedures. This 
procedure culminated in a TIFF image comprising six 
bands. Subsequently, the six-band TIFF image was 
imported into the remote sensing image processing 
platform ENVI 5.3. Pixel values were extracted by 
leveraging the latitude and longitude information, and a 
9x9 pixel-sized region of interest (ROI) was delineated 
near the sampling point within the spectral image. The 
average spectral reflectance of each band within this 
ROI was computed and documented as the reflectance 
data for the respective sampling point.

Optimization and Selection of 
Spectral Feature Parameters

Two feature selection methods, namely the Pearson 
correlation coefficient [36] and recursive feature 
elimination based on Random Forest [37], were 

Fig. 3. Image acquisition platform: (a) DJI M300RTK Unmanned Aerial Vehicle; (b) MS600 Pro multispectral camera.
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employed to optimize and select the spectral feature 
parameters. Initially, the reflectance values of the six 
bands in the multispectral imagery were denoted as 
R1, R2, R3, R4, R5, and R6. Drawing from existing 
research, it has been found that commonly used band 
calculation methods include the Difference Index (DI), 
Ratio Index (RI), and Normalized Difference Index 
(NDI). These band calculation methods were introduced 
to construct three forms of spectral feature parameters 
[38].

The Pearson correlation coefficient was utilized to 
assess the degree of correlation between water quality 
parameters and various spectral feature parameters. 
This coefficient ranges from -1 to 1, with higher absolute 
values indicating a stronger correlation. The formula 
for calculating the Pearson correlation coefficient is as 
follows:

  (1)

where: r represents the Pearson correlation 
coefficient; xi represents the spectral feature parameter 
values of the sampling points; yi represents the 
concentration values of water quality parameters at 
the sampling points;  represents the average value 
of spectral feature parameters at the sampling points; 

 represents the average value of water quality 
concentration parameters.

Due to the potential existence of complex nonlinear 
relationships between spectral feature parameters and 
water quality parameters, relying solely on the Pearson 
correlation coefficient may not suffice to fully uncover 
their underlying correlations. The additional step of 
re-optimizing the spectral feature parameters has 
been introduced by employing the Recursive Feature 
Elimination based on Random Forest (RF-RFE). The 
specific steps are as follows: Initially, the out-of-bag data 
prediction accuracy of the Random Forest is utilized 
to calculate the importance of each spectral feature 
parameter; subsequently, the currently least important 
feature is removed; the model is constantly retrained, 
and the training process is repeated iteratively until 
the predetermined number of features is reached; when 
the stopping condition is met, the final feature subset 
emerges as the optimal feature subset for water quality 
parameter inversion. This feature subset is employed as 
input to the tidal bore water quality inversion model to 
enhance its generalization performance.

Construction and Evaluation of the Inversion Model

The optimal feature subset is utilized as the 
independent variable, and the measured values of water 
quality parameters serve as the dependent variable to 
construct tidal water quality inversion models based 
on Support Vector Machine Regression (SVR) [39], 

Random Forest (RF) [40], and Extreme Gradient 
Boosting (XGBoost) [41]. Concurrently, the Bayesian 
Optimization algorithm (BO) [42] is applied to optimize 
the hyperparameters of these three machine learning 
models, resulting in the Bayesian Optimization-
based Support Vector Machine Regression (BO-SVR), 
Bayesian Optimization-based Random Forest (BO-RF), 
and Bayesian Optimization-based Extreme Gradient 
Boosting (BO-XGBoost) inversion models. Bayesian 
Optimization is a heuristic global optimization method 
grounded in the probability distribution, capable of 
intelligently searching for the global optimal parameter 
combination within a limited number of iterations [43]. 
The specific optimization steps are as follows: Several 
sets of hyperparameters are randomly generated as 
initial points to establish the initial regression models; 
a Gaussian process model is constructed based on 
these initial points and their corresponding objective 
function values to model and predict the parameter 
space; the acquisition function PI is used to seek 
the next hyperparameter combination that is most 
likely to enhance model performance; determine if 
the set maximum iteration count has been reached; 
if not, iteration continues; otherwise, the optimal 
hyperparameter combination and the corresponding 
optimal value of the objective function for the regression 
model are output [44].

To quantitatively compare the inversion performance 
of the models, this study employs three evaluation 
metrics to assess the accuracy of water quality inversion 
models. These evaluation metrics include the coefficient 
of determination (R²), root mean square error (RMSE), 
and mean absolute error (MAE). The formulas for these 
metrics are as follows:

  (2)

  (3)

  (4)

where: yi and  represent the predicted values and 
actual measured values of the model, respectively;  
represents the mean of the actual measured values; n 
represents the number of water quality samples. The 
closer R2 is to 1, and the smaller the RMSE and MAE 
are, the higher the model’s accuracy is.
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Results and Discussion

Optimization and Selection of 
Spectral Feature Parameters

A total of 51 spectral feature parameters were 
determined by analyzing both individual bands and 
computed band combinations (Table 1). Pearson 
correlation analysis was conducted separately between 
these 51 spectral feature parameters and the measured 
values of suspended solids concentration and turbidity 
at field sampling points. It was observed that the 
correlation between suspended solids concentration, 
turbidity, and individual band spectral feature 
parameters was generally low. However, a higher 
correlation was observed between these water quality 
and spectral feature parameters constructed using ratio 
and normalization indices. Based on the correlation 
analysis, spectral feature parameters were selected if 
they achieved statistical significance (p < 0.05) and had 
a correlation coefficient absolute value (r) exceeding 
0.6. These selected spectral feature parameters were 
considered subsets of features for each water quality 
parameter. Consequently, 32 sets of spectral feature 
parameters were identified that met the requirements 
for the inversion of suspended solids concentration and 
turbidity (Table 2).

Among all spectral feature parameters, the 
normalized difference index (R4-R5)/(R4+R5) exhibited 
the most significant correlations with suspended 
sediment concentration (SSC) and turbidity. Specifically, 
their absolute Pearson correlation coefficients reached 
0.866 for SSC and 0.943 for turbidity, both indicating 
strong predictive relationships.

Recursive feature elimination with random forest 
(RF-RFE) was applied to further refine feature 
selection, identifying 10 optimal spectral indices for 
each target parameter. For SSC, the optimal feature 
subset comprised: {‘R2-R3’, ‘R3-R4’, ‘R3-R5’, ‘R1/
R5’, ‘R3/R4’, ‘R4/R5’, ‘(R1-R3)/(R1+R3)’, ‘(R3-R4)/
(R3+R4)’, ‘(R3-R5)/(R3+R5)’, ‘(R4-R5)/(R4+R5)’}. For 
turbidity, the selected subset included: {‘R1-R5’, ‘R2-
R5’, ‘R3-R4’, ‘R1/R5’, ‘R2/R4’, ‘R2/R5’, ‘(R1-R5)/
(R1+R5)’, ‘(R2-R5)/(R2+R5)’, ‘(R3-R4)/(R3+R4)’, ‘(R3-
R5)/(R3+R5)’}.

Accuracy Evaluation of Water 
Quality Inversion Model

Accuracy Verification of Suspended Solids 
Concentration Inversion Model

Six suspended solids concentration inversion models, 
which were based on SVR, RF, XGBoost, BO-SVR, 
BO-RF, and BO-XGBoost, respectively, underwent 
accuracy verification (Table 3).

A comprehensive comparison of six models for 
suspended solids concentration inversion reveals that 
the inversion model based on BO-XGBoost outperforms 
others in all evaluation indicators. The model exhibits an 
exceptionally high R² value of 0.93, and it achieves the 
lowest values for both RMSE and MAE; therefore, it is 
the most outstanding model of all models. Additionally, 
the R² values of the SVR, RF, and XGBoost inversion 
models were respectively enhanced by 13.0%, 4.9%, and 
4.7% after applying Bayesian Optimization techniques. 
This demonstrates the effectiveness of Bayesian 
Optimization in enhancing the accuracy of inversion 
models. In conclusion, the model based on BO-XGBoost 
exhibits the highest accuracy and the smallest errors in 
the inversion of tidal suspended solids concentration. 
Therefore, this model is selected as the optimal model 
for tidal suspended solids concentration inversion.

Validation of Turbidity Inversion Model

Accuracy validation was conducted for six turbidity 
inversion models based on SVR, RF, XGBoost, BO-
SVR, BO-RF, and BO-XGBoost (Table 4).

Comparing the evaluation criteria of six turbidity 
inversion models, the model based on BO-XGBoost 
outperforms other models in all criteria. It achieved an 
R² value of 0.93, which is optimal among all models, 
and both RMSE and MAE achieved the minimum. 
Furthermore, by applying Bayesian Optimization, 
improvements were made to the SVR, RF, and XGBoost 
inversion models, resulting in a 10.8%, 5.9%, and 
7.1% increase in R², respectively, demonstrating the 
effectiveness of Bayesian Optimization in enhancing 
the accuracy of inversion models. In summary, the 
BO-XGBoost model exhibits the highest accuracy and 
minimal errors in turbidity inversion; therefore, it is the 
optimal choice for tidal bore turbidity inversion.

Combination Methods Spectral Feature Parameters

Single Band Ri i=1-6

Differential Index (DI) Ri-Rj i,j=1-6 and j≠ i

Ratio Index (RI) Ri/Rj i,j=1-6 and j≠ i

Normalized Index(NDI) (Ri-Rj)/(Ri+Rj) i,j=1-6 and j≠ i

Table 1. Spectral Feature Parameters.
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Inversion Results of Multispectral Images

Utilizing multispectral imagery, this study applied a 
Bayesian-optimized XGBoost (BO-XGBoost) model to 
invert suspended sediment concentration (SSC) in tidal 

bore environments at Qibao and Yanguan stations along 
the Qiantang River.

Band and band 
combination

Suspension concentration Turbidity

r p r p

R5 0.613 0.000** 0.734 0.000**

R1-R4 -0.751 0.000** -0.899 0.000**

R1-R5 -0.800 0.000** -0.915 0.000**

R2-R3 -0.743 0.000** -0.878 0.000**

R2-R4 -0.741 0.000** -0.852 0.000**

R2-R5 -0.696 0.000** -0.776 0.000**

R3-R4 -0.667 0.000** -0.742 0.000**

R1/R3 -0.641 0.000** -0.773 0.000**

R1/R4 -0.674 0.000** -0.789 0.000**

R1/R5 -0.719 0.000** -0.828 0.000**

R1/R6 -0.692 0.000** -0.793 0.000**

R2/R3 -0.709 0.000** -0.830 0.000**

R2/R4 -0.704 0.000** -0.816 0.000**

R2/R5 -0.739 0.000** -0.847 0.000**

R2/R6 -0.708 0.000** -0.808 0.000**

R3/R4 -0.763 0.000** -0.873 0.000**

R3/R5 -0.802 0.000** -0.904 0.000**

R3/R6 -0.747 0.000** -0.837 0.000**

R4/R5 -0.844 0.000** -0.929 0.000**

R4/R6 -0.726 0.000** -0.792 0.000**

(R1-R3)/(R1+R3) -0.672 0.000** -0.817 0.000**

(R1-R4)/(R1+R4) -0.744 0.000** -0.874 0.000**

(R1-R5)/(R1+R5) -0.811 0.000** -0.928 0.000**

(R1-R6)/(R1+R6) -0.746 0.000 -0.844 0.000**

(R2-R3)/(R2+R3) -0.741 0.000** -0.869 0.000**

(R2-R4)/(R2+R4) -0.778 0.000** -0.898 0.000**

(R2-R5)/(R2+R5) -0.833 0.000** -0.940 0.000**

(R2-R6)/(R2+R6) -0.756 0.000** -0.843 0.000**

(R3-R4)/(R3+R4) -0.795 0.000** -0.904 0.000**

(R3-R5)/(R3+R5) -0.851 0.000** -0.945 0.000**

(R3-R6)/(R3+R6) -0.709 0.000** -0.776 0.000**

(R4-R5)/(R4+R5) -0.866 0.000** -0.943 0.000**

Table 2. Pearson correlation coefficients between spectral characteristic parameters that meet the inversion requirements and water 
quality parameters.
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Inversion Results in Suspended Solids Concentration

Fig. 4 details the inversion results of suspended 
sediment concentration (SSC) at Qibao Station on the 
Qiantang River. As shown in Fig. 4, the retrieved and 
measured SSC values at five sampling points during 
the monitoring process exhibit strong agreement, with 
a coefficient of determination (R²) of 0.91, root mean 
square error (RMSE) of 4.61 mg/L, and mean absolute 
error (MAE) of 4.24 mg/L, indicating high model 
accuracy.

Similarly, the SSC inversion results for Yanguan 
Station are presented in Fig. 4. The comparison between 
retrieved and measured SSC values demonstrates robust 
consistency, achieving an R² of 0.92, RMSE of 312.7 
mg/L, and MAE of 230.5 mg/L. Notably, while both 
stations show strong model performance, the elevated 
RMSE and MAE at Yanguan Station likely reflect the 
intensified hydrodynamic turbulence characteristic of 
this tidal bore-dominated reach.

Turbidity Inversion Results

Fig. 5 details the turbidity inversion results for Qibao 
Station on the Qiantang River. As depicted in Fig. 5, 
the retrieved and measured turbidity values across five 
sampling points during the monitoring process exhibit 
strong agreement, with a coefficient of determination 
(R²) of 0.95, root mean square error (RMSE) of 3.24 
NTU, and mean absolute error (MAE) of 2.92 NTU, 

underscoring the model’s precision in low-turbulence 
environments.

Fig. 5 details the turbidity inversion results for 
Yanguan Station. The comparison between retrieved 
and measured values demonstrates robust consistency, 
yielding an R² of 0.93, RMSE of 24.9 NTU, and MAE 
of 22.8 NTU. The relatively higher errors at Yanguan 
Station align with its exposure to intensified tidal 
bore dynamics, which amplify suspended sediment 
variability and optical complexity.

Discussion

Machine Learning Model Performance

A total of 90 preprocessed datasets were partitioned 
into a sample set, with approximately three-sevenths 
allocated for training and the remainder reserved for 
testing. During model development, the optimal feature 
subsets derived from spectral parameter optimization 
were employed as independent variables, while in-
situ water quality measurements served as dependent 
variables, enabling the construction of tidal bore 
water quality inversion models using Support Vector 
Regression (SVR), Random Forest (RF), and eXtreme 
Gradient Boosting (XGBoost). Additionally, Bayesian 
Optimization was applied to refine hyperparameters for 
each algorithm, yielding enhanced models: Bayesian-
Optimized SVR (BO-SVR), Bayesian-Optimized RF 
(BO-RF), and Bayesian-Optimized XGBoost (BO-

Water quality parameters Model
Evaluation indicators

R2 RMSE/mg·L-1 MAE/mg·L-1

Suspended solids concentration

SVR 0.69 450.54 420.45

RF 0.82 412.52 401.35

XGBoost 0.85 380.55 350.54

BO-SVR 0.78 401.58 370.65

BO-RF 0.86 350.41 336.44

BO-XGBoost 0.89 310.54 280.24

Table 3. Accuracy verification of suspended solids concentration inversion models.

Water quality 
parameters Model

Evaluation indicators

R2 RMSE/NTU MAE/NTU

Turbidity

SVR 0.65 65.36 61.06

RF 0.85 58.93 56.37

XGBoost 0.87 53.36 49.05

BO-SVR 0.72 57.38 54.98

BO-RF 0.90 40.75 38.86

BO-XGBoost 0.93 33.36 30.43

Table 4. Accuracy validation of turbidity inversion models.
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XGBoost). This framework developed six distinct 
inversion models—SVR, RF, XGBoost, BO-SVR, BO-
RF, and BO-XGBoost— for estimating both suspended 
sediment concentration (SSC) and turbidity in tidal bore 
environments.

In order to visually compare the inversion results of 
each model, the study conducted a linear fitting analysis 
between the observed values and the model-predicted 
values for suspended solids concentration (Fig. 6). From 
the figure, it can be observed that the slope of the fitted 
line for the model based on BO-XGBoost reaches 0.87, 
and the water quality parameter data points are the 
closest approach to the 1:1 trend line. This indicates 
the model's performance is optimal, and its estimation 
level is robust. Therefore, the suspended solids inversion 
model based on BO-XGBoost is suitable for estimating 
the concentration of suspended solids in the Qiantang 
River tidal bore area.

To visually compare the inversion performance of 
each model, the study conducted linear fitting of the 
turbidity ground truth values and the model inversion 
values for each model (Fig. 7). The graph shows that 

the turbidity inversion model based on BO-XGBoost 
has a slope of 0.91, and the water quality parameter data 
points were the closest approach to the 1:1 trend line. 
This indicates the model's performance is optimal, and 
its estimation level is robust. Therefore, the turbidity 
inversion model based on BO-XGBoost is suitable for 
estimating the turbidity concentration in the Qiantang 
River tidal bore area.

In this study, we selected representative traditional 
regression algorithms from the machine learning 
domain – Support Vector Regression (SVR), Random 
Forest (RF), and eXtreme Gradient Boosting (XGBoost) 
– to develop water quality inversion models for the 
Qiantang River tidal bore. Bayesian Optimization was 
further applied to refine hyperparameters for these 
models, and their performance was evaluated using 
metrics including the coefficient of determination (R²), 
mean absolute error (MAE), and root mean square error 
(RMSE). Comparative analysis revealed that the BO-
XGBoost model outperformed other algorithms in both 
SSC and turbidity inversion, thereby establishing it as 
the optimal model for tidal bore water quality retrieval.

Fig. 4. Temporal Variation of SSC Inversion Results: (a) Qibao Station; (b) Yanguan Station.

Fig. 5. Temporal Variation of Turbidity Inversion Results: (a) Qibao Station; (b) Yanguan Station.

(a) Temporal Variation of Suspended Sediment 
Concentration Inversion Results at Qibao Station

(a) Temporal Variation of Turbidity Inversion Results at 
Qibao Station

(b) Temporal Variation of Suspended Sediment 
Concentration (SSC) Inversion Results at Yanguan 
Station

(b) Temporal Variation of Turbidity Inversion Results at 
Yanguan Station
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Discussion of Water Quality Inversion Results

1. Suspended Sediment Concentration Inversion in 
the Qiantang River

Inversion models for tidal bore suspended solids 
concentration were constructed using BO-XGBoost 
based on multispectral imagery data. The suspended 
solids concentration at Qiantang River Qibao Station 
and Yanguan Station was inverted.

According to the inversion data from each 
sampling point, it was found that the suspended solids 
concentrations at sampling points A and E of the Qibao 

Station were relatively high, reaching up to about 80 
mg/L, while the concentrations at sampling points B, 
C, and D were relatively lower, around 18 mg/L. This 
phenomenon may be related to factors such as estuarine 
topography and hydrodynamics. Influenced by the 
topography and hydrodynamic characteristics, the water 
depth in the center of the river is greater than that on both 
banks, and the flow velocity is relatively faster, which 
is conducive to the transport and dilution of suspended 
solids, resulting in relatively lower concentrations in 
these areas. Conversely, due to the shallower water depth 
and slower flow velocity in shallow water areas near the 

Fig. 6. Scatter plot of observed and predicted suspended solids concentrations.
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shore, suspended solids are more likely to deposit here, 
leading to relatively higher concentrations of suspended 
solids.

Fig. 8 represents the results of 8 out of 23 samples 
taken at the Yanguan Station, providing an overview 
of the suspended solids concentration variations during 
the tidal bore. Fig. 8 shows that the distribution of 
suspended solids concentration at the Yanguan Station 
was relatively stable during the first three sampling 
events. However, during the fourth sampling event, 
especially near the two piers, a significant change in 
suspended solids concentration distribution occurred, 

reaching a maximum of approximately 6000 mg/L. 
This change is likely due to the abrupt flow velocity 
and direction alteration when the tidal surge arrives, 
particularly the drastic changes in the near-bottom flow 
field. The strong turning current, coupled with complex 
turbulence and vortex structures, scours the bed and 
causes a large number of fine sediment particles to be 
suspended, leading to a sharp increase in suspended 
solids concentration in the water. This change is 
particularly evident near the piers, as they hinder the 
flow, intensifying the effects of turbulence and vortices. 
The flow velocity slows as the flood tide weakens, and 

Fig. 7. Scatter plot of turbidity ground truth values and inversion values.
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the suspended solids concentration gradually decreases, 
eventually reaching a relatively stable state. At this 
point, the suspended solids concentration at the sampling 
point is approximately 3900 mg/L, as observed in the 
inversion graph of the twentieth sampling event.

In summary, the research results indicate that the 
suspended solids concentration exhibits significant 
spatial variations due to the combined effects of 
environmental factors such as water depth, typically 
manifested as a trend of lower concentration in the center 
and higher concentration on both banks. Additionally, 
the influence of tidal surges on the suspended solids 
concentration is also significant. During the flood tide 
period, as the tidal surge intensity increases, there is 
a notable increase in suspended solids concentration, 
particularly near the piers where the changes are more 
pronounced.

2. Turbidity Inversion in the Qiantang River
Inversion models for tidal bore turbidity were 

constructed using BO-XGBoost based on multispectral 
imagery data. The turbidity at Qiantang River Qibao 
Station and Yanguan Station was inverted.

Based on the inversion data from each sampling 
point, the turbidity at sampling points A and E in Qibao 
Station is relatively high, reaching a maximum of 
approximately 65 NTU, while the turbidity at sampling 

points B, C, and D is relatively lower, around 15 NTU. 
This phenomenon may be influenced by topography and 
hydrodynamic characteristics. The water depth in the 
center of the river is typically greater than that of the 
two banks, and areas with greater water depth usually 
have faster water flow velocities, which facilitates 
the transport and dilution of suspended particles. 
As a result, the turbidity is relatively lower in these 
areas. Conversely, in the shallow water areas near 
the shoreline, where water flow velocities are slower, 
suspended particles are more prone to deposit in this 
region, resulting in higher turbidity.

Fig. 9 shows the results of 9 out of 23 samplings at 
Yanguan Station, revealing the turbidity distribution 
during the tidal surging period. In the first three 
samplings, the turbidity distribution remained 
relatively stable. However, during the fourth sampling, 
particularly near the two piers, there was a sudden and 
significant change in turbidity distribution, reaching a 
maximum of approximately 820 NTU. This change is 
likely due to the rapid alteration in water velocity and 
direction with the arrival of the tidal surge, especially in 
the near-bottom flow field, where intense changes occur. 
The strong turning water flow, combined with complex 
turbulence and vortex structures, scours the bottom 
bed, causing a large amount of fine sediment to rise and 

Fig. 8. Inversion of Suspended Particulate Matter Concentration at Yanguan Station.
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sharply increase the turbidity in the water. This change 
is particularly evident near the piers, as they obstruct the 
flow, intensifying the effects of turbulence and eddies. 
As the flood tide weakens and the flow velocity slows 
down, the turbidity gradually decreases and tends to 
stabilize. At this point, the turbidity at the sampling 
point is approximately 312 NTU, as observed in the 
inversion map of the twentieth sampling.

The above analysis results are consistent with the 
measured data, validating the feasibility of multispectral 
imagery and machine learning inversion models in tidal 
bore water quality monitoring.

Application and Implications of Water Quality Inversion

This study developed inversion models for suspended 
sediment concentration (SSC) and turbidity in the 
Qiantang River tidal bore by integrating drone-based 
multispectral remote sensing with Bayesian-optimized 
machine learning algorithms. The results demonstrated 
significant negative correlations between normalized 
spectral indices (e.g., (R4-R5)/(R4+R5)) and both SSC 
and turbidity, revealing the sensitivity of shortwave 
bands (R4, R5) to fine-grained suspended particles. 
The BO-XGBoost model substantially outperformed 
conventional models, achieving determination 

coefficients (R²) of 0.89 for SSC and 0.93 for turbidity. 
Spatial analysis identified a distinct "low-center, high-
bank" distribution pattern, with SSC surges near bridge 
piers during flood tides (exceeding 6,000 mg/L) due to 
turbulent scouring. The strong correlation (R² > 0.90) 
between SSC and turbidity validated turbidity as a 
reliable proxy for SSC in dynamic tidal environments. 
Both parameters exhibited synchronous spatiotemporal 
trends, escalating sharply with intensified tidal bore 
dynamics, particularly near engineered structures like 
bridge piers.

Compared to traditional satellite remote sensing for 
water quality inversion, the drone-based multispectral 
imagery employed in this study significantly enhanced 
spatial resolution, enabling precise detection of minor 
water quality variations under transient tidal bore 
disturbances. While retaining a consistent inversion 
framework, Bayesian Optimization effectively mitigates 
model overfitting. Algorithmically, whereas prior 
studies predominantly focused on Support Vector 
Regression (SVR) and Random Forest (RF), this work 
demonstrates XGBoost’s superiority in modeling 
nonlinear water quality parameters. When integrated 
with Bayesian hyperparameter tuning, the approach 
achieved a 37% improvement in optimization efficiency 
over conventional grid search methods. High-frequency 

Fig. 9. Turbidity inversion plot of the Yanguan Station.
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imagery revealed the acute impacts of instantaneous 
tidal bore dynamics on water quality, particularly 
in areas with dense hydraulic infrastructure. This 
addresses a critical gap in short-term hydrodynamic 
monitoring theory.

The high correlation of spectral feature parameters 
originates from the absorption-scattering effects of 
suspended particles on specific wavelength bands. For 
instance, shortwave bands (R4, R5) exhibit enhanced 
sensitivity to fine-grained sediments, a finding that 
provides a physical basis for optimizing multispectral 
band combinations in remote sensing applications. 
The superior accuracy of the BO-XGBoost model 
underscores Bayesian Optimization’s capability to 
probabilistically explore global parameter spaces, 
effectively circumventing local optima traps inherent 
in traditional hyperparameter tuning methods. This 
establishes an efficient algorithmic framework for 
water quality inversion in complex hydrodynamic 
environments. Furthermore, abrupt SSC surges near 
bridge piers reveal the hydrodynamic perturbations 
induced by hydraulic infrastructure, highlighting the 
necessity to prioritize assessments of engineering 
layouts for their potential risks – such as bed erosion and 
ecosystem disruption – in estuarine management. These 
insights offer a scientific foundation for water quality 
governance in tide-sensitive zones.

The strengths of this study are threefold. (1) 
Integration of drone platforms with synchronized 
in-situ measurements enabled high spatiotemporal-
resolution dynamic monitoring of tidal bore water 
quality; (2) Incorporation of Bayesian Optimization 
into estuarine water quality inversion significantly 
enhanced model accuracy and generalizability; and (3) 
The inversion results directly support the development 
of an early-warning system for water quality along the 
Qiantang River, demonstrating substantial practical 
engineering value. However, several limitations 
warrant consideration. (1) Data collection was limited 
to two tidal bore events, lacking coverage of seasonal 
or extreme tidal conditions that drive water quality 
variability; (2) The model’s optimization efficacy, 
validated in the Qiantang River’s specific reaches, 
requires further validation across diverse geomorphic 
estuaries to confirm its universality; and (3) The 
exclusion of environmental covariates (e.g., wind speed, 
water temperature) may compromise model robustness 
under complex meteorological conditions.

This study demonstrates that the integration of drone-
based multispectral remote sensing with Bayesian-
optimized machine learning models can efficiently invert 
spatiotemporal dynamics of water quality parameters 
in tidal estuaries, offering a high-accuracy, low-cost 
technical pathway for tidal bore monitoring. Future 
efforts should prioritize (1) Extending data collection 
periods to encompass multi-seasonal and variable tidal 
intensity scenarios, enhancing model adaptability; (2) 
Integrating hydrological models with meteorological 
satellite data to establish a multi-source-driven 

inversion framework; (3) Developing edge computing-
enabled drone systems for real-time monitoring and 
rapid anomaly alerting. With these advancements, the 
proposed methodology holds promise as a robust tool 
for tidal estuary water quality management, providing 
critical technological support for estuarine ecological 
conservation and sustainable development.

Discussion

This study focused on the Qiantang River Qibao and 
Yanguan stations, using water quality data collected 
during the tidal bore on November 16th and 28th, 2023, 
and the simultaneous acquisition of multispectral remote 
sensing images. A machine learning-based model for 
water quality inversion in the Qiantang River tidal bore 
was constructed and applied. The main conclusions are 
as follows:

This study used the Pearson correlation coefficient 
to evaluate the correlation between spectral feature 
parameters and various water quality parameters. 
The results showed that the correlation between total 
nitrogen and total phosphorus and spectral feature 
parameters was generally low and did not meet the 
requirements for inversion. The correlation between 
suspended solids concentration, turbidity, and single-
band spectral feature parameters was generally low, 
but their correlation with spectral feature parameters 
constructed using the ratio index and normalized index 
was high. Among all spectral feature parameters, (R4-
R5)/(R4+R5) showed the most significant correlation 
with suspended solids concentration and turbidity, with 
the highest absolute correlation coefficient reaching 
0.866 for suspended solids concentration and 0.943 for 
turbidity, indicating a strong correlation.

This study constructed Support Vector Machine 
(SVM), Random Forest (RF), and Extreme Gradient 
Boosting (XGBoost) models based on the optimal 
feature subset and measured water quality parameters. 
The Bayesian Optimization algorithm optimized 
these three machine learning models, resulting in 
six tidal surge water quality inversion models. By 
comprehensively comparing each model’s evaluation 
metric and fitting accuracy, the inversion models for 
suspended solids concentration and turbidity based on 
the BO-XGBoost model showed the highest monitoring 
accuracy, with a coefficient of determination reaching 
0.89 and 0.93, respectively. The models exhibited stable 
estimation performance and can be considered optimal 
inversion solutions for water quality in the Qiantang 
River tidal surge.

Based on the multispectral image data, the suspended 
solids concentration and turbidity inversion models 
constructed using BO-XGBoost were applied to invert 
the suspended solids concentration and turbidity at the 
Qiantang River Qibao and Yanguan stations. The laws 
of spatiotemporal variation and influencing mechanisms 
were analyzed. The analysis results were consistent 
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with the measured data, validating the feasibility of 
multispectral imagery and machine learning inversion 
models in tidal surge water quality monitoring. 
Further analysis indicated that the suspended solids 
concentration and turbidity tended to increase in the 
center and decrease at the two banks. Additionally, 
the influence of tidal surges on suspended solids 
concentration and turbidity was significant. During the 
rising tide, the tidal surge dynamics strengthened. The 
suspended solids concentration significantly increased, 
especially near the bridge piers, where the variations 
were more pronounced. Furthermore, the analysis 
revealed that the spatiotemporal variation trends of 
turbidity and suspended solids concentration were 
generally consistent.
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