
Introduction

Wastewater management and reuse are integral to 
water resources management [1]. Efficient wastewater 
management includes collection, treatment, discharge 

into nearby streams, and/or reuse [2]. All these phases 
of wastewater management require proper accounting 
for the quantities and quality of the wastewater. When 
wastewater is poorly managed, however, it may lead to 
environmental degradation [2]. Typical contaminants 
found in urban wastewater that can degrade surface water 
include nutrients such as phosphates, nitrates, nitrites, 
and ammonia [3]. These nutrients cause eutrophication 
of surface water bodies, among other environmental 
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Abstract

This study aimed to determine the volume of institutional wastewater generated on a university 
campus for better wastewater management and reuse purposes. The study also involved the development 
of a predictive model to forecast the volumes of wastewater to be generated at future dates using  
the Artificial Neural Network (ANN). Data on the volume of wastewater was collected over 81 days 
by measuring the institution’s wastewater at the final exit point. Levenberg Marquardt and Bayesian 
Regularization algorithms were used to train the dataset, using a 9-15-1 structure for both algorithms. 
The dataset from 50 days was used to train the algorithms, while the dataset from 20 days was used 
for model validation. The remaining dataset from the last 11 days was used to perform an external 
test. The Bayesian Regularization algorithm performed better at predicting wastewater volumes  
with an accuracy of 95%, outperforming Levenberg Marquardt’s algorithm with 91% accuracy. 
Additionally, the study proposed a three-phase systematic approach for planning a wastewater reuse 
project. The phases comprise the preliminary, planning, and execution phases. Planners can use  
the findings from this research to manage wastewater treatment plants that receive more wastewater 
volumes than their design capacity.

Keywords: wastewater, reuse, artificial neural network, Bayesian regularization algorithm, Levenberg 
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problems [3, 4]. Several reports of surface water 
pollution arise from discharging inefficiently managed 
wastewater. Liu et al. [5] stated that the highest surface 
water pollution rate in the world can be found in Central, 
Southeast, and East Asia (including China). The authors 
attributed surface water pollution to increased urban 
wastewater discharge, which, in turn, is directly linked 
to increased population growth and industrial activities. 
In Ghana, it was found that illegal mining activities 
heavily polluted the Pra River and consequently drained 
the acid mine into the river [6]. The study on the Pra 
River is further complicated by reports that people still 
use the polluted water for domestic purposes due to a 
lack of alternative clean water sources. Similar reports 
from Addis Ababa in Ethiopia show that 90% of the 
effluents from industrial and agricultural activities 
are released into nearby surface water bodies without 
proper treatment, leading to ecosystem damage and 
a decline in the quality of the impacted rivers [7]. 
When wastewater is managed correctly, however, the 
benefits are invaluable. For example, reusing treated 
wastewater can lead directly to conserving groundwater 
and other freshwater resources [1]. Studies also show 
that wastewater reuse can be engaged to combat the 
problems of water stress and scarcity [8]. Treated 
wastewater can be used as an alternative to freshwater 
for activities such as irrigation, landscaping, navigation, 
recreation, and other non-human skin contact purposes 
[9], thus decreasing pressure on freshwater sources. 

However, converting wastewater into a valuable 
resource and an alternative to freshwater requires 
collecting wastewater generation data. Such data 
is necessary to design the required collection, 
treatment, storage, and transmission infrastructure. 
One method that has found useful application for 
analyzing wastewater data is the artificial neural 
network (ANN). Several studies have applied ANN to 
achieve wastewater quality and treatment efficiency. 
For example, Mohammad et al. [10] utilized ANN to 
model the removal of chlorophenols from wastewater 
via reverse osmosis. Findings from that study revealed 
that the neural network was used to accurately estimate 
chlorophenol rejection in the system. Also, ANN was 
adopted by Hamada [11] to predict the performance 
of the wastewater treatment plant in Gaza. In this 
study, the ANN model proved to be better than the 
multiple linear regression (MLR) model for predicting 
water quality parameters, which was comparable to 
another study carried out by Bekkari and Zeddouri 
[12], who utilized ANN to predict the performance of 
the Touggourt Wastewater Treatment Plant in Algeria 
regarding COD. Several other studies utilizing the 
ANN modeling approach in wastewater treatment have 
indicated different benefits, such as higher efficiency and 
accuracy [13, 14]. However, few studies have applied 
ANN to wastewater volume prediction for management 
purposes. Therefore, the current study aims to bridge 
this gap by using an artificial neural network (ANN) to 
account for current and future volumes of wastewater 

that will be received at a wastewater treatment facility. 
The study can also be extrapolated to the problem of 
inadequate capacity of a wastewater treatment plant 
(WWTP) infrastructure. Due to rapid population 
growth and the attendant increase in wastewater 
volumes, existing WWTPs often become inadequate. 
Without sufficient funds or physical space to expand 
the infrastructure, predicting expected wastewater 
volumes for management purposes becomes a cheaper 
alternative. 

Materials and Methods

Study Area

The study location is the campus of a private 
institution of higher learning in the Ota community, 
Ogun State, Nigeria. The campus was selected for the 
study because it provides a relaxed environment to 
study diverse behaviors and activities that influence 
wastewater generation patterns. Additionally, the 
campus environment facilitated more comprehensive 
data collection because of the relative safety of the 
campus for personnel and research equipment. Typically, 
industry managers do not permit researchers to collect 
wastewater data because of the fear of documented 
evidence of their pollution activities and the attendant 
regulatory penalties. Nevertheless, the procedure laid 
out in this study can be adapted to study urban or 
industrial wastewater volume prediction. The study area 
is located approximately 16 km from the Lagos border 
and 81 km from the Ogun state capital, Abeokuta.  
The university community is rapidly growing with 
an annual enrollment of about 8079 students [1].  
The community relies exclusively on groundwater, thus 
putting immense pressure on groundwater resources. 

Previous studies on the same campus showed an 
increase in wastewater generation from 874,081 l/day in 
2013 to 1,512,000 l/day in 2015 [8, 15], with the treated 
effluent discharged into the nearby Atuwara River. Due 
to the overloading of the WWTP, the treatment efficiency 
became compromised, leading to reports of fecal matter 
in the river body [14]. This problem, which was caused 
by the rapid growth in the student population, constitutes 
a significant threat to public health [15]. These problems 
led the institution’s managers to consider alternatives 
that address treatment efficiency and the possibility of 
reuse. 

Data Collection

Wastewater generation data was collected and 
automatically recorded on an hourly basis for 24 hours 
over a total period of 81 days (23rd December 2019 to 
12th March 2020) using an Ultrasonic Open Channel 
Flowmeter (model number: HOH-L-CF (M191022001)). 
This period of 81 days captured both the base flow 
and maximum flow (from the holiday season when 
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students are away from campus and the season when 
the university is in session, respectively). Due to time 
constraints for the field investigation, an 81-day period 
that strategically coincides with the end of the dry 
and the start of the wet seasons was chosen for the 
wastewater volume data collection. This approach aims 
to ensure that the results accurately reflect the seasonal 
variations and their impact on water use and wastewater 
generated. The 81-day period also coincides with the 
peak population when the campus hosts hundreds of 
thousands of visitors for an annual event and the holiday 
season, which typically has the lowest population 
levels. The ultrasonic open channel flow meter is used 
to determine water levels in a channel by transmitting 
ultrasonic (sound) pulses from a sensor to the surface of 
the flow stream, and it measures the time (t) and velocity 
of the echo (c) that returns to the sensor. The equipment 
also stores data for subsequent retrieval. The ultrasonic 
flowmeter consists of two major components, a probe 
and a host, as depicted in Fig. 1(a-c). A temperature 
sensor is integrated into the probe to compensate for 
changes in air temperature, thus enhancing maximum 
accuracy. 

For this study, a rectangular weir was fabricated to 
regulate the water flow. The probe was installed on the 
upstream side of the weir at a distance of 0.5 m from 
the weir and protected from direct sunlight and strong 
winds. The weir specifications were uploaded into the 
host using the weir type number in the manual. This 
initial calibration enabled the flowmeter to utilize pre-
programmed discharge equations to generate the flow 
rate. The instantaneous flow rate and temperature were 
recorded and stored on the host hourly for subsequent 
retrieval. Daily flow rates were also recorded.

Artificial Neural Network

Artificial Neural Network (ANN) is a machine 
learning technique that emulates the operation of the 
human brain. It has been applied to various modeling 
problems [13, 14]. ANN uses processing units known 

as neurons. The operation of the neural network can be 
generalized using the following Equations.

  (1)

Each link in the ANN model has an allocated weight, 
wkj. This weight is multiplied by its input, xj, and added 
to an external bias, bk. yk represents the output signal.  
φ is an activation function that is used to control the 
amplitude range of yk. In this research, the activation 
function to be used is the sigmoid function, and it is 
expressed as follows: 

  (2)

Equation (2) is the most frequently used activation 
function. ANNs can be set up using different model 
types. The model type used for this research is the 
multilayer perceptron (MLP). Depending on the 
architecture required, it can have one or more hidden 
layers, a single input layer, and a single output layer. For 
the essential operation of this model, the input data is 
supplied to the input layer, and the hidden layer collects 
this input and generates the output. The user at the output 
layer then receives this output. Neurons between layers 
are interconnected, and this is what makes it possible to 
obtain an output. MLP is also known as a feed-forward 
neural network. In the input layer, the neuron output is 
represented by Equation (3):

  (3)

Where P represents the number of neurons in the 
input layer. Furthermore, the output is fed into a hidden 
neuron in the hidden layer, and the output of this layer is 
represented by Equation (4):

  (4)

Fig. 1. Picture of the Ultrasonic Open Channel Flowmeter in operation: a) host, b) probe, and c) weir.
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  (5)

Where φ is the activation function, Kh and P are the 
number of the hth hidden layer neurons and their inputs, 
respectively. Nh is the number of hidden layers.

The result at the output layer is obtained by adding 
the outputs generated at the hidden layer; this is 
expressed as follows:

  (6)

Where T is the total number of neurons in the 
output layer. wkh,t is the weight of the connecting link of  
the hidden layer. 

This study used the ANN toolbox in MATLAB to 
develop a model to predict the volume of wastewater 
generated within the university. A heuristic approach 
was adopted to obtain the best parameters and training 
algorithm. The data set for the development of the model 
was collected by installing a flow meter at the discharge 
point of the Covenant University wastewater treatment 
facility for 81 days. This data was divided into training, 
testing, and external testing datasets. Fifty data samples 
were used to train, and twenty were used for testing. 
Testing can be subdivided into validation and testing, 
depending on the training algorithm used by the model. 
Eleven data samples were separated from the rest of 
the data set and used to perform an external test after 
the model had been developed (created, trained, and 
validated). 

Two models were developed from two training 
algorithms (Bayesian Regularization and Levenberg-
Marquardt). The output results were compared to 
determine the best-performing algorithm. The data 
fed into the neural network fitting tool had nine inputs 
and one output. The output variable was the generated 
wastewater volume in cubic meters. The inputs consisted 
of: 
(a) Two temperature variables (highest temperature, TH, 

and lowest temperature, TL) in degrees Celsius.

(b) One average humidity variable, H.
(c) One binary variable for rainfall.
(d) Five binary variables for “type of day”: weekend 

variable (D1), public holiday variable (D2), school in 
session variable (D3), church program variable (D4), 
and postgraduate (PG) school in session variable 
(D5).
Table 1 shows the input parameters used for the 

neural network, and Fig. 2 provides a schematic 
representation of the neural network used in this 
research.

The models developed were made up of three layers: 
the input, the hidden layer, and lastly, the output layer. 
The input layer consists of 9 neurons, each representing 
an input variable. The hidden layer possesses  
15 neurons, which were obtained using the best design 
fit approach. The output layer has 1 neuron representing 
the output, the wastewater generated. The tansig 
function represented an activation function at the hidden 
layer, while the purelin function represented the output 
layer. The relationship between the input parameters and 
the wastewater generated is represented by Equation (7).

  (7)

The mapping between the output and input variables 
at the hidden layer and output layer can be expressed as 
follows:

  (8)

  (9)

  (10)

 (11)

  (12)

Table 1. The input variables utilized in this model.

Annotation Inputs Units Meaning 

X1 Highest Temperature Degree Celsius

X2 Lowest Temperature Degree Celsius

X3 Average Humidity

X4 Rainfall mm

X5

Type of Day

D1 Weekday Variable

X6 D2 Public Holiday Variable

X7 D3 School in Session Variable

X8 D4 Social Activities Variable

X9 D5 PG and Summer School in Session Variable
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of wastewater was discharged into the environment. 
The peak volume of wastewater discharged into  
the environment for the study duration was logged  
at 8125.399 m3 (8,125,399 L). The lowest recorded 
volume was 4694.240 m3 (4,694,239.897 L). Also,  
an average of 280.197 m3 (280,000.197 L) of wastewater 
was discharged from the treatment facility hourly. 
Furthermore, from field observations, the daily flow 
rates peaked at about 22:00 h (10:00 pm), with an average 
flow rate of 293.530 m3/hr. Between 23:00 h (11:00 pm) 
and 6:00 h (6:00 am), the flow rates declined consistently 
to a record low of about 269.518 m3/h. The higher flow 
at night indicates that water consumption was higher 
during the night hours compared to the daytime, thus 
giving an insight into the activities of the university 
populace. Fig. 4a) and 4b) provide graphical plots of the 
wastewater volumes recorded during the study period 
and the graphical representation of hourly flow rates for 
the duration of the study, respectively.   

These findings revealed a 339.72% increase in the 
volume of wastewater obtained from previous studies in 
2015 [8, 15]. The wide difference in the values captured 
in the 2015 and current studies is attributable to using 
an ultrasonic open channel flowmeter, a precision 
instrument. The manual method captured wastewater 
generation data for just a few hours per day over 2 
weeks, while the ultrasonic open channel flowmeter 
was used continuously for nearly 3 months. Fig. 5 gives 
a graphical comparison of wastewater generated and 

y* represents the generalized output equation of the 
output layer after several iterations. Fig. 3 illustrates the 
ANN workflow process from MATLAB. The workflow 
summarizes the operations that were performed to 
develop the wastewater prediction model. When the 
outcomes were less than satisfactory, the network 
architecture was adjusted. 

The network calculates errors on the training and 
testing datasets. The ANN stops training when the error 
is minimal, which indicates that the neural network can 
generalize to an unseen dataset. Performance analysis is 
based on Regression (R) and Mean Square Error (MSE). 
Regression analysis is a set of statistical processes 
for estimating the relationships between a dependent 
variable (outcome variable) and one or more independent 
variables (predictors). For any model, the Regression (R) 
value of 1 is the most desirable, while the R-value of 0 
is the least desirable. MSE measures the average of the 
squares of the errors. It is an error indicator that shows 
the performance of our model. MSE values closer to 0 
are the most desirable.

Results and Discussion

Preliminary Field Investigations

During the 81-day study period, it was observed that 
an average of 6,724.731 m3/day (6,724,731.019 L/day) 

Fig. 2. MLP schematic diagram of the neural network model.
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water pumped within the community for 2013, 2015,  
and 2020. 

Compared to wastewater flows in similar-sized 
communities, the volumes of wastewater within the 
campus were similar to USEPA estimates of cities 
with a similar population. The USEPA estimates that  
a city of 10,000 people or fewer is expected to generate 
an average daily wastewater volume of 4,546,092 L  
a day [16]. The university community has an estimated 
population of 13,000 residents. However, it receives 
over 200,000 visitors weekly due to religious gatherings 
within the city [17]. 

The volume of water consumed within the 
community can be estimated from wastewater-generated 
values because research has shown that 80% of water 

consumed within a given location is usually transformed 
into wastewater [1]. Therefore, the volume of water 
consumed within the campus can be estimated as: 

  (13)

The foregoing implies that for an average of 
6,724,731.019 L of wastewater generated within the 
campus daily, the estimated daily water consumption is 
8,405,913.75 L. From these findings, water consumption 
estimates can be projected for communities globally if 
population estimates are known. However, variations 
may exist depending on the unique characteristics of the 
cities. For instance, residents’ economic, occupational, 
and social characteristics will significantly affect the 

Fig. 3. ANN simulation process in the MATLAB environment.

x
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water consumption patterns of the community in 
question. 

Prediction Model and Performance Evaluation 
Using the Levenberg Marquardt  

and Bayesian Regularization Algorithms

For model development, the 81-day wastewater 
generation data obtained during field investigations 
was used to train the model. The structure used for 

the Levenberg Marquardt and Bayesian Regularization 
algorithms was (9-15-1). This number was obtained using 
a heuristic approach. Fig. 6 shows the function-fitting 
neural network for both algorithms. The developed 
multilayer perceptron (MLP) model for predicting 
wastewater generated in the university consists of three 
layers: the input, hidden, and output layers. Given that 
the underlying layers have the same structure, the only 
change here is the training algorithm. 

Adapting the same training structure for the 

Fig. 4. a) Volume of wastewater generated over the 81-day study period, b) hourly flow rates for the study duration.

Fig. 5. Wastewater generated and total water consumption within the university campus.
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Levenberg Marquardt and Bayesian Regularization 
Algorithms created a similar comparison criterion. 
The optimum algorithm for the standard wastewater 
prediction model was determined and adopted.

Testing and Validation of the Developed Model

The parity plots for the volume of wastewater 
calculated from the neural network against the actual 
wastewater volumes determined from the 81-day field 
investigation are given in Fig. 7. The best fit of the 
outputs (wastewater generated) is represented using 
colored solid lines, while the dashed lines represent 
the ideal fit. The hollow circles represent the data.  
The deviation of the best fit (colored solid lines)  
and the ideal fit (dashed lines) shows the regression 
analysis performance evaluation of the model. Fig. 7a) 
shows the plots obtained using the Levenberg Marquardt 
algorithm, while Fig. 7b) shows the plots obtained 
from the Bayesian regularization training algorithm.  
Fig. 7a) shows the parity plots for the training, testing, 
and validation stages. 

Using the Levenberg Marquardt algorithm, the 
regression coefficient (R) was 0.911 for the training 
dataset. This value shows that the Levenberg Marquardt 
algorithm performs well enough and can predict the 
volume of wastewater generated. Putting this model to 
the test, the “external” dataset, initially separated from 
the rest of the dataset, was used to test the model further 
to ascertain its performance. The regression plots (R) 
for both the validation and testing stages are 0.934 
and 0.948, respectively, for the Levenberg Marquardt 
algorithm. The last regression plot for the Levenberg 
Marquardt algorithm shows that, on aggregate, all the 
points were located around the bisection; this reveals the 
accuracy of the result and its capabilities in forecasting 
the volume of wastewater generated. For the MSE 
values, the closer the values are to zero, the better.  
A value of zero means that there was no error in 
prediction. The Levenberg Marquardt algorithm revealed 
values of 2.42212×10-3, 1.17115×10-3, and 3.35980×10-3 for 
the training, testing, and validation stages, respectively. 
These values show that the algorithm performed well for 
wastewater volume prediction. 

Fig. 6. Function fitting neural network.

Fig. 7. Detailed plot of the regression analysis performance evaluation of the model. a) Levenberg Marquardt algorithm, b) Bayesian 
Regularization algorithm.
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For the Bayesian Regularization algorithm, 
represented in Fig. 7b), the regression coefficient (R) 
was 0.969 for the training dataset. This value shows 
that the Bayesian Regularization algorithm performed 
well enough and can predict the volume of wastewater 
generated. Putting this model to the test, the “external” 
dataset, initially separated from the rest of the dataset, 
was used to test the model further to ascertain its 
performance. The regression plots (R) for the testing 
stage were 0.938 for the Bayesian Regularization 
algorithm. The last regression plot for the Bayesian 
regularization algorithm shows that, on aggregate, 
all the points were located around the bisection; this 
reveals the accuracy of the result and its capabilities 
in forecasting the volume of wastewater generated. 
The aggregate Regression (R) value of the Bayesian 
Regulation algorithm was 0.945 and was higher than 
that of the Levenberg Marquardt algorithm at 0.916. 

The MSE value for the validation stage in the 
Bayesian Regularization algorithm was zero, implying 
no error in the validation stage. Table 2 shows a 
performance comparison between the Bayesian 
Regularization and Levenberg Marquardt algorithms.

Extrapolatory Capabilities of Neural Networks

From the results obtained, in terms of regression 
(R) and mean squared error (MSE) for the models 
and the external tests, it is evident that the Bayesian 
Regularization algorithm performed better than the 
Levenberg Marquardt for wastewater volume prediction. 
Hence, the Bayesian Regularization model was adopted 
as the final model. Tables 3 and 4 represent the 
separated data obtained from the field, which was used 
to test the Levenberg Marquardt algorithm and Bayesian 
Regularization algorithms, respectively. The tables 
present the actual and predicted data, alongside the 
errors for the separated dataset for both algorithms.  

For the evaluation of the extrapolation capability 
of the developed neural network, the separated data 
for the remaining 11 days was used as input to the 
network. The 11-day data was not used for training, 
testing, and network validation. It was set aside for an 
external test. An illustration can be taken from day 74  
(5th March 2020), which had an actual wastewater 
volume of 6412.088 m3/day, a predicted wastewater 
volume of 6651.61 m3/day, and an error of minus 
(-239.522). On average, the actual wastewater volume 

Table 2. Performance comparison between the Bayesian Regularization and Levenberg Marquardt algorithms.

Levenberg-Marquardt Bayesian Regularization

MSE R MSE R

Training 2.42212×10-3 0.91194 7.12016×10-4 0.96971

Validation 1.17115×10-3 0.93479 - -

External Test 3.35980×10-3 0.94873 4.91555×10-3 0.93851

All - 0.916 - 0.94569

Table 3. Relationship between the actual and the predicted values of wastewater generated (Levenberg Marquardt algorithm).

S/N Day Actual (observed values)
m3/day

Predicted values
m3/day Error

71 2nd March 2020 6393.841 6116.38153 277.4594698

72 3rd March 2020 6925.764 6293.862621 631.9013794

73 4th March 2020 6449.579 6592.267261 -142.6882614

74 5th March 2020 6412.088 6651.610038 -239.5220378

75 6th March 2020 6900.588 6582.229761 318.358239

76 7th March 2020 6309.772 6584.171475 -274.3994749

77 8th March 2020 5844.948 6550.130588 -705.1825881

78 9th March 2020 5750.222 6016.828132 -266.6061321

79 10th March 2020 5975.935 6080.493249 -104.558249

80 11th March 2020 6018.009 6121.629286 -103.6202861

81 12th March 2020 5977.226 6144.402189 -167.1761886

Average 6268.907 6339.455 -70.5486
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was 6268.907 m3/day, the predicted wastewater volume 
was 6339.455 m3/day, and the error was minus (-70.548) 
for the separated dataset.

Compared to the Bayesian Regularization, 
wastewater flows for the same day (day 74) were 
6412.088 m3/day for actual wastewater flow and 
6420.811 m3/day for the predicted flow, with an error 
of minus (-8.723). On average, the actual wastewater 
volume was 6268.907 m3/day, the predicted wastewater 
volume was 6230.358 m3/day, and the error was 38.549 
for the separated dataset. These values further prove that 
the Bayesian Regularization algorithm performed better 
than the Levenberg Marquardt algorithm for wastewater 
volume prediction on the campus. 

Fig. 8 and Fig. 9 show the graphical relationship 
between the predicted and observed wastewater 
volumes for the Levenberg Marquardt and Bayesian 
Regularization algorithms, respectively. The solid lines 
on both charts represent the actual values obtained 
from field investigations for the 11-day separate dataset. 
In contrast, the dotted lines represent the predicted 
wastewater volumes for the same period. Given the 
lack of data for wastewater volumes in similar-sized 
communities and campuses across the country, the 
actual-to-predicted data statistics show that the neural 
network can be extrapolated successfully. 

Previous studies have demonstrated the effectiveness 
of ANN models in making predictions with smaller 

Fig. 8. Relationship between the volume of wastewater predicted values and observed values.

Table 4. Relationship between the actual and the predicted values of wastewater generated (Bayesian Regularization algorithm).

S/N Day Actual (observed values)
m3/day

Predicted values
m3/day Error

71 2nd March 2020 6393.841 6311.350613 82.49038723

72 3rd March 2020 6925.764 6809.970632 115.7933681

73 4th March 2020 6449.579 6431.709828 17.86917239

74 5th March 2020 6412.088 6420.811022 -8.723022422

75 6th March 2020 6900.588 6761.76488 138.82312

76 7th March 2020 6309.772 6200.489546 109.2824539

77 8th March 2020 5844.948 5956.547875 -111.5998755

78 9th March 2020 5750.222 5520.083823 230.1381773

79 10th March 2020 5975.935 6038.119999 -62.18499878

80 11th March 2020 6018.009 6058.055689 -40.04668873

81 12th March 2020 5977.226 6025.029135 -47.80313509

Average 6268.907 6230.358 38.549
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datasets, which is often the case in most sub-Saharan 
contexts regarding water and wastewater. For instance, 
Pasini [18] showed how ANN models could effectively 
handle small experimental and observational datasets. 
Literature suggests that the preprocessing of data and 
structure determination of an ANN model could play  
a critical role in the efficiency and accuracy of 
predictions. For example, Yildirim et al. [19] 
demonstrated that the size of the data set did not impact 
the accuracy of prediction, which was counterintuitive to 
the general recommendation in modeling that suggests 
using the largest dataset possible. Their study found that 
ANN predicted cotton yield better with 6-year datasets 
compared to 13-year datasets, which was influenced 
by the choice of input variables. ANN models can be  
a reliable option when predicting wastewater volumes 
for cities that plan to reuse their wastewater or assess 
the capacities and limits of WWTPs. Additionally, these 
models help identify opportunities for future research, 
such as exploring hybrid approaches or alternative 
architectures to improve performance further.

Systematic Approach to Wastewater  
Reuse Planning

With the low margin of error recorded using  
the Bayesian Regularization algorithm, a careful 
adaptation of this model for larger-scale wastewater 
reuse projects can be critical for higher efficiency.  
This model can be integrated into planning at university 
campuses and small and new communities using  
the input variables as recommended. However, factors 
affecting wastewater generation may vary depending 
on the location considered. A wastewater reuse project 
must follow a systematic approach to attain overall 
success. This study developed a systematic approach 
to a successful wastewater reuse scheme. The process 
is divided into three phases, as identified in Fig. 10. 

Phase 1 represents the preliminary investigation, Phase 
2 represents the planning stage, and Phase 3 involves 
execution.

Phase 1 (preliminary investigation) will require 
identification of the needs of the community. These 
needs will primarily require supplementing any given 
society’s groundwater or surface water supply. Also, 
demands for wastewater reuse may occur because of 
climate change, water, sanitary challenges, etc. Water 
needs will be identified by carefully analyzing the 
chosen water supplementary alternatives. At this stage, 
public acceptability of proposed projects should be 
carried out alongside economic analysis and evaluation. 
If wastewater reuse is ideal, it may be safe to proceed to 
phase 2. In phase 2, the quality of wastewater discharged 
to the environment should be investigated. However, 
this phase may depend on the type of wastewater 
collection system that is operational in the community. 
Determining the quality of wastewater generated will 
enable planners to optimize treatment facilities for 
higher efficiency. 

Before applying modeling techniques for wastewater 
predictions, it is necessary to determine the critical 
variables that determine wastewater flow. For example, 
a similar study in Tehran revealed that 11% to 22% of 
untreated excess wastewater is beyond the capacity of 
the wastewater reuse system for 2031 to 2040, when 
climate change was considered [20]. The study found 
that a 1.29-degree rise in daily temperatures led to  
a 36.9% increase in daily wastewater generation, 
implying that certain key variables are critical for 
developing any wastewater prediction model. A study 
in northern China reported that less than 24% of rural 
domestic sewage was treated, hence the need for water 
consumption and sewage generation data in the area 
[21]. Their study utilized machine learning models 
for county-level rural sewage production, which was 
efficient for sewage treatment designs. 

Fig. 9. Relationship between the volume of wastewater predicted and observed values.
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Using machine learning models is advantageous, 
notably when the model accurately predicts future 
wastewater levels for the proposed project, allowing 
for precise budgeting and resource allocation before 
project execution. Many researchers have tried to utilize 
machine learning models to predict water quality, but 
little attention has been paid to predicting the actual 
volumes of wastewater generated for future scenarios.  
A combination of quality and quantity in prediction 
studies concerning wastewater reuse is essential, as 
one cannot be done without the other. Combining 
these predictions ensures a holistic approach to 
wastewater management, improving both efficiency 
and sustainability. For example, accurate wastewater 
volume predictions allow treatment facilities to optimize 
resource allocation (such as energy and chemical 
usage) while preparing for fluctuations in influent 
flow, which are often affected by weather conditions or 
industrial discharges [22]. Simultaneously, wastewater 
quality predictions enable operators to proactively 
adjust treatment processes, ensuring compliance with 
regulatory standards and protecting the environment 
[23].

For this study, the ANN was integrated into Phase 
2 for volume prediction to determine the sustainability 
of the proposed project. This will enable developers 
to determine whether future wastewater volumes will 
sufficiently cater to the project’s needs.

Model Application

The ANN model developed in this study can be 
adapted for wastewater predictions in small urban 

cities or campuses with populations between (10,000 
and 20,000). The adoption of a population range was 
to extend the extrapolation of the model to similar-
sized campuses. Also, determining the exact number 
of people residing in communities, especially in 
developing countries, could be challenging. This 
study used nine critical variables as input variables for 
model development. These include the type of day (to 
provide an insight into the population activities of the 
residents on campus). Field investigations revealed that 
the type of day was the most significant factor affecting  

Fig. 10. Systematic approach to wastewater reuse.

Type of 
Day Annotation Description

D1 1 Weekdays

D1 0 Weekends

D2 1 Public Holiday

D2 0 Not a Public Holiday

D3 1 School in Session

D3 0 school not in Session

D4 1 Social Event

D4 0 No social Event

D5 1 PG/Staff/Summer school in 
session

D5 0 PG school/Staff/Summer not in 
session

Table 5. Annotation for the type of day variables.
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the volume of wastewater predicted for the community. 
The second most significant variable that affected 
wastewater volumes was rainfall. Temperature and 
humidity had the least effect on flow compared to other 
variables. However, temperatures caused slight spikes in 
flows during hot afternoons. 

Given that different campuses may have various 
factors peculiar to them, the type of day variables were 
designed to have broad applicability. Several variables 
may be similar in different universities. For example, 
Table 5 shows the type of day variables with annotations 
in ones and zeros. There are situations where a particular 
day may have one or more defining characteristics, thus 
determining the volume of wastewater flow.

For this model to be efficient in wastewater 
prediction in other campuses within the given 
population range, the type of days peculiar to the given 
campus has to be identified. For instance, to predict a 
particular day, one must determine whether the day is 
a weekday or weekend, a public holiday, a school or 
business day, and the possibility of a social event or 
festival within the campus. Identifying these parameters 
will make for an easy adaptation of the ANN model. 
Furthermore, the ANN model will be significant for 
future research within the campus and similar settings. 
The data will provide information that may be necessary 
for future studies. Several other predictive tools can be 
integrated into the system. For example, ANN has been 
utilized in past studies to determine the performance of  
a wastewater treatment plant [11, 12].

Conclusions

This study provides a unique insight into how 
wastewater planners can manage wastewater volumes 
by predicting the discharge pattern, which, in turn, is 
determined by empirical characteristics. Information 
on wastewater generation volumes is significant 
when considering wastewater reuse schemes. It is 
also significant in cases where the WWTP receives 
more wastewater volumes than its design capacity. 
Due to the increased population and the consequent 
increase in wastewater volumes, wastewater treatment 
infrastructure is often overwhelmed. With insufficient 
funds or land, the possibility of increasing the capacity 
of the WWTP is nearly impossible. Therefore, the 
only alternative is the proper scheduling and planning 
of treatment processes. Although much research has 
been done on applying ANN to wastewater treatment 
efficiency, not many studies can be found on the 
scheduling of treatment volumes, especially in Africa, 
where there is a paucity of funds for expanding or 
rebuilding new WWTP infrastructures. 

The key findings of this study address three 
central themes. First, it emphasizes the importance of 
adequately accounting for generated wastewater volumes 
and the intricate and unique parameters contributing 
to their variations in different contexts and locations.  

To ensure proper accountability, accurate measurements 
and regular data collection and archiving must be 
done. Secondly, the study demonstrated the impact of 
user characteristics on wastewater generation patterns. 
This may vary from location to location. Adequately 
capturing these variations will have a significant impact 
on the accuracy of the prediction model. Thirdly, the 
study promoted the merits of wastewater reuse in 
contrast to the continuous withdrawal of freshwater 
from groundwater sources. Further, the study proposed 
a three-phase systematic approach for planning  
a wastewater reuse project. 

While this study focused on a small university 
campus wastewater management scheme, it has 
significant implications for large-scale applications. 
In environments where freshwater constraints exist, 
the available generated wastewater has the potential 
to become a valuable resource. However, further 
research needs to be done to improve wastewater 
volume prediction and treatment efficiency. This 
research contributes to the modelling framework for 
achieving the fundamental objective of proper volume 
measurement and prediction.  

The limitations of this study constitute the basis for 
future research. For example, year-round data collection 
and a detailed hourly analysis of collected data can give 
a more robust and accurate prediction model. Further 
research into wastewater volume accountability is 
necessary to protect the environment and promote the 
practice of freshwater conservation and sustainable 
extraction.  
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