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Abstract

Understanding soil organic carbon dynamics is crucial for climate change mitigation and developing 
strategies for sustainable land management. This research aimed to quantify SOC, analyze the effect of 
physicochemical properties on SOC, and evaluate different statistical models to identify the effective 
predictors for SOC. A total of 280 soil samples were analyzed for physicochemical properties using 
standard protocols. The study applied several statistical models, including Linear Mixed, Random Forest, 
Bayesian Linear, Generalized Additive, Multivariate Regression models, and Principal Component 
Analysis (PCA). Undisturbed soils exhibited significantly higher SOC stocks, averaging 74.71±8.65 Mg 
ha⁻1, compared to 53.58±7.13 Mg ha⁻1 in disturbed soils. The LMM and GAM indicated a significant 
baseline SOC but showed no notable effect of altitude on SOC (p = 0.703 and 0.62-0.93, respectively). 
RFR identified bulk density as the strongest predictor, with the highest node purity (2269.57). PCA 
accounted for 78.35% of the variance, showing the critical role of soil texture in stabilizing SOC. 
Altitude showed a minimal effect; soil bulk density is the key factor in SOC variability, while clay 
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Introduction

Soil organic carbon (SOC) sequestration plays a 
key role in the global carbon cycle. Soil is the largest 
terrestrial carbon pool, containing approximately 2500 
Pg of carbon, significantly more than the atmospheric 
carbon pool of about 760 Pg [1]. Increasing SOC stocks 
through practices such as improved land management 
can help sequester carbon dioxide (CO2) from the 
atmosphere, thus mitigating climate change [2]. Healthy 
soils contribute to productivity, biodiversity, and water 
retention and are vital for food security and resilience to 
climate impacts [3]. 

Appropriate soil management practices can reduce 
carbon emissions from soils by up to 50% by 2050 
compared to 2010 levels [1]. Despite the potential, 
implementing effective SOC management strategies can 
be challenging. These include the need for long-term 
commitment to soil management, the vulnerability of 
certain soils to carbon loss, and the complexity of SOC 
dynamics influenced by climate [4]. 

The Himalayan mountainous ecosystems are 
classified as a biodiversity hotspot, with varying climatic 
and topographical conditions [5]. The climatic diversity 
in this region results from its complex geography and 
altitude, which influence climate and habitat types. The 
diverse plant communities in the Himalayas contribute 
significantly to SOC stocks through photosynthesis 
and organic matter inputs to the soil [6]. Soils in these 
ecosystems can store substantial amounts of carbon to 
mitigate climate change by reducing atmospheric CO2 
levels [7].

Climate change poses threats to the Himalayan 
ecosystems, potentially reducing soil health and SOC 
storage capacity. Increased temperatures and altered 
precipitation patterns can affect the delicate balance 
of these ecosystems, making sustainable management 
practices essential to protect and enhance SOC stocks 
[3, 5]. Soil erosion significantly contributes to SOC loss, 
adversely affecting soil health and intensifying climate 
change. Erosion, primarily caused by water, wind, and 
tillage, removes topsoil and depletes soil organic matter 
(SOM), which is essential for carbon storage [8]. 

To mitigate the effects of soil degradation, 
implementing conservation practices such as no-till 
farming, cover cropping, and maintaining vegetation 
can help minimize SOC loss, enhance soil structure, and 
improve the capacity to sequester carbon, promoting 
healthier ecosystems [7]. Studies on SOC variability 
in the Himalayan mountainous ecosystems tend to 
generalize findings across large areas, neglecting the 

specific impact of types and physicochemical attributes 
of soil along with altitude [9]. Additionally, there is a 
reliance on traditional statistical methods that may not 
fully capture the complexity of interactions between 
environmental variables and a lack of comprehensive 
data on the influence of soil disturbances on changes in 
SOC [10, 11]. 

The complexity of SOC dynamics in mountainous 
regions necessitates the use of robust and multifaceted 
methodological approaches, as traditional linear 
regression models, while useful, often fail to capture the 
complex and non-linear relationships between SOC and 
its environmental drivers [12, 13]. Therefore, advanced 
statistical modeling techniques are essential to accurately 
analyze the complex interactions between altitudinal 
variations and soil physicochemical attributes. These 
models improve our understanding of how different 
factors influence SOC, leading to better predictions and 
more effective soil management strategies [14].

This research uses multivariate regression and 
advanced statistical methods to model SOC dynamics 
in a representative Himalayan mountainous ecosystem, 
integrating physicochemical variables and altitude to 
comprehensively understand SOC variation. It also 
identified key soil properties that impact SOC and 
investigated potential non-linear interactions between 
SOC and other variables. These findings are crucial for 
predicting SOC responses to environmental and land-
use alterations, especially pertinent in climate-sensitive 
mountainous ecosystems.

Materials and Methods

Study Area

The present study was conducted in the Makra 
mountainous region, located at 34° 34.461’ N and 73° 
29.749’ E, with an altitudinal range from 1100 to 3860 
m above sea level. The study area is situated in the 
Muzaffarabad district of Azad Jammu and Kashmir 
(AJK) (Fig. 1). This Himalayan mountainous ecosystem 
features a varied climate across different altitudes. 
At lower elevations (1000-2500 m), the climate is 
subtropical to temperate with mild summers and 
chilly winters, supporting subtropical and temperate 
forests. Mid-altitudes (2500-3500 m) experience cooler 
temperatures and increased snowfall, leading to sub-
alpine meadows and scattered coniferous trees. The 
climate is alpine at high altitudes (above 3500 m) with 

content is crucial for SOC stabilization. Advanced models like RFR provide better SOC predictions, 
aiding sustainable land management while incorporating additional variables that could further enhance 
SOC forecasting.

Keywords: soil, carbon sequestration, Himalayas, bulk density, altitude, random forest model, climate 
change, sustainability
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year-round cold temperatures and minimal vegetation 
adapted to extreme conditions [15, 16]. 

The region experiences an average annual rainfall of 
1457 mm, with an average temperature of 20.2°C. The 
maximum temperature recorded is 45°C in the lower 
altitudes, while the minimum drops below 0°C, leading 
to snowfall in the mountains [17]. The region exhibits 
a variety of soil types, ranging from deep alluvial soils 
in valleys to thin, rocky soils at higher altitudes. The 
habitat heterogeneity and climatic variations support 
a wide range of plant species (from subtropical forests 
to alpine meadows). These variations also influence the 
capacity of soils to sequester carbon [18]. 

Data Collection

Sampling was conducted along an altitudinal gradient 
from 1160 m to 3860 m (Fig. 1). The sampling points’ 
altitude, latitude, and longitude were measured using 
a GPS device. Soil samples were collected using a 1×1 
m quadrat at 100 m altitude intervals. A metallic core 
sampler was used to obtain soil samples. Five samples 
(0-30 cm depth) representing different slope classes 
were collected from each quadrat. Additionally, 5 more 
samples were randomly taken from nearby disturbed 
and eroded areas, resulting in a total of 10 samples per 
sampling site. In total, 280 soil samples were extracted 
from the field (28 sampling sites × 10 samples per site). 
The soil samples from each quadrat were thoroughly 
mixed to create a homogeneous sample, which was 
stored in plastic zipper bags. These samples were then 
brought to the Plant Ecology and Environmental Science 
Laboratory of the Department of Botany, the University 
of Azad Jammu and Kashmir, for physicochemical 
analysis and SOC stock assessment.

Determination of Soil Physicochemical Properties

Soil samples were crumbled and mixed thoroughly 
after being left open for 24 hours. A 20 mg portion of 
soil was weighed, and 100 ml of distilled water was 
added. The mixture was shaken for 2 minutes and left 
to settle for 5 minutes. Soil pH and Electroconductivity 
(EC) were measured using a pH/EC meter. The electrode 
was dipped 1-2 cm into the sample solution, and the pH 
value was recorded. Soil texture was evaluated using a 
jar test to determine the percentages of sand, silt, and 
clay. The soil textural triangle was then used to classify 
the soil type [19], while the soil bulk density (BD) was 
calculated using the following formula [20]:

SOC was estimated using the Walkley and Black 
[21] wet oxidation method, known for its rapid and cost-
effective analysis.

The percentage of SOM was calculated using the 
formula [22]:

SOC was determined by dividing the SOM 
percentage by a conversion factor of 2 [23]:

SOC was then converted into total SOC stock (Mg 
ha-1) using the following Equation [22]:

Fig. 1. Map of the study area indicating the sampling points along an elevation gradient.
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Data Analysis and Modeling Techniques

All variables were standardized to ensure 
comparability across different measurement scales. 
Statistical techniques including Principal Component 
Analysis (PCA), Linear Mixed-Effects Model (LMM), 
Random Forest Regression (RFR), Bayesian Linear 
Modeling (BLM), Generalized Additive Model (GAM), 
and Multivariate Regression Analysis (MRA) were 
employed to explore the relationships between SOC 
and the various soil properties. Before applying the 
modeling techniques, multicollinearity was evaluated 
using Variance Inflation Factors, or VIF [24]. 

Each model was thoroughly validated using 
standard diagnostic techniques, including residual 
plots, R-squared values, and cross-validation. The 
significance of model coefficients was assessed, and 
model performance was compared across different 
statistical approaches to ensure reliability. All statistical 
analyses were conducted using R software version 4.4.0 
[25]. To assess the performance of all models, a 10-fold 
cross-validation was employed. The dataset was divided 
into 10 subsets, with one subset used as the test set and 
the remaining nine as the training set in each iteration. 
This was repeated ten times, ensuring that every subset 
served as the test set once. The Root Mean Square Error 
(RMSE) was calculated for each fold's predictions, and 
the mean RMSE across all folds was used to gauge 
overall model accuracy. Consistent factor levels were 
maintained across the training and test datasets to 
ensure valid assessments [26, 27].

Results and Discussion

Soil Carbon Stock and Other 
Physicochemical Properties

The overall average SOM content was 3.54±0.63%, 
with values of 4.10±0.77% for undisturbed soil and 

2.98±0.85% for disturbed soil. The average SOC 
content was 1.77±0.38%, higher in undisturbed soil at 
2.05±0.46% compared to 1.49±0.42% in disturbed soil. 
The average SOC stock was 64.14±7.16 Mg ha-1, with 
undisturbed soil containing 74.71±8.65 Mg ha-1 and 
disturbed soil 53.58±7.13 Mg ha-1. The maximum SOC 
of 101.15±10.21 Mg ha-1 was recorded at 2960 m and a 
minimum of 34.99±4.27 Mg ha-1 at 2760 m (Table 1). 
Bivariate analysis showed that SOC did not significantly 
correlate with altitude in the study area (Fig. 2).

The mean soil pH was 6.39±0.8, with undisturbed 
soil at 6.36±0.74 and disturbed soil at 6.42±0.9. The 
highest pH (8.13±1.5) occurred at 1360 m, and the 
lowest (5.44±1.2) at 3880 m. The average soil EC was 
20.24±4.62 µS cm-1, with undisturbed soil showing 
20.38±4.83 µS cm-1 and disturbed soil 20.10±4.41 µS 
cm-1. EC peaked at 44.25±7.54 µS cm-1 at 1560 m and 
dropped to 7.13±2.21 µS cm-1 at 3660 m. The average 
soil BD was 1.20±0.6 g cm-3, with undisturbed soil at 
1.21±0.32 g cm-3 and disturbed soil at 1.19±0.15 g cm-

3. The maximum BD was recorded as 1.43±0.7 g cm-3 
at 1660 m, and the minimum was 1.07±0.3 g cm-3 at 
3660 m. (Table 1). In undisturbed soil, sandy loam 
was the most common, while loamy sand was the least 
common soil type. In disturbed soils, sandy loam was 
most frequently reported, and sand was least frequently 
recorded.

Principal Component Analysis (PCA)

PCA revealed that the first three components (PC1, 
PC2, and PC3) described most of the variance in the 
data, cumulatively capturing 78.35%, with standard 
deviations of 1.5864, 1.4455, and 1.2891, respectively. 
PC1 explains 31.5% of the variance, while PC2 and PC3 
account for 26.1% and 20.7%, respectively. The fourth 
to sixth components (PC4, PC5, and PC6) contributed 
less, explaining 11.3%, 5.9%, and 3.03% of the variance, 
respectively, bringing the cumulative variance to 98.6%. 
PC7 and PC8 contributed negligibly, with the cumulative 
proportion reaching 100%. The PCA biplot illustrated 
the distribution of variables and samples across PC1 and 
PC2, which together explain a significant portion of the 
total variance (Fig. 3).

No. Property Undisturbed Disturbed Average

1 SOM % 4.10±0.77 2.98±0.85 3.54±0.63

2 SOC % 2.05±0.46 1.49±0.42 1.77±0.38

3 SOC Mg ha-1 74.71±8.65 53.58±7.13 64.14±7.16

4 pH 6.36±0.74 6.42±0.9 6.39±0.8

5 EC µS cm-1 20.38±4.83 20.10±4.41 20.24±4.62

6 BD g cm-3 1.21±0.32 1.19±0.15 1.20±0.6

Table 1. Average soil carbon stock and physicochemical properties.
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Linear Mixed-Effects Model (LMM)

The LMM results revealed that the intercept was 
60.21 (standard error = 10.74), with a t-value of 5.61 
and a p-value of 6.81×10⁻6, demonstrating a statistically 
significant baseline level of SOC. Conversely, the effect 
of altitude was estimated at 0.0016 (standard error = 
0.0041), with a t-value of 0.39 and a p-value of 0.703, 
indicating that altitude does not have a statistically 
significant impact on SOC (Table 2). LMM suggested 
that while there is a significant baseline level of SOC, 
altitude does not meaningfully affect SOC within this 
model.

Generalized Additive Model (GAM)

The GAM results for SOC estimated the intercept 
at 64.78 (standard error = 11.02), with a t-value of 5.88 
and a p-value of 6.44×10⁻6. This model also showed a 
statistically significant baseline level of SOC. Loamy 
sand confirmed a decrease of -2.68 (standard error = 

13.79), sand decreased by -11.01 (standard error = 22.04), 
and silt loam decreased by -3.33 (standard error = 16.25), 
while sandy loam increased by 1.04 (standard error = 
12.02). However, in this model, none of the categorical 
variables (soil type) showed a statistically significant 
impact on SOC, with p-values ranging from 0.62 to 0.93 
(Table 2). The smooth function of GAM for altitude 
captured non-linear relationships effectively.

Bayesian Linear Modeling (BLM)

The BLM estimated the intercept at 58.71, 
representing the SOC level at zero altitude with soil type 
as the reference category. The coefficient for altitude 
remained 0.0022, indicating a small positive effect on 
SOC; specifically, SOC increased by approximately 
0.0022 Mg ha-1 for each meter increase in altitude; 
however, this effect is minor. The model also reveals 
significant variability in SOC based on soil type. 
Compared to the reference soil type, SOC decreased by 
1.94 Mg ha-1 for loamy sand, 10.39 Mg ha-1 for sand, and 

Fig. 2. Relationship between site-wise SOC values and altitude.

Fig. 3. PCA biplot depicting the relationships between soil variables, highlighting their distribution and contributions to overall variance.
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2.85 Mg ha-1 for silt loam. Conversely, SOC increased 
by 1.76 Mg ha-1 for sandy loam. The BLM showed that 
soil type had a notable impact on SOC, with sand having 
the largest negative effect and sandy loam showing a 
moderate positive effect (Fig. 4).

Random Forest Regression (RFR)

The RFR model evaluated the relative importance 
of predictors on SOC using 1000 trees. The results 
indicated that BD is the most influential predictor, 
with an increased node purity of 2269.57, suggesting 
it had the strongest effect on SOC. Soil EC followed 
with an increase in node purity of 971.23, indicating a 
substantial impact on SOC. Soil pH showed an increase 
in node purity by 882.53, making it another significant 
predictor. Sand, silt, and clay content had increased in 

node purity by 662.60, 713.71, and 623.89, respectively, 
reflecting their moderate influence on SOC. Altitude 
showed the lowest increase in node purity at 524.30, 
suggesting it has a lesser impact on SOC than the other 
variables (Fig. 5).

Multivariate Regression Analysis (MRA)

The MRA was used to predict both SOC and pH 
simultaneously, utilizing altitude, soil type, BD, etc., 
as predictors. The model output showed how these 
predictors jointly influence SOC and soil pH. The 
predicted versus observed plots for both SOC and pH 
display an increasing trend, indicating a good alignment 
between the predictions of the model and the actual 
data. Additionally, the residual versus predicted values 
plots for SOC and pH exhibited a straight distribution 

Model Model Parameters Estimate Std. Error t value Pr(>|t|)

LMM
Intercept 60.21 10.7 5.6 6.81

Altitude 0.002 0.004 0.4 0.7

GAM

Intercept 64.8 11 5.88 6.44

Loamy sand -2.7 13.8 -0.2 0.8

Sand -11 22 -0.5 0.6

Sandy loam 1.03 12 0.09 0.9

Silt loam -3.3 16.2 -0.2 0.8

Table 2. Summary of Parameter Estimates for Linear Mixed (LMM) and Generalized Additive Models (GAM).

Fig. 4. Bayesian parameter estimates and uncertainty graph showing the variability and confidence intervals for the intercept, altitude, 
soil type, and error term (sigma).
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around zero, indicating that the residuals are evenly 
spread and conform to the predictions. This straight-
line pattern indicated that the model effectively captured 
the variance in the data and reflected a good fit with an 
appropriate error structure (Fig. 6).

SOC and Physicochemical Dynamics in 
Himalayan Mountain Ecosystems

SOC is a key component of the terrestrial carbon 
cycle, impacting soil health, carbon sequestration, 
and ecosystem stability [1]. SOC levels can differ 
significantly due to factors such as altitude, vegetation, 
climate, topography, and soil properties. Comparative 
research across various mountainous regions is 
crucial for understanding how these factors influence 
SOC dynamics [28]. The study recorded significant 
differences in soil physicochemical properties between 
undisturbed and disturbed areas, with higher SOM and 

SOC in undisturbed sites. Disturbances, topography, 
and heavy grazing led to SOC loss in disturbed areas 
[29]. Reduced SOC in degraded soils reflects carbon loss 
through oxidation, reduced organic inputs, and erosion-
driven depletion [1, 30].

The literature review revealed significant spatial 
variability in SOC across the Himalayan region, 
influenced by elevation, vegetation, and land use. In the 
Indian Himalayas, SOC ranges between 50-150 Mg ha-1 
[31], while in the Garhwal Himalayas, values between 
124.8 and 185.6 Mg ha-1 have been observed [32]. In 
Himachal Pradesh, SOC varied from 36.04 to 73.26 Mg 
ha-1 [33], and in the broader Indian Himalayas, levels 
of 31.5 Mg ha-1 have been recorded [34]. In the Central 
Himalayas, SOC values between 63.9 and 83.8 Mg ha-1 
are reported [35]. In the Punjab region of Pakistan, 
values of 30.19 Mg ha-1 [36] and in the Western 
Himalaya, SOC levels ranging from 27.18 to 34.89 Mg 
ha-1 have been found [37]. Other significant findings 

Fig. 5. Variable importance plot from the RFR model highlighting their relative importance to predict SOC.

Fig. 6. Plots of the MRA showing predicted versus observed values and residuals versus predicted values for SOC and pH, demonstrating 
an even distribution of residuals around zero and indicating a well-fitting model.
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include soil carbon ranging from 261 to 370.6 Mg ha-1 in 
Kashmir, Western Himalaya [38], and from 56.7 to 337.8 
Mg ha-1 in Bhutan Himalaya [39].

Lower SOC values are partly due to forest type, 
soil composition, and depth differences. In the study 
area, SOC loss is also driven by forest cover reduction 
and biomass extraction. In mountainous regions, steep 
slopes exacerbate soil degradation and impact SOC 
pools [40]. Forest composition and biomass production 
are influenced by physiographic and topographic factors, 
with elevation-induced climatic changes affecting 
precipitation patterns and soil characteristics [28]. 
Variations in soil structure also affect water retention and 
nutrient binding, leading to differences in SOC levels. 
Higher SOC levels enhance soil structure, stability, and 
fertility, reducing erosion and nutrient leaching [31]. 
Nonetheless, SOC is vulnerable to disturbances that 
can release CO2 and deplete carbon stocks, indicating 
the importance of effective carbon sequestration and 
soil health management [3, 4]. SOC is higher in regions 
with favorable climatic and topographic conditions, 
dense forest cover, and minimal human disturbance 
[3]. Conversely, agriculture, deforestation, and land 
degradation reduce SOC, underscoring the need for 
sustainable land management practices to mitigate 
climate change [1].

Soil pH and EC remained stable between disturbed 
and undisturbed areas, with only minor increases in 
disturbed soils. Soil pH decreases with altitude and 
tends to be slightly acidic, promoting plant growth and 
SOC accumulation [41]. The acidity can enhance SOC 
by slowing organic matter decomposition. EC, which 
indicates soil salinity and nutrient cycling, typically 
rises with soil solution content but can impede plant 
growth and SOC accumulation. The relationship 
between EC, SOC, and altitude varies, reflecting the 
ecological complexity of mountain ecosystems [42]. 

Soil BD showed minimal variation across conditions, 
with a slight decrease in disturbed areas, as it is 
influenced by soil structure, texture [43], and organic 
matter, which decreases with altitude and increases 
with soil depth. However, climate change and land 
management practices can exacerbate soil compaction 
and impact SOC and BD interactions [44]. Lehmann 
and Kleber [45] found patterns similar to those 
revealed by this study. Furthermore, the relationship 
between BD and SOC is explained by Six et al. [46], 
who demonstrated that compacted soils retain SOC by 
slowing down microbial decomposition.

Our findings indicated that while disturbances 
significantly reduced SOM and SOC [8, 29, 47], other 
soil physical and chemical parameters exhibited 
resilience to disturbance in the studied mountain 
ecosystem. This resilience may be vital for maintaining 
ecosystem functions despite changes in soil organic 
matter and carbon stocks [10].  

Model Evaluation and Applicability

Highly correlated predictors can obscure the 
influence of individual variables in statistical models. 
The Variance Inflation Factor (VIF) helps identify 
these issues, with values above 5 or 10 indicating 
potential multicollinearity problems [48]. Addressing 
multicollinearity may involve removing or combining 
predictors or using regularization techniques. 
Standardizing variables is crucial for accurate 
comparisons across different scales, particularly in 
methods like PCA and BLM, to prevent any single 
variable from disproportionately influencing the results 
[49].

RMSE is a key metric to evaluate the accuracy 
of predictive models, with values ranging from 
zero to infinity. Lower RMSE values indicate better 
model performance, which is affected by the model’s 
complexity, the data’s distribution, and the presence of 
outliers [50]. The models were assessed based on their 
RMSE values. The GAM exhibited the highest RMSE 
at 20.91, indicating the lowest predictive accuracy 
among the models evaluated. Following GAM, the 
BLM recorded an RMSE of 19.1, while the LMM 
demonstrated an RMSE of 16.52, reflecting a moderate 
level of predictive capability. Notably, the MRA model 
achieved an RMSE of 16.26 for SOC predictions and 
a remarkably low RMSE of 0.61 for pH predictions, 
signifying exceptional accuracy in pH estimations. 
The RFR model emerged as the most accurate, with 
an RMSE of 13.46 for SOC, showing its effectiveness 
in capturing complex interactions and non-linearities 
within the dataset. 

In this study, flexible models like RFR and MRA 
outperformed linear models, as evidenced by their 
lower RMSE values. RFR performed best due to its 
ability to capture complex, non-linear relationships 
in the data, while MRA excelled in pH predictions. In 
contrast, linear models such as GAM, BLM, and LMM 
had higher RMSE values, with GAM showing the 
lowest predictive accuracy, likely because linear models 
resisted more complicated data patterns. The results 
revealed the advantage of flexible models in handling 
complex interactions, where linear models fall short 
[51]. The variations in RMSE among the models also 
illustrated the influence of model complexity and data 
structure on predictive accuracy [52].

PCA reduced correlated data to a smaller set 
of uncorrelated components, explaining 78.35% of 
the variance with the top three components. The 
first reflected the role of clay in stabilizing SOC by 
protecting it from decomposition [53]. Sandy soils, 
which showed lower loadings, have lower SOC due to 
reduced protection of soil organic matter. This analysis 
underscores the significance of soil texture in SOC 
stabilization [43].

LMMs indicated that soil type significantly 
influenced SOC (p<0.001), while altitude had no notable 
effect (p = 0.703). Similarly, GAM showed no significant 
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non-linear effect of altitude on SOC, highlighting the 
need to account for other factors like climate and soil 
composition. This indicates that altitude alone does not 
fully explain SOC variability, with factors like organic 
input and erosion playing key roles. BLM showed a 
slight positive effect of altitude on SOC, with credible 
intervals pointing to reduced decomposition at higher 
elevations. Soil texture, particularly loamy sand and 
sandy loam, influenced SOC retention [43, 54]. RFR 
emphasized the role of BD in limiting microbial activity 
and enhancing SOC retention [46]. EC and pH also 
significantly affected nutrient availability and microbial 
activity, which is crucial to SOC dynamics [53].

MRA effectively modeled SOC and pH together, 
demonstrating how factors like altitude and soil type 
interact to influence both variables. The residuals showed 
a good fit, affirming the relevance of the predictors. 
The consistency of results across models supports 
the robustness of findings, particularly regarding the 
impact of soil type on SOC, reducing concerns about 
model-specific biases [31]. The alignment across models 
ensures reliable predictions and a comprehensive 
understanding of SOC and pH dynamics [55]. 

The models linked SOC dynamics to ecological 
processes, emphasizing the importance of soil type 
and texture in SOC stabilization. Clay-rich soils were 
found to better protect SOC from decomposition than 
sandy soils. While altitude did not directly influence 
SOC, it likely affects it through associated variables 
like temperature and moisture [56]. However, the RFR 
model revealed an improved impact of BD compared to 
simpler models [57]. However, discrepancies with other 
studies may arise due to data types used for modeling 
and local conditions.

Modeling techniques face limitations that can 
influence outcomes. Missing data, if not random, can 
introduce bias, and both imputation and data exclusion 
may affect representativeness and prediction accuracy 
[58]. Small sample sizes, especially in complex models, 
can lead to overfitting or underfitting, reducing parameter 
reliability and model performance. Additionally, 
limited spatial data or uneven coverage can hinder the 
ability to accurately capture variability, leading to the 
misrepresentation of predictor relationships in diverse 
landscapes [58, 59].

Future soil carbon modeling research could be 
improved by adopting more advanced models, such as 
deep learning, to capture non-linear interactions that 
traditional methods might miss. High-resolution data 
from remote sensing or frequent soil measurements 
could increase predictive accuracy, offering a deeper 
understanding of SOC dynamics [60]. Enhanced cross-
validation methods, including factors like microbial 
activity or land management practices, could further 
improve model reliability. Validating models with 
independent datasets across diverse regions would 
strengthen the applicability of the findings [61].

The practical implications of this study are 
significant, as it provides information that can influence 

environmental policy and promote sustainable land 
management practices. A better understanding of SOC 
dynamics can guide carbon management strategies and 
support the development of effective SOC management 
practices [62]. This is vital for climate models that rely 
on accurate SOC data to predict carbon fluxes and assess 
mitigation strategies. The findings can also support 
conservation efforts by emphasizing the importance 
of soil texture and bulk density in carbon storage 
[63]. Together, these improvements could lead to more 
effective soil and climate management policies.

Conclusions

This study provides valuable insights into SOC 
dynamics and associated physicochemical properties in 
disturbed and undisturbed soils across different altitudes. 
The results highlight the following key findings: (i) 
Undisturbed soils have significantly higher SOC levels, 
highlighting the negative impact of disturbances and 
land degradation. (ii) Altitude had no significant effect 
on SOC levels in the study area, as supported by models 
like the LMM and GAM. (iii) Soil properties (pH, EC, 
and BD) showed resilience to disturbance. BD emerged 
as a key predictor of SOC retention, particularly in the 
RFR model, which captured non-linear relationships 
better than linear models. (iv) PCA reinforced the role 
of clay-rich soils in SOC stabilization, while sandy soils 
were linked to lower SOC levels. (v) The RFR model 
performed best in capturing SOC variability; however, 
cross-validation is necessary to avoid overfitting. (vi) 
While consistent with existing research, discrepancies 
regarding the influence of altitude may stem from 
regional differences in soil composition and conditions. 
The study suggests that future research could benefit 
from incorporating advanced modeling techniques 
and additional variables, such as microbial activity, to 
further refine SOC predictions. These findings have 
practical implications for soil carbon management and 
climate mitigation, emphasizing the importance of 
soil structural attributes in carbon sequestration and 
sustainable land management practices.
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