
Introduction

In India, one of the most significant disasters is 
agricultural drought. Deployment of mathematical 
models (indices) in agricultural drought has gained 
momentum in recent years. Numerous research 
studies conducted in recent decades have evaluated 
the effectiveness of different indices for measuring 
agricultural drought [1].

The application of geospatial technology (remote 
sensing and GIS) and modern computing tools like 
ANN has been found to increase the accuracy of these 
indices in recent years. For any region in the world,  
a good customized agricultural drought index developed 
with these latest technologies would be highly beneficial 
for managing agricultural drought [2]. 

Agricultural drought indices are classified into two 
categories depending on data collection technology: 
(i) ground-based agricultural drought indices and
(ii) remote sensing-based agricultural drought indices
[3]. For ground-based agricultural drought indices,
the necessary input data for calculating these indices
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Abstract

Globally, one of the most significant disasters is agricultural drought. The study area considered 
in this research paper is Pudukkottai District in Tamil Nadu State, India. The Bhalme and Mooley 
Drought Index (BMDI) is mostly practiced in India for assessing agricultural drought conditions 
using ground data. Availability of ground data is a serious concern in India, as it involves a laborious, 
tedious, and time-consuming data collection process. Remote sensing-based data collection will solve 
this problem. This study calculated the BMDI along with ten existing remote sensing-based agricultural 
drought indices (RSADIs) for the period from 2000-01 to 2022-23. The calculations were performed 
using Google Earth Engine (GEE) with Landsat imagery, and the RSADI produced results closer to 
BMDI were identified. The highest Pearson Correlation Coefficient (PCC) of 0.50 was obtained for 
NDTI with BMDI. Since the PCC value of 0.50 is less, NDTI cannot be accepted. Therefore, a new 
ANN-based RSADI with a higher PCC value of 0.87 with BMDI has been developed in this study.
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is gathered on-site. In-situ data collection requires a lot 
of instrumentation, infrastructural facilities, and time.  
The Soil Moisture Deficit Index (SMDI), 
Evapotranspiration Deficit Index (EDI), Bhalme Mooley 
Drought Index (BMDI), Reconnaissance Drought Index 
(RDI), Agricultural Drought Index (DTx), Moisture 
Availability Index (MAI), Soil Moisture Anomaly Index 
(SMAI), and Soil Moisture Availability Index (SMAvI) 
are the conventional ground-based indices used to 
monitor agricultural drought conditions [4]. BMDI is 
designed to characterize drought conditions in India [5], 
and in practice, even now. 

Satellite imagery acquired is utilized to calculate 
remote sensing-based agricultural drought indices 
(RSADIs). The implementation of RSADIs completely 
resolves the issues related to instrumentation and 
accessibility in ground data collection. The Normalized 
Difference Vegetation Index (NDVI), Vegetation 
Condition Index (VCI), Temperature Condition Index 
(TCI), Vegetation Health Index (VHI), Normalized 
Difference Water Index (NDWI), Temperature 
Vegetation Dryness Index (TVDI), Deviation of 
the Normalized Difference Vegetation Index (Dev_
NDVI), Enhanced Vegetation Index (EVI), Normalized 
Difference Temperature Index (NDTI), and Soil 
Adjusted Vegetation Index (SAVI) are frequently 
utilized RSADIs [4].

 The study area considered in this research work is 
Pudukkottai district in Tamil Nadu state, India. For the 
study area, no drought prediction/monitoring model is 
available presently. In a small number of research studies, 
BMDI is used for Indian conditions with data collected 
conventionally from the ground. Availability of ground 
data is again a serious concern in India, as it involves  
a laborious, tedious, and time-consuming process. 
Hence, a remote sensing-based data collection will solve 
this problem. From the literature, it is observed that the 
existing remote sensing models are mostly location-
specific and cannot be transferred to the study area. 
Some global models are available for predicting drought 
conditions, but they are complicated and involve many 
input parameters [6]. The meteorological, hydrological, 
and soil conditions vary by location. Hence, exclusive 
models for each study area with conventional ground-
based or remote sensing-based indices are required, 
depending upon the geographic location. 

Taking into account the requirements of the study 
area, the goals of this research are established as (i) to 
characterize agricultural drought in the study area by 
analyzing conventional ground data by BMDI for the 
long-term period from the year 2000-01 to 2022-23, (ii) 
to identify the best available RSADI that yields results 
closer to BMDI with conventional ground data, and (iii) 
to develop an artificial neural network-based RSADI 
with enhanced accuracy that can replace BMDI.

Materials and Methods

Study Area Description

The study area encompasses 4,644 square 
kilometres, located between latitudes 9°50′N and 
10°40′N, as well as longitudes 78°25′E and 79°15′E. It 
features diverse geographical landscapes, including 
plains, hills, and seasonal river basins. The Northeast 
and Southwest monsoons are primarily responsible for 
the study area’s semi-arid environment, which receives 
an average of 900 mm of precipitation annually.  
The monthly precipitation data for the study area, 
covering the period from 2000-01 to 2022-23, 
were collected from the State Ground and Surface 
Water Resources Data Centre, Taramani, Chennai. 
Temperatures vary from 22ºC to 40ºC, and relative 
humidity levels range from 60% to 90% [7]. The 
groundwater level is typically 4 to 6 meters below 
ground level. About 55% of the land is utilized for 
agriculture, with paddy, groundnut, sugarcane, and 
pulses being the main crops, supported by red and black 
soil types.

Methodology Adopted for the Research Work

(i)	 The study area was demarcated using Topo-
sheets created by the Survey of India. Cultivable land in 
this area was identified using the Land Use Land Cover 
(LULC) map created by the National Remote Sensing 
Centre (NRSC), Government of India.

(ii)	 The agricultural drought index for the study 
area was determined using traditional ground data, 
specifically the BMDI, covering the period from 2000-
01 to 2022-23.

(iii)	 The RSADIs, including the NDVI, VCI, TCI, 
VHI, NDWI, TVDI, Dev_NDVI, EVI, NDTI, and SAVI, 
were computed for the period from 2000-01 to 2022-23. 
The best existing RSADI for the study area was 
identified, which can yield results closer to the BMDI 
(ground data model) used in India.

(iv)	 An advanced agricultural drought monitoring 
model utilizing remote sensing data has been developed 
for the study area, employing cutting-edge techniques 
such as geospatial technology and the ANN algorithm. 
This model replaces the tedious manual data collection 
process and is based on remote sensing data gathered 
from 2000-01 to 2022-23. The accuracy of the newly 
developed model was validated statistically.

(v)	 Conclusions were drawn from the analysis of 
the results of the existing best RSADI and the newly 
developed remote sensing-based agricultural drought 
model.

Demarcation of Study Area  
and LULC Preparation

The shape file of the boundary of the study area, i.e., 
Pudukkottai district, has been digitized from Topo-sheet 
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No: 58/J15 of the Survey of India department  
and transferred to Landsat imagery of the year 2023. 
During November and December of every year, all the 
cultivable lands are with crops, and natural vegetation is 
also healthy due to the northeast monsoons. The cloud-
free Landsat imagery for these two months of the year 
2023 was used in this study, and the study area was 
demarcated on it. The cultivable land was demarcated 
within the study area from the LULC map prepared by 
NRSC, Government of India. 

The long-term period from 2000-01 to 2022-23 has 
been taken for the analysis. In India, the hydrological 
year incorporates all four climatic seasons: the southwest 
monsoon from June to September, the northeast 
monsoon from October to December, winter from 
January to February, and the hot season from March to 
May. This cycle commences in June of each year and 
concludes in May of the subsequent year. Therefore, this 
study collected data for the hydrological years spanning 
from 2000-01 to 2022-23.

Imagery for Indices Calculation

For each hydrologic year from 2000-01 to 2022-23, 
agricultural drought indices were calculated for 
each month. Landsat data are preferred for drought 
assessment in India due to their high spatial resolution, 
long-term historical availability, and multispectral 
capabilities, enabling detailed monitoring of vegetation 
stress and land surface changes. The Landsat satellite 
passes over the study area once or twice each month, 
given its temporal resolution of 16 days. For each 
passing of a satellite every month, imagery was taken, 
and indices were calculated. When the satellite passed 
twice in a month, indices were calculated for both 
images individually, and the average value was taken. 
From the monthly values of indices, the annual mean 
was calculated to indicate the agricultural drought 
condition of the year. Imagery with more than 20% cloud 
cover was not considered for the index calculation, and 
the annual mean index value was calculated excluding 
such imagery. Remote sensing-based drought indices 
were determined using Google Earth Engine and Python 
by accessing satellite datasets, computing indices like 
NDVI, VCI, TCI, VHI, NDWI, TVDI, Dev_NDVI, EVI, 
NDTI, and SAVI, and exporting results for analysis.

Calculation of the Conventional Ground-Based 
Agricultural Drought Index

The BMDI is a conventional ground-based 
agricultural drought index widely used by agricultural 
scientists in India. It determines monthly drought 
intensity by standardizing rainfall deviations from the 
historical median, classifying conditions from wet to 
extreme drought. The formula for calculating this index 
is given below [8]. 

	 	

Where,
Ik 	 – intensity of the drought in the current month (k)
Mk – index for humidity 
Pk 	– actual precipitation for the monthly time period
Pmed – median precipitation data for that month based on 

long-term historical data
S – standard deviation of precipitation data for that 

month based on historical data
In this study, the original empirical constants of the 

BMDI (a = 0.5, b = 0, c = 0.5), proposed by Bhalme and 
Mooley for Indian conditions, were adopted without 
recalibration to serve as a benchmark for evaluating the 
remote sensing-based drought indices.

The drought levels are categorized as normal  
(≥-0.99), mild (-1.0 to -1.99), moderate (-2.0 to -2.99), 
severe (-3.0 to -3.99), and extreme (-4 or less).

Calculation of Existing RSADIs

The formulae used for calculating existing RSADIs 
used in this research work are given below.

(i)	 NDVI 
The formula for calculating NDVI, as established by 

Rouse et al. [9], is given by

	 	

Where,  
NIR – spectral reflectance in NIR
R – spectral reflectance in red  

The drought levels are categorized as normal (>0.6), 
mild (0.4 to 0.6), moderate (0.2 to 0.4), and extreme 
(<0.2). 

(ii)	 VCI 
The formula for calculating VCI [10] is given by 

	 	

Where,
NDVIj 	 – value of the normalized difference vegetation 

index for every month
NDVImax, NDVImin – maximum and minimum NDVI 

calculated for every month
The drought levels are categorized as normal (40 to 

100), mild (30 to 40), moderate (20 to 30), severe  
(10 to 20), and extreme (0 to 10). 

(iii)	 TCI
The formula for calculating TCI [11] is given by 
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Where,
Tmax, Tmin – maximal and minimal recorded temperatures 

for brightness over the same time interval
Tcurrent – current satellite observed brightness temperature 

The drought levels are categorized as normal (40 to 
100), mild (30 to 40), moderate (20 to 30), severe (10 to 
20), and extreme (0 to 10). 

(iv)	 VHI 
The formula for calculating VHI [12] is given by 

	 VHI = A × VCI + (1-A) × TCI

Where,
A – contributions to the vegetation index in relation to 

temperature and moisture 
The drought levels are categorized as normal (40  

to 100), mild (30 to 40), moderate (20 to 30), severe (10 
to 20), and extreme (0 to 10). 

(v)	 NDWI
The formula for calculating NDWI [13] is given by 

	 	

Where,
r (at 0.86µm) and r (at 1.24 µm) – spectral reflectance 

measurements in specific wavelengths of 0.86 µm 
and 1.24 µm.
The drought levels are categorized as normal (≥0), 

moderate (-0.2 to 0), and severe (<-0.2).
(vi)	 TVDI 
The formula for calculating TVDI [14] is given by 

	 	

Where,
LST – temperature of the land surface 
LSTmin – lower horizontal line that defines the moist 

border of the triangle or trapezoid
LST max – dry edge’s maximum surface temperature

The drought levels are categorized as normal  
(0 to 0.67), slight (0.68 to 0.74), moderate (0.75 to 0.80), 
severe (0.81 to 0.86), and excessive (0.87 to 1.00).

(vii)	 Dev_NDVI
The formula for calculating Dev_NDVI [15] is 

given by 

	 	

Where,
NDVI present – present value of normalized difference 

vegetation index
NDVI mean – historical mean normalized difference 

vegetation index values. 
The drought levels are categorized as severe  

(≤-0.20), moderate (-0.20 to -0.05), and normal (≤-0.05).

(viii)	EVI
The formula for calculating EVI [16] is given by 

	 	

Where,
g – gain factor
k1, k2 – coefficients for atmospheric dust particles  
l – correction for canopy background 
PNIR – reflectance percentage of NIR reflection 
PRED – reflectance percentage in the red spectrum 
PBLUE – reflectance percentage in the blue spectrum

The drought levels are categorized as healthy 
vegetation (>0.60), moderate vegetation health (0.20 to 
0.60), low vegetation or vegetation stress (0 to 0.20), 
bare soil or no vegetation (= 0), and severe vegetation 
stress or negative vegetation response (<0). 

(ix)	 NDTI
The formula for calculating NDTI [17] is given by 

	 	

Where,
Ts – temperature of the land surface
T∞ – simulated surface temperature with infinite surface 

resistance (ET = 0)
T0 – simulated surface temperature with zero surface 

resistance (ET = ETp) 
The drought levels are categorized as cooler 

conditions (>0.20), moderate temperature stress (0 to 
0.20), normal temperature stress (= 0), moderate heat 
stress (-0.20 to 0), and severe heat stress (< - 0.20). 

(x)	 SAVI 
The formula for calculating SAVI [18] is given by 

	 	

Where,
NIR – spectral reflectance in NIR  
R – spectral reflectance in red  
S – factor for soil adjustment (ranges from 0 to 1)

The drought levels are categorized as normal (>0.3), 
mild (0.2 to 0.3), moderate (0.1 to 0.19), and severe 
(≤0.1).

Development of a New Remote  
Sensing-Based Agricultural drought Index

An ANN model has been developed in this research 
study for calculating the new agricultural drought index. 
The parameters identified from the analysis of existing 
RSADIs were given as the input layer. The output is 
the improved new index value. The model was then 
statistically validated for its accuracy. 
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the Pudukkottai district of Tamil Nadu state in India. The 
NDVI time series obtained through GEE, as depicted in 
Fig. 3, indicates that the average NDVI values fluctuated 
between 0.25 and 0.38 in the entire study duration. 
The NDVI time series graph shows that the study area 
continuously faced moderate drought conditions from 
the year 2000-01 to 2022-23. While the highest NDVI 
value recorded was 0.38 during the 2021-22 period, the 
lowest NDVI value observed was 0.25 in the 2006-07 
period. 

(ii)	 VCI
The average VCI values fluctuated between 40.11 

and 77.55 throughout the duration of the study. The 
s t u d y  a r e a  experienced no drought in all the 
years from 2000-01 to 2022-23. The maximum VCI 
value observed was 77.55 in the year 2010-11, and the 
minimum VCI value observed was 40.11 in the year 
2021-22. A condition of no drought is indicated by the 
minimum and maximum values falling between 40 and 
100 on the VCI scale.

(iii)	 TCI
The average TCI values varied between 8.27 and 

50.06 throughout the study period, suggesting that mild 
drought conditions were present in the years 2002-03, 
2004-05, 2005-06, 2007-08, 2008-09, 2014-15, 2019-20, 
2021-22, and 2022-23. Moderate drought conditions 
were observed in the years 2013-14, 2015-16, 2017-18, 
2018-19, and 2020-21. Severe drought conditions were 
noted during the years 2010-11 and 2012-13, while 
extreme drought was noted in 2009-10 and 2011-12. 
Additionally, time series analyses indicate that 
no drought conditions occurred in the other 
years (2000-01, 2001-02, 2003-04, and 2006-07).  
The maximum TCI value observed was 50.06 in the 
year 2006-07, which indicates no drought conditions,  
and the minimum TCI value observed was 8.27 in  
the year 2011-12, which indicates excessive drought.

Results and Discussion

The ground-based agricultural drought index 
(BMDI), along with various Remote Sensing 
Agricultural Drought Indices (RSADIs) such as NDVI, 
VCI, TCI, VHI, NDWI, TVDI, Dev_NDVI, EVI, NDTI, 
and SAVI, are used to assess the severity and condition 
of agricultural drought over both spatial and temporal 
dimensions from the years 2000-01 and 2022-23  
in the study area.

(a)	 BMDI
Fig. 1 shows the BMDI time series from 2000-01 

to 2022-23 in the Pudukkottai district of Tamil Nadu 
state in India. According to the analysis, mild drought 
conditions were seen in 2013-14, 2016-17, 2018-19, and 
2019-20. Additionally, the time series analysis reveals 
that no drought conditions were present in the other years 
(2000-01 to 2009-10, 2010-11 to 2012-13, 2015-16, 2017-18, 
and 2020-21 to 2022-23).

The time series data of BMDI obtained through 
the GEE, as depicted in Fig. 1, demonstrate that  
the average BMDI values fluctuate between -1.55  
and 1.70 throughout the duration of the study.  
The maximum BMDI value observed was 1.70 in  
the year 2007-08, and the minimum BMDI value 
observed was -1.55 in the year 2013-14. 

(b)	 RSADIs
The spatial and temporal distribution of RSADIs was 

obtained from GEE for the period 2000-01 to 2022-23. 
As a sample, the spatial resolution maps and temporal 
distribution plots are given in this paper for NDVI 
alone. For other indices, observations from the map and 
plot alone are given to minimize the number of pages in 
this paper.

(i)	 NDVI
Fig. 2 and Fig. 3 show the spatial and temporal 

distribution of NDVI from 2000-01 to 2022-23 for  

Fig. 1. Time series graph of BMDI for study area extracted using GEE.
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Fig. 2(a-w). Spatial distribution of NDVI in the study area observed from Landsat imagery.
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(iv)	 VHI
The average VHI values fluctuated between 35.95 and 

54.28 throughout the study period, suggesting that mild 
drought conditions were present in the years 2009-10, 
2011-12, and 2012-13. Additionally, the time series 
analyses indicate that there were no drought conditions 
indicated in the years 2000-01, 2001-02, 2002-03,  
2003-04, 2004-05, 2005-06, 2006-07, 2007-08,  
2008-09, 2010-11, 2013-14, 2014-15, 2015-16, 2016-17, 
2017-18, 2018-19, 2019-20, 2020-21, 2021-22, and 2022-23. 
The maximum VHI value observed was 54.28 in the 
year 2016-17, which indicates no drought condition, and 
the minimum VHI value observed was 35.95 in the year 
2009-10, which indicates mild drought. 

(v)	 NDWI
The average NDWI values fluctuated between 0.04 

and 0.15 throughout the duration of the study. The study 
area experienced no drought in all the years from 2000-01 
to 2022-23. The highest NDWI value recorded was 0.15 
during the 2020-21 period, while the lowest NDWI 
value was 0.04 in the 2002-03 period. Both values fall 
within the NDWI range of 0-0.2, indicating the absence 
of drought conditions.

(vi)	 TVDI
 The mean TVDI values fluctuated between 0.50 

and 0.92 throughout the study duration. This indicates 
that mild agricultural drought conditions existed during 
the years 2002-03, 2004-05, 2013-14, 2014-15, 2015-16, 
2017-18, and 2020-21. A moderate drought condition 
was noted in 2018-19, while severe drought conditions 
were present in 2009-10, 2010-11, 2011-12, and 2012-13. 
Additionally, time series analyses reveal that no drought 
conditions occurred in the remaining years (2000-01, 
2001-02, 2003-04, 2005-06, 2006-07, 2007-08, 2008-09, 
2016-17, 2019-20, 2021-22, and 2022-23). The highest 
TVDI value recorded was 0.92 in 2011-12, indicating 

severe drought, whereas the lowest value of 0.50 was 
observed in 2006-07, signifying no drought.

(vii)	 Dev_NDVI
The mean Dev_NDVI values fluctuate between -0.24 

and 0.17 throughout the study period. This implies that 
moderate drought conditions were present during the 
years 2002-03 and 2009-10, while an extreme drought 
occurred in 2006-07. Additionally, time series analyses 
revealed that no drought conditions were recorded  
in the other years (2000-01, 2001-02, 2003-04, 2004-05, 
2005-06, 2007-08, 2008-09, 2010-11, 2011-12, 2012-13, 
2013-14, 2014-15, 2015-16, 2016-17, 2017-18, 2018-19, 
2019-20, 2020-21, 2021-22, and 2022-23). The highest 
Dev_NDVI value recorded was 0.17 in 2021-22, 
indicating no drought, while the lowest value of -0.24 
was noted in 2006-07, signifying severe drought.

(viii)	EVI
The mean EVI values ranged from 0.27 to 0 . 39 

during the study period. The study area experienced 
moderate vegetation health in all the years from 2000-01 
to 2022-23. The highest EVI value recorded was 0.39 
during the years 2015-16, 2019-20, 2020-21, and 2021-22, 
while the lowest EVI value noted was 0.27 in the years 
2003-04 and 2006-07. Both the minimum and maximum 
values fall within the EVI range of 0.20-0.60, indicating 
moderate vegetation health.

(ix)	 NDTI
The average NDTI values varied from 0 to 0.91 

throughout the duration of the study. It indicates that 
moderate temperature stress conditions were observed 
in the years 2016-17 and 2019-20. Normal temperature 
stress conditions were observed in the year 2014-15. 
Moreover, the time series analyses depict cooler 
conditions in other years (2000-01, 2001-02, 2002-03, 
2003-04, 2004-05, 2005-06, 2006-07, 2007-08, 2008-09, 
2009-10, 2010-11, 2011-12, 2012-13, 2013-14, 2015-16, 
2017-18, 2018-19, 2020-21, 2021-22, and 2022-23). 

Fig. 3. Time series graph of NDVI for study area extracted using GEE.
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The highest recorded NDTI value was 0.91 during the 
2000-01 period, suggesting cooler conditions, while 
the lowest NDTI value of 0 was noted in the 2014-15 
period, indicating normal temperature stress conditions. 
Consequently, throughout the whole study period, no 
drought conditions were noted.

(x)	 SAVI	
The mean SAVI values varied between 0.16 and 0.25 

during the study period, indicating the occurrence of mild 
drought conditions from the years 2000-01 to 2022-23. 
Moderate drought conditions were observed in the 
years 2002-03, 2003-04, 2006-07, 2007-08, 2008-09, 
and 2009-10. The highest recorded SAVI value was 
0.25 during the years 2020-21 and 2021-22, suggesting 
mild drought conditions, while the lowest SAVI value of 
0.16 was noted in 2006-07, indicating moderate drought 
conditions.

Multi-Index Approach for Drought Dynamics

All ten remote sensing-based drought indices were 
calculated for the study period. Drought conditions vary 
across indices, even for the same location and time, 
because each index captures different environmental 
parameters like precipitation, vegetation condition, or 
land surface temperature. These components respond 
differently in terms of timing, intensity, and spatial 
distribution, leading to variation in drought classification. 
This variability is expected and underscores the value 
of a multi-index approach for capturing the complex 
nature of drought. Correlation analysis was performed 
between BMDI, a conventional ground-based index, and 
each of the remote sensing drought indices to evaluate 
the consistency and reliability of remote sensing-based 
assessments.

Correlation between BMDI and RSADIs

BMDI, a widely used ground-based drought index 
in India, was selected as a benchmark for comparison, 

as it provides reliable historical precipitation data for 
evaluating the consistency and performance of remote 
sensing-based drought indices (RSADIs). The study 
assessed the linear correlations between BMDI and 
RSADIs from the year 2000-01 to 2022-23 using the 
Pearson Correlation Coefficient (PCC). The Standardized 
Anomaly Index (SAI) was employed to detect anomalies 
in RSADIs. Subsequently, the anomalies in RSADIs 
were compared with BMDI to evaluate their correlation. 
The SAI is calculated using the following equation  
[19, 20].

	 SAIx = (Xi – X) / σ

Where,
Xi = value of RSADI at any month
X = long-term mean of RSADI for the study duration
σ = standard deviation of RSADI for the study duration 

The PCC was computed between the ground-based 
agricultural drought index (BMDI) and various RSADIs 
(including NDVI, VCI, TCI, VHI, NDWI, TVDI,  
Dev_NDVI, EVI, NDTI, and SAVI) over the study 
period from 2000-01 to 2022-23, as shown in Table 1. 
Notably, NDTI demonstrated a strong correlation with 
BMDI during this timeframe, yielding a PCC of 0.50, 
with a Standard Error Estimate (SEE) of 0.89 and a Root 
Mean Square Error (RMSE) of 0.95.

The PCC value indicates the correlation between 
RSADIs and the explanatory variable (BMDI), 
illustrating the degree of agreement between these 
variables, which can vary from -1 (representing negative 
correlation) to +1 (representing positive correlation).  
The Standard Error of Estimate (SEE) derived from  
PCC is used to estimate errors between BMDI  
and RSADIs, as this statistic facilitates the creation  
of a confidence interval that encompasses the true 
population correlation [21]. In Table 1, it is found that 
NDTI with BMDI has a relatively higher PCC value and 
lower SEE and RMSE values when compared to other 
RSADIs. 

Table 1. PCC, SE, and RMSE of RSADIs.

S.NO Correlation Between Indices PCC SE RMSE

1 BMDI – NDVI 0.30 0.98 1.10

2 BMDI – VCI 0.40 0.98 1.07

3 BMDI – TCI 0.06 1.02 1.27

4 BMDI – VHI 0.34 0.96 1.07

5 BMDI – NDWI 0.36 0.95 1.05

6 BMDI – TVDI -0.06 1.08 1.40

7 BMDI – Dev_NDVI 0.29 0.98 1.11

8 BMDI – EVI -0.01 1.16 1.42

9 BMDI – NDTI 0.50 0.89 0.95

10 BMDI – SAVI 0.06 1.27 1.47
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Hence, among the 10 RSADIs considered in this 
study, NDTI is the best RSADI. Even though NDTI is 
the best RSADI, the PCC value of 0.50 is not satisfactory. 
Next to NDTI, the other better indices are VCI with  
a PCC of 0.40 and NDWI with a PCC of 0.36. But SEE 
and RMSE are higher with VCI and NDWI. Consistent 
statistical trends are available only with NDTI, i.e., 
higher PCC values and lower SEE and RMSE values. 

Observations from Correlation Analysis

This study utilized Landsat satellite imagery 
and carried out a time series analysis through GEE 
to investigate the spatial and temporal patterns of 
agricultural drought in the study area. It compared 
the ground-based agricultural drought index BMDI 
with RSADIs for monitoring purposes. The findings 
indicate that NDTI is an effective RSADI among  
the ten commonly used RSADIs evaluated in this 
study.

Out of 10 RSADIs, 8 RSADIs are positively 
correlated, and 2 RSADIs are negatively correlated.  
The RSADIs with positive correlation in decreasing 
order of PCC values are NDTI, VCI, NDWI, VHI, 
NDVI, Dev_NDVI, TCI, and SAVI, with values of 0.50, 
0.40, 0.36, 0.34, 0.30, 0.29, 0.06, and 0.06, respectively. 
NDTI value is calculated from the remote sensing 
parameters such as the temperature of the land surface 
(Ts), simulated surface temperature with infinite surface 
resistance (T∞), and simulated surface temperature 
with zero surface resistance (To). These parameters 
can be treated as the most influential parameters. VCI 
is calculated from the remote sensing parameter NDVI. 
Therefore, NDVI can be treated as the next influencing 
parameter. The NDWI value is calculated from the 
reflectance value in the NIR band. VHI is calculated 
from VCI and TCI. Dev_NDVI is calculated from NDVI. 
SAVI is derived from the reflectance measurements in 
NIR and RED spectral bands. Summarizing the above, 
remote sensing parameters influencing the value of 
the ground-based agricultural drought index (BMDI) 
are found to be temperature of the land surface (Ts), 
simulated surface temperature with infinite surface 

resistance (T∞), simulated surface temperature with 
zero surface resistance (To), NDTI, NDVI, VCI, TCI, 
and reflectance values at NIR & RED bands. Hence, the 
development of a new RSADI or the modification of 
an existing RSADI with remote sensing-based input 
parameters such as the temperature of the land surface 
(Ts), simulated surface temperature with infinite surface 
resistance (T∞), simulated surface temperature with zero 
surface resistance (To), NDTI, NDVI, NDWI, VCI, VHI, 
TCI, and reflectance values at NIR & RED bands can be 
attempted with the artificial neural network concept 
for replacing the existing ground-based agricultural 
drought index (BMDI) for facilitating drought 
management in a very easy and versatile manner. 
This research alerts policymakers, researchers, 
and the government to develop alternative, better 
RSADI or modify the existing RSADI using recent 
advancements in technology. 

Development of a New Remote 
Sensing-Based ANN Model

A model of BMDI was developed using ANN 
incorporating various remote sensing parameters, 
including temperature of the land surface (Ts), simulated 
surface temperatures with infinite (T∞) and zero (To) 
surface resistance, as well as NDTI, NDVI, NDWI, VCI, 
TCI, VHI, and reflectance values in NIR and RED bands 
[22]. The reasons for considering these remote sensing 
parameters are explained in the previous paragraph 
of this paper. All possible non-empty combinations of 
the eleven input features were generated, resulting in 
2,047 unique input subsets. Each of these combinations 
was evaluated to determine its predictive strength 
in estimating BMDI, thereby allowing the model to 
identify feature interactions and remove redundancy.

In this study, the ANN architecture utilized  
a fully connected feedforward design featuring two 
hidden layers. Each of these layers was succeeded by 
an activation function and a dropout layer to reduce 
the risk of overfitting. The output layer comprised  
a single neuron that generated the predicted BMDI 
value. Training was carried out using the Mean Squared 

Table 2. Hyperparameter search space and best-performing value.

Sl. No. Hyperparameters Search Space Best Value

1 Input Feature Combination 2,047 combinations of 11 input variables RED, NIR, VCI, VHI, TCI, T₀

2 Train-Test Split Ratio 0.1 to 0.5 0.10

3 Hidden Layer 1 Size 8 to 128 (step = 8) 56

4 Hidden Layer 2 Size 8 to 128 (step = 8) 72

5 Dropout Rate 0.1 to 0.5 (step = 0.1) 0.3

6 Activation Function ReLU, Sigmoid, Tanh, Leaky ReLU, SiLU ReLU

7 Learning Rate 1x10-5 to 1x10-2 0.0018

8 Number of Epochs 50 to 300 (step = 10) 200
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Error (MSE) loss function, with optimization performed 
via the Adam optimizer.

To ensure optimal model performance, a rigorous 
hyperparameter tuning process was employed using 
the Optuna optimization framework. Optuna was 
selected due to its ability to perform efficient and 
adaptive hyperparameter search using the Tree-
structured Parzen Estimator (TPE) algorithm. Unlike 
traditional grid or random search, the TPE algorithm 
models the likelihood of achieving high performance 
based on past trial outcomes, enabling faster  
and more informed exploration of the search space.  
In this study, a total of 8 different hyperparameters  
were chosen, and a suitable search space was defined 
for each parameter. By using the TPE algorithm from 
the Optuna module, the hyperparameters were tuned to 
acquire the optimal value for each parameter as given  
in Table 2.

Activation functions are crucial in artificial neural 
networks, as they introduce non-linearity to the model. 
This non-linearity is vital for allowing the network to 
learn and approximate intricate relationships between 
inputs and outputs. Without activation functions, an 
ANN would be reduced to a linear model, incapable of 
capturing intricate patterns present in environmental 
and remotely sensed data. Activation functions convert 
the weighted sum of inputs in each neuron into a 
nonlinear output, enabling the network to capture more 
abstract and higher-level features as its depth increases.

In this study, five activation functions were 
considered as part of the hyperparameter tuning 
process, as given in Table 3. Each function has distinct 
characteristics that influence the learning behavior and 
effectiveness of the network.

ANN Model Results

To get a clear understanding of the correlation 
between the different input variables and the target 
index (BMDI), a correlation heatmap was generated.  
From this heatmap, it was seen that different indices  
on their own can correlate with BMDI only to a 

certain extent, with NDTI being the highest correlated  
index with BMDI, with a PCC of 0.5, which is not 
very adequate in identifying drought. Furthermore, the 
heatmap shown in Fig. 4 also highlights the correlation 
between the different indices, indicating the collinearity 
among the different input variables. 

The Artificial Neural Network (ANN) model  
was trained and validated across 1,000 trials using 
Optuna’s hyperparameter optimization framework. 
The objective was to enhance the model’s capacity 
to forecast the BMDI using input parameters derived 
from remote sensing. The optimal model configuration, 
chosen based on the correlation coefficient (R)  
that measures the relationship between predicted  
and actual BMDI values, utilized a selection of six 
features: RED, NIR, VCI, VHI, TCI, and T₀. This 
feature subset was identified as the most informative 
combination among the 2,047 possible input 
combinations generated.

The ideal hyperparameter configuration for this 
model included a train-test split ratio of 0.1, 56 neurons 
in the first hidden layer, 72 neurons in the second 
hidden layer, a dropout rate of 0.3, the ReLU activation 
function, a learning rate of 0.0018, and a total of 200 
training epochs.

The stability and reliability of the ANN model 
during training were assessed by tracking the loss 
values over epochs for both the training and testing 
datasets. A consistently decreasing training loss, 
coupled with a relatively stable and low testing loss, 
indicates that the model was capable of successively 
learning the underlying data distribution without 
succumbing to overfitting. This behavior reflects not 
only a well-tuned learning process but also a strong 
generalization capability. The training loss demonstrates 
a steady downward trend over the 200 training epochs, 
while the testing loss maintains a relatively flat profile, 
suggesting that the model performance remained stable 
throughout the training process (Fig. 5). It is important 
to note that it displays loss values (Mean Squared Error) 
over epochs, not accuracy metrics, and the stable testing 
loss indicates the model did not overfit. In parallel,  

Activation 
Function Mathematical Expression Range Characteristics

ReLU [0, ∞) Efficient and widely used; avoids vanishing gradient 
but may suffer from the dying neuron problem.

Sigmoid  (0, 1) Smooth, probabilistic output; can lead to vanishing 
gradients in deep networks.

Tanh (−1, 1) Zero-centered; stronger gradients than sigmoid for 
most input ranges.

Leaky ReLU (−∞, ∞) Solves the dying ReLU problem by allowing small 
gradients when input is negative.

SiLU (Swish) Unbounded Smooth, non-monotonic; empirically shown to 
improve performance in deep networks.

Table 3. ANN activation function description.
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to assess the predictive accuracy of the final model,  
a comparison between the actual BMDI values and the 
ANN-predicted outputs was conducted. 

The results, depicted in Fig. 6, reveal a high degree of 
correlation, with most predictions clustering around the 
1:1 reference line. This strong alignment demonstrates 
that the model successfully captured the nonlinear 
relations among the chosen remote sensing indices 
and the drought severity metrics. The model’s capacity 
to represent these interactions is further sustained by  
a strong correlation coefficient (R = 0.87) and a 

coefficient of determination (R² = 0.75), emphasizing 
the reliability of the developed ANN framework for 
estimating drought.

Applications in Agricultural Drought 
Monitoring and Management

The outcomes of this study present substantial 
practical relevance in the context of agricultural drought 
monitoring and management, especially for regions like 
India, where agriculture is highly dependent on climatic 

Fig. 4. Correlation heat map.

Fig. 5. Training and testing losses.
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conditions and timely drought information is critical  
for decision-making. 

Agricultural extension services can use the ANN-
based model to offer irrigation and crop advisories, 
plan effective drought relief and resource allocation, 
and promote climate-resilient farming practices through 
timely, data-driven decision-making tailored to drought 
severity and local conditions [23]. The model also has 
applicability beyond India. As BMDI-like indices 
are used in other regions under different names or 
with similar methodologies [24], the same modeling 
framework can be retrained and customized for those 
areas using their own satellite and limited ground data.

Conclusions

The findings derived from the analysis performed in 
this study are given below.

(i)	 The most often used traditional ground-based 
agricultural drought indices are BMDI, SMDI, EDI, 
RDI, DTx, MAI, SMAI, and SMAvI. BMDI has been 
used in most of the research studies in India.

(ii)	 The most often used RSADIs are NDVI, VCI, 
TCI, VHI, NDWI, TVDI, Dev_NDVI, EVI, NDTI, and 
SAVI.

(iii)	 Out of 10 RSADIs, 8 RSADIs are positively 
correlated and 2 RSADIs are negatively correlated 
with BMDI. The RSADIs with positive correlation in 
decreasing order of PCC values are NDTI, VCI, NDWI, 
VHI, NDVI, Dev_NDVI, TCI, and SAVI, with values 
of 0.50, 0.40, 0.36, 0.34, 0.30, 0.29, 0.06, and 0.06, 
respectively. 

(iv)	 The results show that NDTI is a relatively 
better remote sensing-based agricultural drought index 
with a PCC value of 0.50 with BMDI, which is not 
satisfactory. 

(v)	 This research study attempted to verify whether 
any RSADI can replace the ground-based BMDI.  

It was found that BMDI cannot be replaced by any of 
the RSADIs, which warrants the development of a new 
RSADI. 

(vi)	 The remote sensing parameters influencing 
the value of the ground-based agricultural drought 
index (BMDI) were found to be temperature of the land 
surface (Ts), simulated surface temperature with infinite 
surface resistance (T∞), simulated surface temperature 
with zero surface resistance (To), NDTI, NDVI, NDWI, 
VCI, TCI, VHI, and reflectance values at NIR & RED 
bands. 

(vii)	 A new ANN-based RSADI has been developed 
in this study with only remote sensing-based input 
parameters for replacing BMDI. The artificial neural 
network (ANN) architecture utilized in this research 
comprised a fully connected feedforward structure 
featuring two hidden layers. Each of these layers was 
equipped with an activation function and a dropout 
layer to reduce the risk of overfitting. The output layer 
contained a single neuron that generated the predicted 
BMDI value. Training was carried out using the Mean 
Squared Error (MSE) loss function, with optimization 
performed via the Adam optimizer. The optimal model 
configuration, chosen based on the correlation coefficient 
(R) that measures the relationship between predicted and 
actual BMDI values, utilized a selection of six features: 
RED, NIR, VCI, VHI, TCI, and T₀. This feature subset 
was identified as the most informative combination 
among the 2,047 possible input combinations generated.

(viii)	The ANN model exhibited impressive 
predictive capabilities, achieving a coefficient of 
determination (R²) of 0.75 and a Pearson Correlation 
Coefficient (R) of 0.87. These metrics suggest that the 
model successfully accounted for 75% of the variance in 
the BMDI and demonstrated a strong linear correlation 
between the observed and predicted values.

(ix)	 The ANN model created in this research can 
serve as a substitute for the ground-based agricultural 
drought index (BMDI), as it produces results  

Fig. 6. Target vs. output.
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that are more aligned with BMDI. Hence, the 
laborious process of ground data collection for 
calculating BMDI can be dispensed with, and this 
ANN model can be used for calculating BMDI with 
remote sensing data alone. 

(x)	 The ANN model developed in this study can 
facilitate agricultural drought management in a very 
easy and versatile manner with satellite data.

(xi)	 This research bridges traditional ground-
based drought assessment and modern satellite-driven 
analytics, providing a practical tool for enhancing 
drought resilience. Its adoption can support sustainable 
agriculture, efficient water management, and climate 
adaptation across drought-prone regions. Future studies 
could explore similar ANN-based models for other 
ground-based indices used globally.

(xii)	 The ANN model can be extended to simulate 
other drought indices used globally, promoting broader 
applications. However, its accuracy depends on satellite 
data quality and may require regional calibration to 
maintain reliable performance across varying agro-
climatic and geographic conditions.

Suggestions for Further Study

Since BMDI is the most commonly used ground-
based agricultural drought index in India, this research 
study aims to substitute it with RSADI utilizing an 
ANN model. Similar studies can be attempted for other 
ground-based agricultural drought indices, which are 
also used in other countries. 
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