
Introduction

Floods are the most destructive natural disasters 
that cause losses of lives, land, infrastructure, and 
agricultural and industrial production, and hence 
are considered to be one of the biggest threats to the 
socio-economic fabric in affected areas. It can also 
create adverse social and environmental problems like 

disturbance in electricity supply and associated risks, 
contamination in drinking water, sanitary and drainage 
hazards, and destruction in communication networks 
 [1-4]. A flood is actually a phenomenon representing 
the overflow of surplus water from a river, lake, or 
any other water channel to land outside the usual path 
of that river or lake. Floods are primarily caused by 
melting glaciers, extreme rains, leakage or breakage 
of dams or other water storage infrastructures, or 
the incapacity of rivers or water streams to pass  
the sudden additional amount of water [5-10]. Floods 
are natural disasters that recur over time with irregular 
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intervals. It is a continuous hazardous phenomenon 
that has affected humans across different time periods. 
Flood frequency analysis (FFA) is an important way 
of predicting the time of occurrence of certain levels 
of floods in the future, which is necessary for planning 
and designing water reservoirs, disaster management, 
and other related activities [3, 11-14]. In the literature, 
different approaches (like California, Gumbel, and 
Hazen) are recommended for analyzing the frequency 
of floods [5, 15]. For modeling the stream flow or 
flood frequency, there are different approaches, like at-
site, regional (considering different gauging stations  
as a homogeneous region), or country-level (one 
model for all sites in the country), that can be applied.  
The at-site FFA is the simplest and most direct method 
for predicting flood magnitude and its recurrence time 
period with a certain probability for any particular 
station of any river [2, 9, 10, 16, 17]. A regional approach 
for FFA is a useful option if data from individual 
gauging stations is not available for long time periods 
[18, 19]. 

For at-site FFA, the data series is assumed to follow 
a parent probability distribution, and then the parameter 
estimates of that distribution are used to predict certain 
flood magnitudes in the future. The optimal choice 
of distribution and estimation strategy is pivotal in 
achieving more accurate flood predictions, but there is 
no general agreement in the literature about any single 
probability distribution or any particular estimation 
method [3, 11, 20]. Each probability model has its 
own advantages and disadvantages in modeling any 
particular station’s flood data, and different models can 
be suitable for different stations. For FFA of many rivers 
in different countries, varying probability distributions 
have been recommended, including (but not limited 
to) normal, exponential, generalized normal, two-
parameter lognormal, three-parameter lognormal, 
four-parameter Wakeby, five-parameter Wakeby, two-
parameter gamma, three-parameter gamma, generalized 
logistic, Pearson type-III, generalized extreme value, 
Gumbel, and generalized Pareto [5, 9, 10, 21-23].  
Some very informative and comprehensive reviews  
on the collection of probability distributions used for 
FFA in different countries are available in the literature 
[2, 24-30]. 

For at-site modeling of annual peak discharge at two 
gauging stations of the Sutlej River, we have applied 
Generalized Logistic (GLO), Gumbel (GUM), Reverse 
Gumbel (REV-GUM), Generalized Pareto (GP), 
and Generalized Extreme Value (GEV) as candidate 
probability distributions. These distributions have been 
applied and recommended for FFA in different studies 
focusing on different rivers in different countries around 
the globe [5, 10, 21, 31-35].  

Different approaches for the parameter estimation of 
probability distributions are available in the literature. 
However, as far as the distributions used in FFA are 
concerned, methods of L-moments and maximum 
likelihood are applied in most cases. The maximum 

likelihood method is one of the widely applied estimation 
methods, while the L-moments method recently attained 
widespread attention, particularly in hydrological studies, 
due to its computational simplicity [3, 9, 10, 21, 36]. 
However, the least squares method and its variants also 
provided efficient estimation and were recommended in 
different cases [37]. Therefore, in the current work, we 
employed various estimation methods for estimating 
the parameters of candidate probability models. These 
methods are L-Moments (LM), Maximum Likelihood 
(ML), Least Squares (LS), Weighted Least Squares 
(WLS), and Relative Least Squares (RLS).

The article aims to find the optimal mixture of 
distribution and estimation method for modeling 
yearly extreme flow data taken from different gauging 
sites located along the Sutlej River separately.  
The performance of each amalgamation (mixture of 
distribution and estimation method) is assessed based on 
different performance metrics. For each gauging site, we 
have evaluated 25 models (5 probability distributions, 
each estimated with 5 different estimation methods).

Once the best-fit model (blend of distribution and 
estimation method) for a particular site is identified, it 
is used to estimate annual extreme discharges for many 
return years (like 5, 10, 25, 50, 100, 200, 500, and 1000) 
with a certain non-exceedance probability. 

The remaining part of the article is organized as 
follows: Section 2 gives an overview of the locations of 
the Sutlej River and data utilized in this study; Section 
3 outlines the candidate probability distributions and 
methods for the parameter estimation applied in this 
work; Section 4 provides the results and comparative 
analysis of applying various mixtures of probability 
distributions and estimation techniques; and Section 5 
summarizes the significant findings and conclusions that 
can be inferred from the current analysis.

Study Locations and Data

The Sutlej River is a key waterway that plays a vital 
role in agriculture and other related activities in the 
southern part of Pakistan’s Punjab province. The river 
flows northeast to southeast, entering Pakistan from 
the Indian Punjab. In Pakistan, it covers a distance of 
around 350 km before merging into the Chenab River at 
Panjnad. Fig. 1 represents a map of the Sutlej River with 
gauging sites in Pakistan’s Punjab province. 

The data for this analysis was obtained from the 
office of the hydrological directorate located in Lahore, 
which is responsible for measuring water flows at 
different barrages in the Punjab province. The data 
spans 50 to 52 years for two gauging stations located 
in Pakistani territory. Table 1 provides important 
characteristics (such as time period of data series, 
elevation from sea level, and geographic coordinates) 
of gauging sites considered in the current work. Fig. 2 
provides time series plots of the maximum annual flow 
at each gauging station for a visual representation.
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Materials and Methods

An optimal combination of probability distribution 
and estimation method is crucial for conducting any 
FFA [2, 38, 39]. This is because the right choice of this 
blend is vital for efficient modeling and hence accurate 
estimation of flood levels for different future time 
periods. We utilized GLO, GUM, REV-GUM, GP, and 
GEV distributions in our at-site FFA of gauging sites 

along the Sutlej River. We applied LM, ML, LS, WLS, 
and RLS methods to estimate the parameters of these 
distributions. The following subsections briefly discuss 
the probability distributions and parameter estimation 
methods being compared.

Candidate Probability Distributions

Several probability distributions, each with its own 
merits and demerits, have been found useful for FFA 
across different countries. Table 2 gives the probability 
density functions f(x), cumulative distribution 
function (CDF) F(x), and quantile functions f(F) of 
the distributions applied in the current work. These 
distributions have been applied and found suitable for 
FFA for different river sites in many studies.

Here, location, scale, and shape parameters are 
denoted by µ, α, and β, respectively. 

Fig. 1. Map of the Sutlej River with two gauging sites located in Pakistani territory. 

Table 1. Basic characteristics of gauging locations.

Gauging 
location

Time 
period Longitude Latitude Elevation

Islam 1966-2017 72.5501 29.8258 139 m

Sulemnaki 1966-2017 73.8642 30.3790 160 m

Fig. 2. Time series plots of annual extreme flows at two gauging sites.
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estimated in a simple and straightforward way.  
The solution of the system of equations obtained by 
matching theoretical L-moments with corresponding 
sample L-moments yields the estimates for unknown 
parameters.

Maximum Likelihood Estimation Approach

Maximum Likelihood (ML) is one of the most 
common methods for estimating the parameters of 
probability distributions. The principle of the ML 
approach lies in identifying values that maximize the 
likelihood or log-likelihood function. Consider a random 
sample of n observations x1, x2, ..., xn from a probability 
distribution having a density function f(xj|θ) with θ 
being the vector of unknown parameters. The ML 
estimate of θ is obtained by setting the derivative of the 
log-likelihood function ι(θ) with respect to the elements 
of θ equal to zero and solving the resultant system of 
equations. If a closed-form solution is not achievable, 
numerical optimization techniques can be used to obtain 
the ML estimates. This study employed the SANN 
(based on simulated annealing) algorithm for numerical 
optimization using R-language [43]. 

Least Squares Estimation Approach

The Least Squares (LS) approach is frequently 
employed for estimating the parameters of models [44-
46]. In the context of probability distributions, the LS 
approach minimizes the sum of squared difference 
between corresponding theoretical and observed CDFs. 
Algebraically, 
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sample CDFs of the data, respectively. The parameter 
estimates are found by solving the set of simultaneous 
equations obtained by differentiating this function with 
respect to unknown parameters. The details of the LS 
approach are provided in Ali [44]. When complex 
functions do not result in a closed-form unique solution, 
optimization algorithms are used to estimate the 
parameters. We have applied the “optim” function in the 
R-language for this optimization process.

Weighted Least Squares Estimation Approach

Pioneered by Bergman [47], the Weighted Least 
Squares (WLS) approach is a modified version of the 
ordinary LS approach. Unlike the LS method, which 
applies the same weights to all observations, WLS 
assigns diverse weights to different observations.  

L-moments Estimation Approach

Pioneered by Hosking [40, 41], the L-moments are 
computed as direct linear functions of probability-
weighted moments (PWM). Although it is a common 
and easy approach to compute L-moments using PWM 
[9, 10, 42], L-moments are generally more efficient 
and convenient compared to PWMs while dealing 
with practical problems, as they directly quantify the 
measures of scale and shape of any distribution. For any 
distribution with quantile function f(F), the rth PWM Br 
is theoretically defined as:
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where x( j) is the jth order statistic in the sample of  n 
observations.

Subsequently, the corresponding L-moments are 
calculated directly through the following relationships:

 1 0λ β=  (6)

 2 1 02λ β β= −  (7)

 3 2 1 06 6λ β β β= − +  (8)

 4 3 2 1 020 30 12  λ β β β β= − + −  (9)

As a function of L-moments, Hosking [41] proposed 
L-coefficient of variation (τ2), L-coefficient of skewness 
(τ3), and L-coefficient of kurtosis (τ4)as: 
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Similar to the method of moments estimation, 
parameters by the L-moments (LM) technique are 
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These weights are computed through a certain weight 
function. In the WLS approach, parameter estimation 
is done by minimizing the sum of squared weighted 
difference between theoretical and sample CDFs 
algebraically,
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( ) ( ) ( ) .

n

j j n j
j

WLS W F x F xθ
=

 = − ∑
 (11)

Following the findings and recommendations of 
different previous studies [48-50], we have used the 
following function to compute weights to be assigned to 
different observations: 
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n nW
j n j
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Relative Least Squares Estimation Approach

The Relative Least Squares (RLS) method, 
introduced by Pablo and Bruce [51], is another modified 
form of the simple or ordinary LS estimation approach. 
Recent findings suggest that RLS performs better for 
different probability distributions [37, 52, 53]. Unlike 
the LS approach (which minimizes the sum of squared 
difference between theoretical and sample CDFs), the 
RLS approach aims to minimize the sum of squared 
relative difference between the two CDFs. Simply put, 
through the RLS method, parameters are estimated by 
minimizing the objective function given as:
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Just like in the case of LS and WLS approaches, 
numerical optimization techniques can be used in case 
of complex functions that do not result in unique closed-
form solutions.

Performance Metrics 

The comparative performance of various potential 
models is evaluated to recommend the most optimal 
model (blend of distribution and estimation strategy) for 
a particular gauging location. The comparison among 
different competing models is done using commonly 
applied accuracy metrics (like RMSE, RMSPE, 
MAE, and MAPE) and p-values associated with some 
goodness-of-fit (GOF) tests (like KS, AD, and CVM). 
The test statistics for the GOF tests employed are given 
as:

 { }ˆ ( ) ( )j n jKS Max F x F x= − ⋅
 (14)
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Similarly, accuracy measures are defined as:
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where Fn(xj) and F̂ (xj) denote the observed and expected 
CDF of the distribution, respectively. The model with 
the highest p-value (in the case of the GOF test) and 
the lowest value (in the case of accuracy measures) is 
deemed best suited. 

After ranking each model based on the above 
seven performance metrics, a total rank for each 
model is computed by summing the ranks from these 
performance indicators as follows: 

RMSE RMSPE MAE MAPE

KS AD CVM

Rank Rank Rank Rank
Total Rank

Rank Rank Rank
+ + + 

=  + + +   
 (21)

Finally, for a given gauging location, the model 
with the highest total rank score is considered the most 
suitable and optimal model for that particular location.

Estimation of Flood Quantiles 

Estimating the maximum flow for a given return 
period (T) is another vital objective of any FFA.  
The return period T is generally given in years and 
indicates how often the peak flow is expected to recur. 
The estimated flood level xT corresponding to a return 
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period of T years may be defined as the flood of xT 
magnitude and is expected to exceed once in T years. 
Thus, the cumulative probability of non-exceedance (i.e., 
the likelihood that the flood level will not be surpassed 
in a given year) is: 

( ) ( ) 1 ( ) 1 1T T TF F x P X x P X x T= = ≤ = − ≥ = −   
(22)

Now, the value F can be inserted in the quantile 
function of the most suitable model to estimate 
flood level xT for return period T. The expressions of 
quantile functions of different distributions applied  
in the current study are given in Table 2. The parametric 
bootstrapping approach [9, 10, 54] is applied to estimate 
the standard errors of predicted flood quantiles (xT). 
Based on these standard errors, 95% confidence 
intervals are also constructed. The parametric bootstrap 
approach creates a sampling distribution by generating 
repeated samples from a particular distribution with 
estimated parameters. This sampling distribution is 
then used to compute standard errors for the associated 
parameter estimates.

Results and Discussion

Table 3 presents the summary statistics for annual 
maximum flow data for gauging sites considered in the 
current analysis. For any FFA using probability models, 
the main assumptions about data series are randomness, 
independence, stationarity, and skewness [10, 17, 55]. 
In this study, we have used Wald-Wolfowitz (WW), 
Augmented Dickey-Fuller (ADF), and autocorrelation 
coefficient (AC) tests to test the validity of randomness, 
stationarity, and both independence and skewness, 
respectively.

The outcomes given in Table 4 clearly indicate 
that these tests confirm that the data series from both 
gauging sites satisfy the prerequisite assumptions for 
conducting at-site FFA.

The parameters estimated (with parametric 
bootstrap standard errors in parentheses) using various 

estimation methods for candidate distributions are 
provided in Tables 5 and 6 for gauging sites located at 
Islam and Sulemanki, respectively. For both gauging 
sites, each probability distribution and estimation 
approach combination was ranked based on accuracy 
measures and p-values associated with GOF tests.  
The highest p-value (for GOF tests) and the lowest  
value (for accuracy measures) were given the highest 
rank. The total rank score, determined by summing 
all ranks, is used as a single performance measure for 
identifying the most plausible model for each gauging 
site. 

The results given in Tables 5 and 6 indicate that the 
generalized Pareto distribution estimated through the 
WLS method is the most optimal model for both gauging 
locations considered for the analysis. Moreover, the 
same probability distribution estimated with the LS and 
LM methods is found to be the second-best choice for  
the Islam and Sulemanki gauging sites, respectively. 
This outcome contrasts with previous research 
focused on at-site FFA [9, 10, 56] that identified and 
recommended different other probability distributions 
as most suitable for various stations of different rivers 
analyzed therein.

After identifying the most plausible model for  
a certain gauging location, the next important step  
in any at-site FFA is estimating flood levels for various 
return years. These flood quantiles are determined 
using the selected model’s quantile function and 
estimated parameters. Table 7 presents the quantile 
estimates for both gauging locations with certain  
non-exceedance probabilities (F) for return periods 
ranging from 5 to 1000 years. The table also provides 
the standard errors computed through parametric 
bootstrapping and the resulting 95% confidence intervals 
associated with the estimated yearly maximum flow. 
The magnitude of the standard errors for different return 
years suggests that flood estimates for longer return 
periods have less precision than those for relatively 
shorter return periods.

Table 4. Results of testing prerequisite assumptions for data series.

Table 3. Descriptive statistics of the Sutlej River’s yearly maximal flow (m3/s).

Gauging location n Mean Median Maximum SD CV

Islam 50 1665.769 1048.672 8676.99 1791.828 1.075676

Sulemanki 52 2216.793 1260.836 11311.25 2371.395 1.069741

Gauging location n ADF (P-value) WW (P-value) AC (P-value) Skewness

Islam 50 0.0437 0.253 0.947 1.6396

Sulemanki 52 0.0373 0.401 0.532 1.6397
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Table 5. Parameter estimates and ranking of models (gauging location: Islam).

Distribution Method µ̂ α̂ k̂ Total Rank

GLO

LM 1146.392 
(200.513)

721.963 
(108.013)

-0.37 
(0.114) 100

MLE 987.485 
(4.905)

810.457 
(4.689)

-0.844 
(0.024) 101

LS 972.067 
(8.584)

804.496 
(8.045)

-0.763 
(0.164) 128

WLS 959.722 
(5.994)

732.371 
(5.858)

-0.705 
(0.078) 135

RLS 975.538 
(5.476)

863.958 
(5.136)

-0.884 
(0.025) 98

GEV

LM 761.986 
(162.157)

929.828 
(151.955)

-0.289 
(0.141) 113

MLE 747.451 
(9.009)

884.708 
(8.364)

-0.76 
(0.159) 90

LS 758.278 
(10.759)

944.325 
(8.73)

-0.441 
(0.281) 118

WLS 758.16 
(11.318)

914.308 
(8.884)

-0.5 
(0.211) 109

RLS 756.52 
(10.333)

951.918 
(9.25)

-0.882 
(0.191) 70

GUM

LM 904.697 
(210.972)

1318.523 
(174.77) ------ 74

MLE 903.315 
(10.484)

1316.672 
(10.821) ------ 75

LS 897.324 
(12.271)

1309.558 
(10.439) ------ 76

WLS 913.518 
(19.586)

1296.689 
(14.369) ------ 75

RLS 909.125 
(10.643)

1321.682 
(10.788) ------ 71

GPD

LM -89.469 
(97.313)

1615.762 
(414.625)

-0.08 
(0.164) 157

MLE -67.9 
(7.257)

1615.979 
(7.796)

-0.044 
(0.116) 157

LS -94.196 
(11.156)

1609.068 
(9.367)

-0.143 
(0.219) 158

WLS -84.199 
(10.106)

1623.939 
(6.716)

-0.122 
(0.181) 162

RLS -88.865 
(11.217)

1617.468 
(9.414)

-0.664 
(0.906) 48

REV

LM 2426.841 
(196.174)

1318.523 
(168.585) ------ 30

MLE 2391.641 
(8.654)

1312.138 
(9.199) ------ 36

LS 2396.879 
(11.453)

1320.816 
(10.539) ------ 34

WLS 2425.536 
(19.841)

1318.764 
(14.058) ------ 32

RLS 2446.161 
(11.002)

1314.078 
(11.449) ------ 28

Bootstrap standard errors are given in parentheses
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Table 6. Parameter estimates and ranking of models (gauging location: Sulemanki).

Distribution Method µ̂ α̂ k̂ Total Rank

GLO

LM 1525.317
(253.589)

949.012
(136.736)

-0.373
(0.113) 105

MLE 1233.304
(5.113)

920.598
(5.297)

-0.763
(0.025) 131

LS 1274.061
(8.205)

1039.922
(8.733)

-0.794
(0.158) 127

WLS 1262.658
(5.55)

952.484
(5.7)

-0.72
(0.064) 141

RLS 1647.883
(5.545)

1573.727
(4.949)

-0.961
(0.027) 49

GEV

LM 1020.908
(209.027)

1219.103
(188.793)

-0.294
(0.14) 115

MLE 1018.684
(9.38)

1185.839
(8.976)

-0.8
(0.157) 77

LS 1021.778
(10.884)

1229.476
(8.77)

-0.481
(0.272) 113

WLS 1025.766
(10.81)

1208.012
(7.581)

-0.492
(0.206) 111

RLS 1012.46
(10.154)

1224.73
(8.032)

-0.835
(0.187) 71

GUM

LM 1211.678
(262.967)

1741.317
(224.538) ------ 75

MLE 1213.103
(10.918)

1740.864
(10.997) ------ 70

LS 1205.364
(11.615)

1734.667
(10.497) ------ 80

WLS 1213.289
(18.297)

1733.667
(13.58) ------ 77

RLS 1213.847
(11.709)

1739.771
(10.819) ------ 68

GPD

LM -92.366
(117.758)

2108.624
(519.333)

-0.087
(0.156) 151

MLE -79.171
(6.993)

2118.006
(7.283)

-0.046
(0.112) 146

LS -98.561
(10.306)

2105.663
(9.813)

-0.146
(0.227) 148

WLS -87.504
(9.657)

2110.886
(6.103)

-0.148
(0.185) 157

RLS -80.227
(11.674)

2098.269
(9.62)

-0.333
(0.738) 113

REV

LM 3221.908
(246.736)

1741.317
(218.13) ------ 28

MLE 3191.647
(8.823)

1739.562
(9.628) ------ 32

LS 3189.695
(11.361)

1738.235
(10.604) ------ 38

WLS 3213.075
(17.088)

1757.156
(13.873) ------ 24

RLS 3234.048
(10.185)

1736.22
(11.522) ------ 28

Bootstrap standard errors are given in parentheses
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Conclusions

Modeling of yearly peak flow at two gauging 
locations of the Sutlej River was conducted using 
some well-known probability distributions estimated 
using various estimation techniques. The goal was to 
identify the most apt combination of distribution and 
estimation approach for each location. We evaluated 
the performance of GLO, GUM, REV-GUM, GEV, and 
GP probability distributions estimated using ML, LM, 
LS, WLS, and RLS estimation approaches to achieve 
this goal. The comparison was based on a total rank 
computed based on the rankings of seven different 
performance metrics. The model with the maximum 
total rank was selected separately as the most optimal 
for both locations.

Based on our results, we recommend the generalized 
Pareto distribution estimated with the weighted least 
squares method as most suitable for modeling the peak 
yearly discharge for both gauging locations of the Sutlej 
River considered in the study.

The findings of the current analysis of water flow 
data can be utilized to analyze and predict flood levels, 
manage water reservoirs, and plan hydraulic structures 
along the Sutlej River and its surrounding catchment 
area. The model recommended for analyzed gauging 
locations may also serve as a valuable potential 
candidate model for at-site or regional FFA of the Sutlej 
River or other rivers in nearby regions.
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