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Abstract

With the acceleration of global urbanization, land use change and climate change have become 
key elements affecting regional ecology and sustainable development. Focusing on Tianjin, this study 
explored the spatial and temporal evolution patterns of land use change and climate change on vegetation 
cover and their driving mechanisms from 2000 to 2020. The impacts of land use and climate change 
on NDVI were quantitatively assessed by remote sensing images and meteorological data, combined 
with the land use transfer matrix and statistical analysis methods. The results show that during 
the period of 2000-2020, the land use change in Tianjin is remarkable, the rapid expansion of building 
land becomes the main driving force, the area of forest land and grassland decreases first and then 
increases, and the change of unused land shows a stage characteristic. The contribution of land use 
change to vegetation cover change is higher than that of climate change, and its influence increases with 
time. The overall trend of NDVI increases and then decreases, which is closely related to land use change 
and ecological protection policies. In terms of climate change, the synergistic effect of temperature 
and precipitation showed significant seasonal differences, with the highest correlation between NDVI 
and temperature in autumn and a negative correlation between precipitation and NDVI in winter. 
The study reveals the complex influence mechanisms of land use and climate change on vegetation 
cover in Tianjin, providing a scientific basis for ecological protection and land resource management in 
the process of urbanization, as well as a reference for sustainable development in other urbanized areas.
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Introduction

With the acceleration of global urbanization, land 
use change and climate change have become key 
factors affecting the regional ecological environment 
and socio-economic development [1]. Urbanization, 
as a major driver of land-use change, has not only 
led to large-scale land-type transformations, but also 
triggered changes in ecosystem functions and the 
exacerbation of environmental problems [2]. At the 
same time, climate change is having an increasingly 
significant impact on ecosystems, especially changes in 
temperature and precipitation, which have far-reaching 
effects on vegetation growth and cover conditions [3]. 
These changes not only reflect the complex interactions 
between human activities and the natural environment 
but also bring new challenges for regional sustainable 
development.

The impacts of land use change on ecosystems and 
socio-economics have become a global research hotspot. 
The Normalized Difference Vegetation Index (NDVI) 
is widely used as a key tool for monitoring ecosystem 
changes [4]. International studies have confirmed a 
general upward trend in global vegetation activity [5], 
with particularly prominent changes in vegetation 
cover in Eurasia [6], China [7], and the eastern part of 
China [8]. Land use change not only changes the spatial 
pattern and type of terrestrial ecosystems, but also has 
far-reaching impacts on socio-economic development 
and ecological evolution [9, 10]. Such changes reflect 
the complex interactions between socio-economic 
systems and ecosystems, and the intensity of land-use 
activities directly reflects the degree of disturbance from 
human activities [11, 12]. For example, urbanization- 
and industrialization-driven reduction of arable land 
has led to a systematic decline in vegetation cover [13], 
and there are significant effects of different land use 
practices on seasonal changes in vegetation cover [14]. 
At the level of driving mechanism, the roles of human 
factors and policy regulation in regional vegetation 
cover changes have become increasingly prominent [15]. 
Empirical analyses in the Yangtze River Basin have 
shown that anthropogenic activities contributed 20.68% 
to vegetation change [16], which spatially aligns with the 
conclusion that anthropogenic activities dominate land-
use type transformation and vegetation cover change, as 
revealed by studies in the Yellow River Basin [17, 18]. 
Comparison of cross-regional studies showed that the 
decrease in NDVI due to anthropogenic activities such 
as intensive farming and deforestation in Okitipupa, 
Nigeria [19], and the degradation of ecosystem services 
triggered by agricultural expansion in Ponorogo, 
Indonesia, and Pangari watershed, India, corroborated 
the decisive influence of human activities on NDVI 
changes [20, 21]. The two-factor decomposition model 
of the Poyang Lake Basin was used to analyze the 
compound effects of natural and anthropogenic factors 
on the change of vegetation cover, while the MODIS-
NDVI time-series analysis of Guangdong Province 

presented the whole picture of the ecosystem dynamics 
in the region [22, 23]. Furthermore, the 1990-2018 study 
shows that land cover change is one of the main drivers 
of changes in terrestrial ecosystem services over the 
last 50 years [24, 25], especially the transformation of 
natural ecosystems into agroecosystems [26]. These 
studies provide important references for ecological 
conservation and sustainable development strategy 
formulation.

Climate change, especially changes in temperature 
and precipitation, plays a decisive role in the long-term 
evolution of vegetation growth and cover [27]. Studies 
have shown that vegetation cover is on an upward trend 
in most regions of China, reflecting the response of 
vegetation to climate change [28]. Moderate warming 
and increased precipitation can promote vegetation 
activity, but temperature rises beyond thresholds or 
sharp precipitation fluctuations can have negative 
impacts [29]. The IPCC reported that the global 
temperature increased by about 0.85ºC during the 20th 

century, and the total amount of the potential global 
vegetation increased by 13% [30]. Meanwhile, some 
scholars using biogeochemical modeling have found 
that in the last two decades of the 20th century, the 
high latitudes of the Northern Hemisphere experienced  
a 0.8ºC temperature increase and a trend of greening in 
vegetation [31]. However, excessive warming accelerates 
soil moisture evaporation, leading to reduced soil 
moisture and increased drought, especially in the 
Southern Hemisphere and at low and middle latitudes 
in the Northern Hemisphere [32]. In addition, if the 
alpine Grassland of the Tibetan Plateau warms up to 
2.2ºC in the next 10 years, the aboveground biomass 
of alpine meadows and alpine grasslands will decrease 
by 6.8% and 4.6%, respectively [33]. Similarly, reduced 
or unevenly distributed precipitation can exacerbate 
drought and expose vegetation to water stress [34]. 
For example, in subduction zones such as the Greater 
and Lesser Xing’anling Mountains and the Changbai 
Mountains in China, reduced precipitation can 
significantly inhibit vegetation growth [35]. Excessive 
changes in precipitation may also trigger flooding 
and increase the uncertainty of vegetation growth 
[36], which adversely affects vegetation growth [37]. 
A typical example is the heavily desertified areas in 
eastern and northern Inner Mongolia, where reduced 
precipitation leads to lower vegetation cover and 
further worsens the land degradation problem [38]. In 
different regions of China, there are significant regional 
differences in the relationship between NDVI changes 
and climate factors. For example, climate warming over 
the past 30 years has promoted vegetation recovery 
in the central and southeastern parts of the Loess 
Plateau of China, whereas it has inhibited vegetation 
recovery in the northwestern part of the country [39].  
The response of global vegetation growth to climate 
change varies spatially and temporally. For example, in 
the arid regions of the Northern Hemisphere, especially 
Central Asia [40], South Africa, and Australia [41], 
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vegetation growth is mainly affected by precipitation, 
and there is a time delay in the response of NDVI to 
precipitation [42, 43]. The key factor driving vegetation 
change in the south-central region of the Northern 
Hemisphere is temperature [44]. The greening of 
vegetation in the Northern Hemisphere over the past  
30 years is associated with climate warming and 
increasing CO₂ levels [45]. Analyses of NDVI data 
from 1982 to 2013 in the Horn of Africa showed that 
NDVI changes in the region were positively correlated  
with precipitation and negatively correlated with 
temperature [46]. In addition, NDVI in the northern 
high latitudes and the Tibetan Plateau region exhibited  
a significant positive phase, with its maximum 
temperature in a unified time series [47]. Conversely, 
in the Northern Hemisphere, NDVI was negatively 
correlated with its corresponding daily minimum 
temperature [48]. Taken together, these studies reveal 
the complexity of the impact of climate change on NDVI 
and the sensitivity and adaptation of different regions 
and ecosystems to climate factors.

Globally, the impacts of land use and climate 
change on NDVI have been a hotspot of ecological 
and climatological research. Studies in this field have 
broadly covered different land use types such as forest, 
grassland [49], i.e., focusing on the role of land use 
change on climate, but also exploring the feedbacks of 
climate change on land use patterns and the combined 
impacts of the two on NDVI. International studies 
have pointed out that the combined effects of land 
use change and climate change can lead to significant 
declines in biodiversity, especially in the absence of 
climate mitigation policies [50]. For example, habitat 
modification triggered by human land use change is  
a key factor in current biodiversity loss, and this effect 
is expected to increase further in this century [51]. 
Currently, most of the relevant research in China is 
focused on the Northeast [52], Yangtze River Delta [53], 
Pearl River Delta [54] and other regions, as well as the 
Loess Plateau [55], Qinghai-Tibetan Plateau [56], and 
the southwestern Karst region [57] with a fragile natural 
ecosystem. Studies for Tianjin have focused on the 
main urban area of Tianjin [58], Tianjin Port [59], and 
the Binhai New Area [60], while there are fewer similar 
studies on land use and climate change in Tianjin as  
a whole.

As a key port city and core of the Beijing-Tianjin-
Hebei synergistic development, Tianjin has experienced 
rapid urbanization and significant climate change in 
recent years. Its land-use and climatic spatio-temporal 
heterogeneity make it an ideal location for research on 
NDVI dynamics. Tianjin is located in the Haihe River 
Basin with a fragile ecosystem, studying how land 
use and climate change impact on NDVI is crucial 
for the regional ecological restoration and sustainable 
development. Meanwhile, there are relatively few studies 
on the combined effects of land use and climate change 
on vegetation cover in Tianjin. Therefore, this study 
focuses on Tianjin (2000-2020), quantitatively assessing 

their impacts on NDVI through spatio-temporal analysis 
and exploring underlying driving mechanisms.

The perspective of this study emphasizes that 
urbanization not only reshapes land use patterns but 
also exacerbates climate change, which in turn poses 
challenges to the ecological balance and sustainable 
development of cities. Taking into account the specific 
situation of Tianjin, this study will focus on the 
following questions: first, what are the significant land 
use changes in Tianjin during 2000-2020, and how does 
it impact vegetation cover patterns (e.g., urban expansion 
converting agricultural/natural land to built-up areas)? 
Secondly, how does climate change, especially changes 
in temperature and precipitation, affect the growth and 
coverage of vegetation in Tianjin? Thirdly, what is the 
correlation between temperature and precipitation, and 
NDVI? Finally, under urbanization, how can effective 
urban and land management strategies be developed 
to protect the ecosystem and rationally utilize land 
resources? Answering these will provide a scientific 
basis for ecological protection and land management in 
Tianjin and other rapidly urbanizing cities.

Study Area and Data Sources

Study Area

Tianjin is located in North China, in the northeastern 
part of the North China Plain, in the lower reaches of 
the Haihe River Basin, between latitudes 38°34′ and 
40°15′ north and longitudes 116°43′ and 118°04′ east. 
Its geographic location is shown in Fig. 1. The city has 
a total area of 11,966,000 square kilometers and 16 
districts. Tianjin has a warm-temperate, semi-humid 
continental monsoon climate [61], characterized by 
rich soil types, predominantly tidal soils and salt soils. 
Vegetation changes significantly with the seasons, with 
vegetation gradually recovering in spring, growing 
luxuriantly in summer and autumn, and being relatively 
sparse in winter. The average annual temperature is 
about 12ºC, the average annual precipitation is between 
360-970 mm, the annual sunshine hours are about 
2500-2900 hours, the altitude is generally between  
2-5 meters, the terrain is high in the northwest and 
low in the southeast, the northern part is the southern 
foothills of the Yanshan Hills, and the rest of the area 
belongs to the alluvial plains, and there is a lot of 
wetlands, and it is known as the ‘Nine Rivers Under the 
Tip’. As the largest port city in northern China and an 
important core city for the coordinated development of 
the Beijing-Tianjin-Hebei region, Tianjin is experiencing 
strong development dynamics. The pace of urbanization 
continues to accelerate, along with economic growth 
and population convergence, resulting in a rising 
demand for building land. By the end of 2023, Tianjin 
will have a resident population of 13.63 million, with 
an urbanization rate of 84.88%. The concentration of 
population and the rapid pace of urbanization have 
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profoundly affected the urban climate of the region, 
making the heat island effect more and more obvious, 
and the demand for natural resources has also increased 
significantly, with changes in the pattern of vegetation 
cover, continued expansion of the urban area, and the 
gradual transformation of some of the surrounding 
agricultural land into building land.

Data Sources

All remote sensing image data used in the study area 
were obtained from the geospatial data cloud platform, 
and the Landsat5 TM and Landsat 8OLI_TIRS remote 
sensing image datasets of Tianjin from 2000 to 2020 
were selected, with a spatial resolution of 30 m,  
a temporal resolution of 16 d, and a unified coordinate 
system of WGS_1984. In order to improve the data 
quality, the study was carried out through the Google 
Earth Engine platform to de-cloud the images and 
calculate the annual average NDVI of Tianjin from 2000 
to 2020 based on the processed images. The land use 
data were obtained from the China Multi-Period Land 
Use Remote Sensing Monitoring Dataset published by 
the Centre for Resource and Environmental Sciences 
and Data of the Chinese Academy of Sciences (CRESD). 
The above data were used to study the analysis of 
spatial and temporal evolution patterns of land use and 
vegetation index in Tianjin.

The main climatic factors affecting vegetation 
changes include temperature and precipitation, which 
tend to have a high correlation. Considering the 
sensitivity of the study area to these climatic variables, 
air temperature and precipitation were chosen as 
the indicators for assessing climate impacts in this 
study. 2000-2020 annual average air temperature 
and precipitation data were obtained from the China 

Statistical Yearbook, and individual missing values 
were supplemented by linear interpolation. All the 
above data span from 2000 to 2020, because a 20-year 
study period can fully reflect the long-term evolutionary 
characteristics of land use and vegetation cover, and at 
the same time capture important cyclical patterns of 
change.

Research Methodology

Evaluation of Land Use and Classification  
Accuracy

According to the secondary classification of Chinese 
Academy of Sciences (CAS), combined with the 
geographical characteristics of the study area, the remote 
sensing images were spatially cropped and reclassified 
by Arcgis 10.8 software, and the land use types in 
Tianjin were divided into six primary types: agricultural 
land, forest land, grassland, waters, building land and 
unused land. The spatial distribution data of land use 
types in the study area in 2000, 2005, 2010, 2015, and 
2020 were obtained for five periods. In order to ensure 
the classification accuracy, the Random Forest algorithm 
was used to verify the classification results of each 
period, and the results showed that the overall accuracy 
of the classification results of the five-phase images 
was above 85%, and the Kappa coefficient was above 
0.8, so the accuracy of the classification results met the 
requirements. The reasons for choosing a 5-year interval 
for the study of land use change are: firstly, this time 
scale can effectively capture the dynamic characteristics 
of land use change and ensure the availability of data; 
secondly, a 5-year interval reflects the evolutionary 
trend of land use and facilitates the systematic collection  

Fig. 1. Geographic location of Tianjin.
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In the expression, Sij denotes the area of pre-transfer 
land type i converted to post-transfer land type j, i and j 
denote the pre-transfer and post-transfer land use types, 
respectively, and n is the number of pre-transfer and 
post-transfer land use types.

Impact of Land-Use Change on NDVI

As one of the core indicators of vegetation cover, 
NDVI can effectively reflect the inter-annual and 
seasonal dynamics of vegetation growth activities, 
and thus has been widely used in the research fields 
of vegetation-climate relationship and vegetation-
precipitation relationship. Among the changes in many 
environmental factors, the changes in vegetation cover 
are significantly associated with human activities and 
climate change, and the changes are mainly caused by 
the combined effects of these two driving factors [65, 
66]. Among them, the impact of human activities is 
usually quantitatively characterized by land use change 
LUCC. Based on this, the total vegetation index change 
(ΔX) in the study area over a specific time period can be 
expressed as:

	 	 (3)

In Equation (3), Fni and Fnj denote the average 
vegetation index for a given land type n in periods i 
and j; Sni and Snj denote the area of a given land type 
n in periods i and j, with j>i; QLUCC denote changes in 
vegetation cover due to land use; and Qc denote changes 
in vegetation cover due to climate change.

If only the effects of human activities are considered, 
and assuming that the average NDVI in a given time 
period remains constant, the change in vegetation cover 
due to land use change and its proportion of the total 
change in vegetation cover can be expressed as [67], 
respectively:

	 	 (4)

	 	 (5)

The quantitative assessment of the contribution of a 
given land-use change type to vegetation cover change, 
i.e., its proportion of land-use-induced vegetation cover 
change, can then be expressed as follows:

	 	 (6)

A positive value of σ indicates an increase in 
vegetation cover as a result of a change in a land type, 
while a negative value indicates a decrease.

and analysis of data; and lastly, this time span coincides 
with the cycle of the socio-economic development 
planning in the study area, which is beneficial to 
revealing the impacts of human activities on land 
use. Finally, this time span coincides with the socio-
economic development planning cycle of the study area, 
which is conducive to revealing the impact of human 
activities on land use patterns.

Normalized Difference Vegetation Index (NDVI)

NDVI is a simple and efficient metric for analyzing 
satellite images to quantify vegetation by measuring the 
difference between near-infrared (strongly reflected by 
vegetation) and red light (absorbed by vegetation). NDVI 
can better reflect the growth status of vegetation, so it is 
widely used in the fields of vegetation dynamics change 
monitoring, crop growth estimation, and vegetation 
feature identification [62]. The calculation formula is:

	

NIR RNDVI
NIR R

−
=

+ 	 (1)

In the formula, NDVI is the normalized vegetation 
index, NIR is the near-infrared reflectance value, R is 
the red-band reflectance value, the NDVI value ranges 
from -1 to 1, -1 means visible light is highly reflective,  
0 means there are rocks or bare soil, etc., and greater 
than 0 means there is vegetation cover, the larger the 
value of NDVI, the more luxuriant the vegetation is, and 
1 means that the vegetation cover is almost saturated, 
but in practice the value of NDVI will rarely reach 1 in 
reality, because even in very dense areas, the reflectance 
of the vegetation may not reach 100%, and some light 
will always be absorbed or scattered. However, in 
practice, the NDVI value rarely reaches 1 because 
even in very densely vegetated areas, the reflectance of 
vegetation cannot reach 100%, and some light is always 
absorbed or scattered [63].

Land Use Transfer Matrix

The conversion relationship between land uses can 
be described by a land use transfer matrix, which can not 
only show the conversion between different land types in 
a quantitative way, but also reveal the rate of conversion 
between these land use types [64]. The decoded land 
use/cover type maps were analyzed and calculated using 
ArcGIS 10.8 software, which in turn calculated the land 
use transfer matrix with the expression

	 	 (2)
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Results and Analyses

Analysis of Spatial and Temporal 
Evolution of Land Use

Changes in Land-Use Types

Land use changes in the study area from 2000 to 
2020 are shown in Fig. 2, and the area and percentage 
of each land use type are shown in Table 1 and Fig. 3. 
Regarding land use structure, agricultural land was  
the dominant type of land use in Tianjin during  
the study period. From 2000 to 2020, the area and 
proportion of each land use type showed significant 
dynamic changes. Forest land area first decreased and 
then increased, from 2000 to 2010, forest land area 
decreased from 466.55 km² to 354.15 km², and its 
proportion decreased from 3.94% to 2.99%; from 2010 
to 2020, forest land area rebounded to 473.15 km², and 
its proportion decreased from 3.94% to 2.99%; from 
2010 to 2020, forest land area increased to 473.55 km². 

Forest land area rebounded to 473.32 km², accounting for 
3.99% of the total. Grassland area shrunk significantly 
from 2000-2010, from 219.71 km² to 94.43 km², with  
a share of 1.86% to 0.80%; it increased slightly from 2010-
2015, and then increased significantly to 302.43 km², 
with a share of 2.55%, from 2015-2020, which may be 
attributed to the ecological restoration and the grassland 
protection policy. The area of waters continued  
to decrease from 2000-2015, from 2212.75km² to  
1485.22 km², with a share of 18.69% to 12.35%, reflecting 
the crowding out of waters space by urban construction; 
it rebounded from 2015-2020, to 1777.90 km², 
with a share of 14.98%, indicating that waters This 
indicates that the protection and restoration measures 
have begun to bear fruit.

The area of building land showed a continuous 
growth during the study period, from 1974.10 km² 
in 2000 to 3280.90 km² in 2020, with the proportion 
of building land increasing from 16.67% to 27.67%. 
16.67% to 27.65%, which is in line with the rapid 
urbanization process in Tianjin, where urban expansion, 

Fig. 2. Mapping of land-use changes from 2000 to 2020.
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infrastructure construction, and industrial development 
have all contributed to the expansion of building land. 
Unused land is more complex, with a drastic decrease in 
the area from 2000 to 2010, from 85.92 km² to 7.29 km², 
with a share of 0.73% to 0.06%. 0.73% to 0.06%, mainly 
due to the increase in the intensity of land development 
and utilization; from 2010 to 2020, the area of unused 
land increased significantly to 285.99 km², accounting 
for 2.41%, probably due to the rational planning of land 
resources and the protection and control of part of the 
undeveloped areas. Meanwhile, as one of the major land 
use types in Tianjin, the area of agricultural land, as  
a whole, shows a decreasing trend during 2000-2020, 
decreasing from 6883.35  km² to 5744.96 km², with 
the proportion decreasing from 58.12% to 48.42%, 
and this change is mainly attributed to the competition 
for land resources in the process of urbanization, the 
expansion of building This change is mainly attributed 
to the competition for land resources in the process of 
urbanization, the expansion of building land and the 

restructuring of agriculture, which has taken up a large 
amount of agricultural land.

Land Use Transfer

Based on the above data and charts, it can be 
observed that there is a turning point in land use in the 
study area around 2005, after which the area of forest 
land, grassland, and waters decreases sharply and is 
much smaller than that in the years before 2005. At the 
same time, building land shows a continuous growth 
trend. In order to analyze the land use transfer between 
2000 and 2020 in more depth, we divide this period into 
four stages and analyze the land use transfer in each 
stage. The transitions between land use types in the two 
periods are represented by transfer matrices, as shown 
in Table 2. To make a more intuitive observation of these 
conversions, the data were visualized as shown in Fig. 4.

In the first phase, from 2000 to 2005, there was  
a certain scale of transfer out of agricultural land  

Fig. 3. Process of area and proportion of each land use type in Tianjin.

Table 1. Statistics on the area and area share of each land use type in Tianjin from 2000 to 2020.

Year Land type Agricultural land Forest land Grassland Waters Building land Unused land

2000
Area/km2 6883.35 466.55 219.71 2212.75 1974.10 85.92 

Percentage/% 58.12 3.94 1.86 18.69 16.67 0.73 

2005
Area/km2 6678.17 448.06 188.79 2050.86 2411.99 63.16 

Percentage/% 56.40 3.78 1.59 17.32 20.37 0.53 

2010
Area/km2 6783.86 354.15 94.43 1649.78 2951.52 7.29 

Percentage/% 57.29 2.99 0.80 13.93 24.93 0.06 

2015
Area/km2 6690.50 361.40 97.37 1485.22 3252.08 136.42 

Percentage/% 55.65 3.01 0.81 12.35 27.05 1.13 

2020
Area/km2 5744.96 473.32 302.43 1777.90 3280.90 285.99 

Percentage/% 48.42 3.99 2.55 14.98 27.65 2.41 
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as the basic land use type, which was partly converted 
into forest land (2.461 km²), grassland (0.389 km²), 
waters (0.864 km²) and building land (2.822 km²), 
indicating the diversified demand for land in the 
early stages of urbanization. The area of forest land 
increased significantly in this period, mainly from the 
transfer of other land types, especially 287.804 km² 
from waters, showing the importance of forest land in 
ecological construction. The expansion of building land, 
on the other hand, relies mainly on the occupation of 
agricultural land and waters, which amount to 2.822 km² 
and 71.393 km² respectively, reflecting the encroachment 
of land resources by the process of urbanisation, and 
the rapid development of urban construction, which 
requires more land to satisfy the needs of infrastructure 
construction, housing and industrial development.  
The area of grassland decreased during this stage, 
primarily due to the conversion to forest land and 
building land, which totaled 11.884  km² and 0.041  km², 
respectively. This conversion is related to the dual needs 
of urbanisation and ecological construction. On the one 
hand, part of the grassland is used for afforestation in 
order to increase the area of forest land to improve the 
ecological environment; on the other hand, the urban 
expansion also occupies a certain amount of grassland 
resources. Unused land is mainly retained in this stage, 
and only a small amount is converted to building land 
(0.142 km²), indicating that the land development in this 
stage is still in the initial stage, and the development 
degree of unused land is relatively low.

The second phase spanned from 2005 to 2010. During 
this phase, agricultural land continued to be transferred 
out, mainly to forest land (4.694 km²), grassland  
(1.554 km²), and building land (0.224 km²). This 
phenomenon reflects the adjustment of land use structure 
under the double influence of urbanisation and ecological 
construction. Forest land area further increased in 
this period, with a large amount of conversion from 
water (602.698 km²) and grassland (23.197 km²).  
This indicates that Tianjin increased its efforts in 
ecological construction during this period by converting 
waters and grasslands to forest land, thereby increasing 
forest cover and improving the ecological environment. 
The rapid expansion of building land is one of  
the distinctive features of this stage, which is mainly 
derived from forest land (319.066 km²) and waters 
(317.472 km²), showing the urgent demand for space 
for urban construction. The grassland area continues 
to decrease in this stage, mainly being transferred to 
forest land and building land, which further highlights 
the competing nature of land use in the process of 
urbanization and ecological construction. Unused land 
is also partly developed into building land (0.448  km²) 
at this stage, but a certain proportion is still retained, 
indicating that land development is progressing 
gradually but has not yet reached the level of large-scale 
development.

The third phase spans the period from 2010 to 2015. 
At this stage, agricultural land remains the primary 

type of land transfer, primarily converted to forest 
land (1.865 km²), grassland (4.266 km²), and water 
(2.138 km²), reflecting the dynamic allocation of land 
resources among different uses. As urban development 
and ecological construction continue to advance,  
the demand for land becomes more diverse and refined. 
The area of forest land increased steadily during this 
period, mainly from the conversion of other types of land, 
such as water (115.674 km²). Building land continued 
to grow during this period, although the expansion 
trend slowed down, mainly from water (47.137 km²) 
and forest land (10.439 km²). The area of grassland 
decreased slightly during this period. Grassland 
decreased slightly during this period, partially converted 
to building land. Unused land appeared to be developed 
on a larger scale in this stage, mainly for building land 
(131.402 km²), which reflects that as urban development 
deepens, the intensity of development and utilization of 
land resources continues to increase, and unused land 
has become one of the most important sources to meet 
the demand for urban building land.

The fourth phase is between 2015 and 2020. During 
this phase, the trend of agricultural land transfer 
out continues, with major conversions to forest land  
(4.869 km²), grassland (2.261 km²), waters (5.854 km²), 
and building land (3.006 km²). The area of forest land 
increased further during the period, thanks to the 
conversion of waters (197.808 km²) and grassland 
(19.610 km²). The expansion of building land accelerated 
in this phase, mainly from forest land (395.905 km²), 
waters (313.187 km²), and grassland (2.061 km²).  
The area of grassland decreased sharply in this phase, 
and was mainly transferred out to forest land, building 
land, and waters, which is closely related to the dual 
needs of urbanization and ecological construction. 
Unused land is partly developed into building 
land (93.605 km²), while other land types are also  
transferred into it (e.g., forest land is transferred into it; 
37.989 km²), which reflects the more complex dynamic 
change of land use. This suggests that the dynamic 
change in land use is more complex, and unused land 
plays a crucial role in both urban development and 
ecological protection. Therefore, its development and 
utilization require a comprehensive consideration of 
various factors.

Overall, land use in Tianjin has changed significantly 
during the period of 2000-2020, and the advancement 
of urbanization has led to the continuous expansion of 
building land, which mainly relies on the occupation of 
agricultural land, forest land, waters, grassland, and other 
land types. Meanwhile, the continuous development of 
ecological construction has led to an overall increase 
in the area of forest land, reflecting the trade-off and 
adjustment of land use between economic development 
and ecological protection. These changes have had  
a profound impact on the ecological environment, urban 
development pattern, and sustainable development of 
Tianjin.
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Table 2. Land-use area conversion matrix.

Year Project
Land use area/km2 in 2005

Type Agricultural 
land

Forest 
land Grassland Waters Building 

land
Unused 

land Summary

2000–
2005

Land use 
area/km2 
in 2000 

Agricultural land 182.209 2.461 0.389 0.864 2.822 0.049 188.794 

Forest land 18.645 1945.709 11.884 287.804 129.906 18.038 2411.985 

Grassland 0.410 0.128 444.487 2.996 0.041 0.002 448.063 

Waters 9.572 19.335 9.609 6567.947 71.393 0.310 6678.165 

Building land 8.867 6.433 0.177 23.672 2007.096 4.610 2050.855 

Unused land 0.006 0.039 0.001 0.072 0.142 62.901 63.162 

Summary 219.708 1974.104 466.547 6883.354 2211.400 85.911 11841.025 

Year Project
Land use area/km2 in 2010

Type Agricultural 
land

Forest 
land Grassland Waters Building 

land
Unused 

land Summary

2005–
2010

Land use 
area/km2 
in 2005

Agricultural land 86.490 4.694 1.554 1.462 0.224 0.004 94.428 

Forest land 35.360 1957.464 23.197 602.698 319.066 13.731 2951.517 

Grassland 1.387 2.201 346.514 2.482 1.568 — 354.152 

Waters 53.345 400.816 74.686 5913.991 317.472 23.553 6783.863 

Building land 12.212 46.620 2.112 157.390 1412.079 19.365 1649.778 

Unused land — 0.190 — 0.142 0.448 6.509 7.289 

Summary 188.794 2411.985 448.063 6678.165 2050.858 63.162 11841.027 

Year Project
Land use area/km2 in 2015

Type Agricultural 
land

Forest 
Land Grassland Waters Building 

Land
Unused 
Land Summary

2010–
2015

Land use 
area/km2 
in 2010

Agricultural land 85.921 1.865 4.266 2.138 0.196 — 94.386 

Forest land 1.955 2820.626 1.547 115.674 10.439 0.426 2950.668 

Grassland 2.749 2.797 342.143 5.577 0.671 — 353.937 

Waters 3.162 301.614 4.522 6424.754 47.137 0.069 6781.257 

Building land 1.382 79.738 0.217 46.105 1382.771 131.402 1641.615 

Unused land — 0.072 — 0.098 4.170 2.948 7.288 

Summary 95.169 3206.712 352.694 6594.347 1445.385 134.844 11829.152 

Year Project
Land use urea/km2 in 2020

Type Agricultural 
land

Forest 
land Grassland Waters Building 

land
Unused 

land Summary

2015–
2020

Land use 
area/km2 
in 2015 2

Agricultural land 78.610 4.869 2.261 5.854 3.006 0.575 95.174 

Forest land 40.823 2515.376 19.610 197.808 395.905 43.120 3212.642 

Grassland 4.357 5.120 320.676 19.932 2.061 0.499 352.644 

Waters 108.777 623.361 125.038 5408.871 313.187 17.428 6596.662 

Building land 68.959 91.660 5.515 110.001 969.438 221.893 1467.466 

Unused land 0.832 37.989 — 0.014 93.605 2.436 134.876 

Summary 302.359 3278.375 473.100 5742.479 1777.201 285.951 11859.464 
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Analysis of the Spatial and Temporal 
Evolution of NDVI

Characteristics of the Inter-Annual Evolution  
of NDVI

NDVI represents the sparseness of vegetation in 
an area, and when the level of urban development 
increases, NDVI values continue to decrease. In most 
cases, the NDVI values in urban areas are lower than 
those in non-urban areas, and as the average NDVI 
continues to decrease, the average surface temperature 
tends to increase. To explore the interannual change 
characteristics of vegetation cover in Tianjin, the raster 
NDVI data from 2000 to 2020 were processed to obtain 
the annual average NDVI folding map of the study area 

from 2000 to 2020, as shown in Fig. 5. The average 
NDVI values from 2000 to 2020 were 0.55, 0.62, 0.59, 
0.57, and 0.59. The vegetation index was relatively stable 
between 2000 and 2020, fluctuating around 0.58, with 
an overall slow downward trend.

To further investigate the spatial and temporal 
evolution characteristics of vegetation cover over 
different periods, remote sensing inversion was employed 
to generate spatial pattern distribution maps of annual 
average NDVI for the study area across five periods, 
as illustrated in Fig. 6. Based on the overall trend, the 
NDVI values in certain regions exhibited a significant 
increase from 2000 to 2010. However, the NDVI values 
in some regions started to show a decreasing trend since 
2010. Combined with Fig. 2, a clear expansion trend is 
evident in the area of building land in Tianjin between 

Fig. 4. 2000-2020 Sankey diagram of land-use change.

Fig. 5. Line graph of average annual vegetation change in Tianjin.
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2000 and 2020. In 2000, building land was mainly 
concentrated in a few core areas; in 2010, it began to 
expand outward; and in 2020, the expansion of building 
land was more significant, especially in the east and 
south areas of the city. At the same time, the area of 
agricultural land is gradually decreasing, and a large 
amount of agricultural land has been converted into 
building land. In addition, waters have been adjusted 
in some areas, and the distribution and area of forest 
land and grassland have also changed to some extent, 
with forest land and grassland being encroached upon 
by building land in some areas. Correspondingly, in 
the distribution map of NDVI spatial patterns, from 
2000 to 2010, although the overall NDVI values in 
some areas have increased, which may be attributed 
to early ecological protection measures and urban 
greening construction, the NDVI values in some urban 
expansion areas have begun to show signs of decline. By 

2020, in the region where building land is significantly 
expanding, the NDVI value decreases significantly, 
indicating that urbanization construction has negatively 
affected the vegetation growth condition. Especially in 
the eastern and southern regions where building land 
grows rapidly, the decreasing trend of the NDVI value 
is more obvious. This is closely related to the change 
in land use type and the land use type shift caused by 
human activities, such as the conversion of agricultural 
land and vegetation-covered areas to building land, 
which directly destroys the vegetation ecology and leads 
to a decrease in the vegetation index.

Through statistics, the average NDVI values of 
each land use type in Tianjin in different periods were 
obtained, as shown in Table 3. It can be seen that the 
NDVI of agricultural land, forest land, and grassland in 
the study area showed fluctuating trends during the study 
period. Among them, during the period of 2000-2010, 

Fig. 6. 5-period distribution of vegetation index in Tianjin.
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the NDVI values of agricultural land, forest land, and 
grassland showed an overall upward trend, fluctuating 
within the ranges of 0.7251-0.7655, 0.7852-0.8099, 
and 0.6447-0.7521, respectively. Especially during the 
period of 2005-2010, the vegetation growth in the study 
area reached the best condition, and the NDVI values 
of agricultural land and forest land in some areas even 
exceeded 0.8. However, after 2010, the NDVI values 
of all land use types exhibited a significant downward 
trend, and the NDVI value of unused land reached its 
lowest point (0.0103) in 2015, then recovered slightly 
but remained significantly lower than the level in 2000 
(0.4900). This trend of change may be closely related to 
the accelerated urbanization and rapid development of 
industrialization and construction in the study area after 
2010. As the proportion of impervious area increased, 
vegetation cover was significantly affected, leading to an 
overall decrease in mean NDVI values. In addition, the 
combined effects of climate change and anthropogenic 
activities may have exacerbated this trend.

 Seasonal Variations in NDVI  
and Influencing Factors

In order to explore the spatial and temporal 
characteristics of the vegetation index in Tianjin in 
different seasons, the average NDVI of the four seasons 
of spring, summer, autumn, and winter from 2000 
to 2020 was selected for analysis, and the results are 
shown in Fig. 7. The NDVI showed different degrees 
of fluctuation across the four seasons of the year, with 
the average value being highest in summer at 0.47, 
indicating that the vegetation status was optimal in 
summer, followed by autumn and spring, which had 
values of 0.38 and 0.21, respectively. The overall NDVI 
was lower in winter at 0.14, indicating that the overall 
vegetation status was poor in winter. This is related to 
the meteorological conditions of the region in which 
Tianjin is located, where abundant solar radiation 
in summer provides a rich source of energy for the 
photosynthesis of vegetation. At the same time, abundant 
precipitation provides the necessary moisture conditions 
for vegetation growth. Under the synergistic effect 
of these favorable meteorological factors, vegetation 
growth was extremely vigorous, and the vegetation 
cover and biomass increased significantly, resulting in 

high NDVI values. At the beginning of autumn, some 
of the vegetation remained in a relatively good state 
of growth, allowing NDVI values to be maintained at 
a certain level. However, as the season progresses, the 
temperature remains low, sunshine time is gradually 
shortened, and the heat and light conditions required for 
vegetation growth deteriorate, resulting in a downward 
trend in NDVI values. In spring, the weather system is 
more active, the cold air activity is still more frequent, 
and the spatial and temporal distribution of precipitation 
is often not uniform, these factors make the vegetation 
growth rate and the degree of development in different 
years there are some differences, which leads to the 
NDVI value shows a relatively stable and slightly 
fluctuating characteristics of the change. In winter, 
the climate in Tianjin is cold, the average temperature 
is significantly lower than in other seasons, and the 
precipitation is mostly in the form of snow, the soil 
freezes, and most of the surface vegetation enters a 
dormant period, and even some herbaceous plants 
wither and die, so that the vegetation cover and biomass 
drop to the lowest level of the year, and thus the NDVI 
value is obviously low.

Further analysis of the linear fitting equations 
reveals that there are significant differences in the trends 
of NDVI values with years in different seasons. Among 
them, the slope of the fitted equation is relatively large 
in autumn, which means that the NDVI values in 
autumn show a relatively more obvious trend with the 
increase of the year in this 20-year period. In contrast, 
the slopes of the fitted equations for spring, summer, 
and winter were relatively small, indicating that  
the trends of NDVI values with years in these seasons 
were relatively more moderate. The differences  
and variations in NDVI between these seasons are 
closely related not only to the unique meteorological 
conditions in Tianjin during different seasons, but also 
to the growth cycle and ecological adaptations of the 
vegetation itself.

Under the background of global warming, the average 
temperature of each season in Tianjin from 2000 to 
2020 showed a slow increasing trend, as shown in Fig. 8, 
which was positively correlated with the NDVI of each 
season. Combined with the fitted NDVI linear regression 
equations for each season in Fig. 7, it can be seen that the 
NDVI increased most significantly in autumn, at a rate 

Table 3. NDVI values for different land use types.

Year Agricultural
land Forest land Grassland Waters Building land Unused land

2000 0.7215 0.7852 0.6447 0.4194 0.4172 0.4900 

2005 0.7922 0.8218 0.6948 0.4059 0.4438 0.5427 

2010 0.7655 0.8099 0.7521 0.4237 0.3891 0.1765 

2015 0.7692 0.8417 0.7596 0.5091 0.4394 0.0103 

2020 0.5608 0.6384 0.5126 0.2205 0.3838 0.3516 
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Fig. 7. Inter-annual variation of average vegetation index in Tianjin during four seasons.

Fig. 8. Trends in air temperature and precipitation in Tianjin during the four seasons, 2000-2020; a) temperature, b) precipitation.

a)

b)

of approximately 0.36%/a. The temperature increased 
at a rate of 4.93%/a, and the precipitation increased at 
a rate of 5.47%/a. In the summer and spring, the NDVI 
increased at rates of 0.1%/a and 0.31%/a, respectively, 
while precipitation increased at rates of 2.50%/a and 
5.47%/a. The temperature increased at rates of 4.46%/a 
and 6.66%/a. The correlation between temperature, 

precipitation, and NDVI was positive in summer and 
spring. In winter, NDVI increased at a rate of 0.26% per 
annum, while air temperature and precipitation increased 
at rates of 4.12% per annum and 1.25% per annum, 
respectively. Meanwhile, combining with Table 4, 
a high correlation (R² = 0.7726) was presented between 
NDVI and air temperature in spring, indicating that  
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in spring, air temperature is the key factor influencing 
the change of NDVI, and suitable temperature 
conditions can promote the rapid growth of vegetation. 
In summer and autumn, the correlation between 
NDVI and air temperature and precipitation was at an 
intermediate level, indicating that in these two seasons, 
vegetation growth was regulated by air temperature 
and precipitation, and the synergistic effect of the two 
had a combined effect on vegetation cover and vigor. It 
is noteworthy that NDVI showed a negative correlation 
with precipitation in winter (R² = -0.0473). This may be 
due to a non-simple linear relationship between winter 
precipitation forms, such as snowfall, and their effects 
on soil moisture, water availability, and vegetation 
growth, or interference by other environmental factors 
such as winter winds, length of snow cover, etc.

Impact of Land Use and Climate Change  
on NDVI

Calculations based on Equation (4) show that the 
contribution of land-use change to total vegetation cover 
change is 61.2%, and the contribution of climate change 
is 38.8% for 2000-2020. Between 2005 and 2020, the 
contribution of land use change increased to 70.3%, 
while the contribution of climate change decreased to 
29.7%. During the period 2010-2020, the contribution of 
land use change was 63.8%, and that of climate change 
was 36.2%. These data indicate that the contribution 
of land-use change to changes in vegetation cover is 
consistently higher than that of climate change, and the 
impact of land-use change has tended to increase over 
time.

NDVI
R²

Spring Summer Autumn Winter

Temperature 0.7726 0.4449 0.3198 0.5468

Precipitation 0.1159 0.4449 0.1805 -0.0473

Table 4. Correlation of NDVI with air temperature and precipitation in Tianjin by season.

Fig. 9. Correlation of NDVI with Temperature and Precipitation in Tianjin, 2000-2020.  a) NDVI-Temperature, b) NDVI-Precipitation.

a)

b)
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The climate change factors in this paper are 
primarily expressed in terms of temperature and 
precipitation [68]. The mean annual air temperature, 
mean annual precipitation, and mean annual NDVI in 
the study area from 2000 to 2020 were correlated and 
analysed, and Fig. 9 was obtained. As shown in Fig. 9, 
the correlation between changes in NDVI and climate 
change factors was low, with correlation coefficients of 
0.0075 and 0.00003 for air temperature and precipitation, 
respectively. The effect of air temperature on NDVI was 
larger than that of air temperature. With increasing 
air temperature, the vegetation NDVI exhibited a 
decreasing trend, while with increasing precipitation, 
the vegetation NDVI showed a slow increase, indicating 
that air temperature is the primary factor affecting 
the vegetation NDVI among the climate factors. 
Similar to the phasing of the land use transfer matrix, 
the contribution of a single land use type to the total 
change in vegetation index due to land use change was 
also divided into four phases in this study, 2000-2005, 
2005-2010, 2010-2015, and 2015-2020, in order to 
analyze the impact of the change of a single land use 
type on the NDVI in each phase. Fig. 10 was obtained by 
calculating through Equation (6). As shown in Fig. 10, 
the most significant increase in NDVI was attributed 
to changes in agricultural land, which accounted for 
70.62% of the total change in vegetation cover resulting 
from land use changes from 2000 to 2005. Next, 
building land with a contribution of 53.79%, changes in 
waters, grassland, and unused land led to a decrease in 
vegetation cover with contributions of -20.83%, -2.28%, 
and -1.70%, respectively, and forest land had the lowest 
contribution to the change in vegetation cover at 0.41%. 
Waters change had the highest contribution to the 
total vegetation cover change from 2005 to 2010, with 
40.76%. Building land change had a significant increase 
in the contribution to the total vegetation cover change 
from 2010 to 2015, with 90.16%, which was much 
higher than that of other land use types. From 2015 to 
2020, the agricultural land change was again the main 

contributor to total vegetation cover change, with a 
contribution rate of 84.41%. From the analyses of the 
four stages, changes in agricultural land and building 
land have the most significant influence on vegetation 
cover, especially in the periods of 2000-2005 and 2015-
2020; the contribution of agricultural land is always in 
the first place. With the acceleration of urbanization, the 
influence of building land changes on vegetation cover 
has gradually increased. This trend reflects the profound 
influence of human activities on vegetation cover in the 
study area, and also provides an important reference for 
future land use planning and ecological protection.

Discussion

This study analyzed the spatial and temporal 
evolution patterns of land use and climate change on 
NDVI in Tianjin from 2000 to 2020, and found that 
land use changes have a significant impact on NDVI, 
and that the expansion of construction land is the main 
driver, which is consistent with the results of domestic 
and international urbanization studies. For example, 
studies in eastern China have shown that the conversion 
of agricultural land and natural vegetation to building 
land due to rapid urbanization is the main cause of 
NDVI decline [69]. Similarly, international cases such as  
the Lower San River Basin in India, where urban 
expansion and agricultural activities led to a significant 
decrease in NDVI [70], confirm the direct impact of land 
use change on vegetation cover. It is worth noting that 
Tianjin’s ecological protection policies (e.g., forest land 
restoration) mitigated the declining trend of NDVI [71], 
but the policy effects were spatially heterogeneous, with 
NDVI continuing to decline in the urban core area and 
improving in the ecological reserve, consistent with the 
goals of the Beijing-Tianjin-Hebei Ecological Functional 
Zoning [15].

In Tianjin, the contribution of climate change to 
NDVI was lower than that of land use change, but 

Fig. 10. Contribution to total change in vegetation cover due to a single land-use type over time.
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temperature and precipitation still exhibited significant 
seasonal effects. It was found that the highest correlation 
between NDVI and air temperature occurred in autumn, 
while precipitation was negatively correlated with NDVI 
in winter, a finding consistent with studies in the mid-
latitudes of the Northern Hemisphere [72]. For example, 
studies in northern China have shown that warmer 
temperatures promote vegetation growth by lengthening 
the growing season, but extremely high temperatures 
may lead to water stress [54]. Unlike high-altitude 
regions like the Tibetan Plateau, Tianjin’s vegetation 
response to precipitation is more complex. Increased 
summer precipitation can boost vegetation growth 
but also cause flooding, with uncertain impacts on 
vegetation cover [73]. This regional difference highlights 
the need to consider local climate characteristics in 
ecological conservation strategies.

In addition, this study further reveals the interactive 
effects of land use and climate change. For example, 
the heat island effect from urban expansion raises city 
temperatures, creating a cycle of ‘urbanization-heat 
island-vegetation degradation’ [74]. Similar findings 
were seen in Phoenix, USA, where urban sprawl 
increased surface temperatures by 2-4ºC, hindering 
vegetation growth [75]. Meanwhile, the fluctuation 
of the water areas in Tianjin (first decrease and then 
increase) reflects the dynamic balance between urban 
development and ecological protection. The recovery of 
the watershed area since 2015 is due to the sponge city 
policy, which enhances the local climate and supports 
vegetation cover by regulating surface temperature [61]. 
This supports the ecological compensation mechanism 
in urbanization.

This study offers valuable insights into the effects 
of land use and climate change on NDVI, but it has 
some limitations. First, it primarily focuses on land use 
types, such as building, agricultural, and forest land, 
without considering CO₂ concentration or extreme 
weather events. Second, although the 20-year study 
period is substantial, it may not fully capture long-
term trends or cyclical changes, and socio-economic 
factors need deeper qualitative analysis. Future studies 
could investigate the long-term effects of various land 
use types on NDVI and climate change adaptation 
strategies. Combining ecological service assessment 
models can quantify the integrated impacts of land-use 
change on carbon sinks and biodiversity. Additionally, 
exploring more advanced remote sensing techniques 
could improve NDVI estimation accuracy and account 
for other environmental factors that affect vegetation 
cover.

Conclusions

This study analyzed the impacts of land use and 
climate change on NDVI in Tianjin from 2000 to 2020, 
revealing the mechanisms of human activities and 
natural factors. The study reveals that land use change in 

Tianjin is significant, with the expansion of construction 
land as the primary driving force. The area of forest 
land and grassland has decreased and then increased, 
and the change in unutilized land has occurred in a 
phased manner. The contribution of land use change to 
vegetation cover is greater than that of climate change, 
and its effect increases over time. the overall NDVI 
increases and then decreases, which is related to land use 
change and ecological protection policies. In the future, 
it is necessary to strengthen the scientific planning and 
management of land, optimize the utilization structure, 
balance urbanization and ecological protection, and 
enhance the monitoring and evaluation of land use, so 
as to adjust policies in a timely manner to address urban 
development and ecological challenges.
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