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Abstract

Globally, one of the most significant disasters is agricultural drought. The study area considered
in this research paper is Pudukkottai District in Tamil Nadu State, India. The Bhalme and Mooley
Drought Index (BMDI) is mostly practiced in India for assessing agricultural drought conditions
using ground data. Availability of ground data is a serious concern in India, as it involves a laborious,
tedious, and time-consuming data collection process. Remote sensing-based data collection will solve
this problem. This study calculated the BMDI along with ten existing remote sensing-based agricultural
drought indices (RSADIs) for the period from 2000-01 to 2022-23. The calculations were performed
using Google Earth Engine (GEE) with Landsat imagery, and the RSADI produced results closer to
BMDI were identified. The highest Pearson Correlation Coefficient (PCC) of 0.50 was obtained for
NDTI with BMDI. Since the PCC value of 0.50 is less, NDTI cannot be accepted. Therefore, a new
ANN-based RSADI with a higher PCC value of 0.87 with BMDI has been developed in this study.
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Introduction

In India, one of the most significant disasters is
agricultural drought. Deployment of mathematical
models (indices) in agricultural drought has gained
momentum in recent years. Numerous research
studies conducted in recent decades have evaluated
the effectiveness of different indices for measuring
agricultural drought [1].

*e-mail: kavinrajl8@gmail.com
tel. +91 8012221793

The application of geospatial technology (remote
sensing and GIS) and modern computing tools like
ANN has been found to increase the accuracy of these
indices in recent years. For any region in the world,
a good customized agricultural drought index developed
with these latest technologies would be highly beneficial
for managing agricultural drought [2].

Agricultural drought indices are classified into two
categories depending on data collection technology:
(i) ground-based agricultural drought indices and
(i1) remote sensing-based agricultural drought indices
[3]. For ground-based agricultural drought indices,
the necessary input data for calculating these indices
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is gathered on-site. /n-situ data collection requires a lot
of instrumentation, infrastructural facilities, and time.
The Soil  Moisture Deficit Index (SMDI),
Evapotranspiration Deficit Index (EDI), Bhalme Mooley
Drought Index (BMDI), Reconnaissance Drought Index
(RDI), Agricultural Drought Index (DTx), Moisture
Availability Index (MAI), Soil Moisture Anomaly Index
(SMAI), and Soil Moisture Availability Index (SMAvI)
are the conventional ground-based indices used to
monitor agricultural drought conditions [4]. BMDI is
designed to characterize drought conditions in India [5],
and in practice, even now.

Satellite imagery acquired is utilized to calculate
remote sensing-based agricultural drought indices
(RSADIs). The implementation of RSADIs completely
resolves the issues related to instrumentation and
accessibility in ground data collection. The Normalized
Difference Vegetation Index (NDVI), Vegetation
Condition Index (VCI), Temperature Condition Index
(TCI), Vegetation Health Index (VHI), Normalized
Difference  Water Index (NDWI), Temperature
Vegetation Dryness Index (TVDI), Deviation of
the Normalized Difference Vegetation Index (Dev_
NDVI), Enhanced Vegetation Index (EVI), Normalized
Difference Temperature Index (NDTI), and Soil
Adjusted Vegetation Index (SAVI) are frequently
utilized RSADIs [4].

The study area considered in this research work is
Pudukkottai district in Tamil Nadu state, India. For the
study area, no drought prediction/monitoring model is
available presently. In a small number of research studies,
BMDI is used for Indian conditions with data collected
conventionally from the ground. Availability of ground
data is again a serious concern in India, as it involves
a laborious, tedious, and time-consuming process.
Hence, a remote sensing-based data collection will solve
this problem. From the literature, it is observed that the
existing remote sensing models are mostly location-
specific and cannot be transferred to the study area.
Some global models are available for predicting drought
conditions, but they are complicated and involve many
input parameters [6]. The meteorological, hydrological,
and soil conditions vary by location. Hence, exclusive
models for each study area with conventional ground-
based or remote sensing-based indices are required,
depending upon the geographic location.

Taking into account the requirements of the study
area, the goals of this research are established as (i) to
characterize agricultural drought in the study area by
analyzing conventional ground data by BMDI for the
long-term period from the year 2000-01 to 2022-23, (ii)
to identify the best available RSADI that yields results
closer to BMDI with conventional ground data, and (iii)
to develop an artificial neural network-based RSADI
with enhanced accuracy that can replace BMDI.

Materials and Methods
Study Area Description

The study area encompasses 4,644 square
kilometres, located between latitudes 9°50'N and
10°40'N, as well as longitudes 78°25'E and 79°15'E. It
features diverse geographical landscapes, including
plains, hills, and seasonal river basins. The Northeast
and Southwest monsoons are primarily responsible for
the study area’s semi-arid environment, which receives
an average of 900 mm of precipitation annually.
The monthly precipitation data for the study area,
covering the period from 2000-01 to 2022-23,
were collected from the State Ground and Surface
Water Resources Data Centre, Taramani, Chennai.
Temperatures vary from 22°C to 40°C, and relative
humidity levels range from 60% to 90% [7]. The
groundwater level is typically 4 to 6 meters below
ground level. About 55% of the land is utilized for
agriculture, with paddy, groundnut, sugarcane, and
pulses being the main crops, supported by red and black
soil types.

Methodology Adopted for the Research Work

(i) The study area was demarcated using Topo-
sheets created by the Survey of India. Cultivable land in
this area was identified using the Land Use Land Cover
(LULC) map created by the National Remote Sensing
Centre (NRSC), Government of India.

(i1)) The agricultural drought index for the study
area was determined using traditional ground data,
specifically the BMDI, covering the period from 2000-
01 to 2022-23.

(iii) The RSADIs, including the NDVI, VCI, TCI,
VHI, NDWI, TVDI, Dev NDVI, EVI, NDTI, and SAVI,
were computed for the period from 2000-01 to 2022-23.
The best existing RSADI for the study area was
identified, which can yield results closer to the BMDI
(ground data model) used in India.

(iv) An advanced agricultural drought monitoring
model utilizing remote sensing data has been developed
for the study area, employing cutting-edge techniques
such as geospatial technology and the ANN algorithm.
This model replaces the tedious manual data collection
process and is based on remote sensing data gathered
from 2000-01 to 2022-23. The accuracy of the newly
developed model was validated statistically.

(v) Conclusions were drawn from the analysis of
the results of the existing best RSADI and the newly
developed remote sensing-based agricultural drought
model.

Demarcation of Study Area
and LULC Preparation

The shape file of the boundary of the study area, i.e.,
Pudukkottai district, has been digitized from Topo-sheet
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No: 58/J15 of the Survey of India department
and transferred to Landsat imagery of the year 2023.
During November and December of every year, all the
cultivable lands are with crops, and natural vegetation is
also healthy due to the northeast monsoons. The cloud-
free Landsat imagery for these two months of the year
2023 was used in this study, and the study arca was
demarcated on it. The cultivable land was demarcated
within the study area from the LULC map prepared by
NRSC, Government of India.

The long-term period from 2000-01 to 2022-23 has
been taken for the analysis. In India, the hydrological
year incorporates all four climatic seasons: the southwest
monsoon from June to September, the northeast
monsoon from October to December, winter from
January to February, and the hot season from March to
May. This cycle commences in June of each year and
concludes in May of the subsequent year. Therefore, this
study collected data for the hydrological years spanning
from 2000-01 to 2022-23.

Imagery for Indices Calculation

For each hydrologic year from 2000-01 to 2022-23,
agricultural drought indices were calculated for
each month. Landsat data are preferred for drought
assessment in India due to their high spatial resolution,
long-term historical availability, and multispectral
capabilities, enabling detailed monitoring of vegetation
stress and land surface changes. The Landsat satellite
passes over the study area once or twice each month,
given its temporal resolution of 16 days. For each
passing of a satellite every month, imagery was taken,
and indices were calculated. When the satellite passed
twice in a month, indices were calculated for both
images individually, and the average value was taken.
From the monthly values of indices, the annual mean
was calculated to indicate the agricultural drought
condition of the year. Imagery with more than 20% cloud
cover was not considered for the index calculation, and
the annual mean index value was calculated excluding
such imagery. Remote sensing-based drought indices
were determined using Google Earth Engine and Python
by accessing satellite datasets, computing indices like
NDVI, VCI, TCIL, VHI, NDWI, TVDI, Dev_ NDVI, EVI,
NDTI, and SAVI, and exporting results for analysis.

Calculation of the Conventional Ground-Based
Agricultural Drought Index

The BMDI is a conventional ground-based
agricultural drought index widely used by agricultural
scientists in India. It determines monthly drought
intensity by standardizing rainfall deviations from the
historical median, classifying conditions from wet to
extreme drought. The formula for calculating this index
is given below [8].

— Mg _
BMDI = 2= + (1 +0) Ik — 1

Pr+Pmed

Mk =100 (7)

Where,

I, — intensity of the drought in the current month (k)
M, — index for humidity

P, — actual precipitation for the monthly time period

P_ . — median precipitation data for that month based on

medlong-term historical data

S — standard deviation of precipitation data for that

month based on historical data

In this study, the original empirical constants of the
BMDI (a=0.5,b =0, c =0.5), proposed by Bhalme and
Mooley for Indian conditions, were adopted without
recalibration to serve as a benchmark for evaluating the
remote sensing-based drought indices.

The drought levels are categorized as normal
(>-0.99), mild (-1.0 to -1.99), moderate (2.0 to -2.99),

severe (-3.0 to -3.99), and extreme (-4 or less).
Calculation of Existing RSADIs

The formulae used for calculating existing RSADIs
used in this research work are given below.

(i) NDVI

The formula for calculating NDVI, as established by
Rouse et al. [9], is given by

NDVI = (NIR—R)
(NIR+R)
Where,
NIR — spectral reflectance in NIR
R — spectral reflectance in red
The drought levels are categorized as normal (>0.6),
mild (0.4 to 0.6), moderate (0.2 to 0.4), and extreme
(<0.2).
(i) VCI
The formula for calculating VCI [10] is given by

(NDVI;j=NDVIyin)
(NDVIpax—NDVIpin)

VCI = x 100

Where,
NDVIL — value of the normalized difference vegetation
index for every month
NDVI ., NDVI . — maximum and minimum NDVI
calculated for every month
The drought levels are categorized as normal (40 to
100), mild (30 to 40), moderate (20 to 30), severe
(10 to 20), and extreme (0 to 10).
(i) TCI
The formula for calculating TCI [11] is given by

TCI — (Tmax_ Tcurrent) x 100

(Tmax - min)
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Where,
T .. T . —maximal and minimal recorded temperatures
for brightness over the same time interval
ey — CUrTent satellite observed brightness temperature
The drought levels are categorized as normal (40 to
100), mild (30 to 40), moderate (20 to 30), severe (10 to
20), and extreme (0 to 10).
(iv) VHI
The formula for calculating VHI [12] is given by

VHI = A x VCI + (1-A) x TCI

Where,
A — contributions to the vegetation index in relation to
temperature and moisture
The drought levels are categorized as normal (40
to 100), mild (30 to 40), moderate (20 to 30), severe (10
to 20), and extreme (0 to 10).
(vy NDWI
The formula for calculating NDWTI [13] is given by

[r (0.86um)—r(1.24um)]

NDWI = [r (0.86um)+r(1.24um)]

Where,

r (at 0.86pum) and r (at 1.24 um) — spectral reflectance
measurements in specific wavelengths of 0.86 um
and 1.24 pm.

The drought levels are categorized as normal (>0),
moderate (-0.2 to 0), and severe (<-0.2).

(vi) TVDI

The formula for calculating TVDI [14] is given by

LST—LST 1y
TVDI = o womin
LSTmax—LSTmin
Where,
LST — temperature of the land surface
LST . — lower horizontal line that defines the moist

bng;der of the triangle or trapezoid
LST ,  —dry edge’s maximum surface temperature

The drought levels are categorized as normal
(0 to 0.67), slight (0.68 to 0.74), moderate (0.75 to 0.80),
severe (0.81 to 0.86), and excessive (0.87 to 1.00).

(vii) Dev_NDVI

The formula for calculating Dev NDVI [15] is
given by

NDVIpresent_NDVImean

Dev NDVI=
- NDVIpmean
Where,
NDVI — present value of normalized difference

present
vegetation index
NDVI - historical mean normalized difference
vegetation index values.
The drought levels are categorized as severe

(<-0.20), moderate (-0.20 to -0.05), and normal (<-0.05).

(viii) EVI
The formula for calculating EVI [16] is given by

PNIR—PR
Pnir+(k1XPRr—ky X Ppryg)+l

EVI=g X

Where,

g — gain factor

k,, k, — coefficients for atmospheric dust particles
1 — correction for canopy background

P — reflectance percentage of NIR reflection

P, ., reflectance percentage in the red spectrum

PELUE — reflectance percentage in the blue spectrum

The drought levels are categorized as healthy
vegetation (>0.60), moderate vegetation health (0.20 to
0.60), low vegetation or vegetation stress (0 to 0.20),
bare soil or no vegetation (= 0), and severe vegetation
stress or negative vegetation response (<0).

(ix) NDTI

The formula for calculating NDTI [17] is given by

NDTI = ==Ts
Too—T)

Where,
T, — temperature of the land surface
T, — simulated surface temperature with infinite surface

resistance (ET = 0)

T, — simulated surface temperature with zero surface
resistance (ET = ETP)

The drought levels are categorized as cooler
conditions (>0.20), moderate temperature stress (0 to
0.20), normal temperature stress (= 0), moderate heat
stress (-0.20 to 0), and severe heat stress (< - 0.20).

(x) SAVI

The formula for calculating SAVI [18] is given by

(NIR-R)
(NIR+R+S)

SAVI = x (148)

Where,
NIR - spectral reflectance in NIR
R — spectral reflectance in red
S — factor for soil adjustment (ranges from 0 to 1)

The drought levels are categorized as normal (>0.3),
mild (0.2 to 0.3), moderate (0.1 to 0.19), and severe
(=0.1).

Development of a New Remote
Sensing-Based Agricultural drought Index

An ANN model has been developed in this research
study for calculating the new agricultural drought index.
The parameters identified from the analysis of existing
RSADIs were given as the input layer. The output is
the improved new index value. The model was then
statistically validated for its accuracy.
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Results and Discussion

The ground-based agricultural drought index
(BMDI), along with various Remote Sensing
Agricultural Drought Indices (RSADIs) such as NDVI,
VCI, TCI, VHI, NDWI, TVDI, Dev NDVI, EVI, NDTI,
and SAVI, are used to assess the severity and condition
of agricultural drought over both spatial and temporal
dimensions from the years 2000-01 and 2022-23
in the study area.

() BMDI

Fig. 1 shows the BMDI time series from 2000-01
to 2022-23 in the Pudukkottai district of Tamil Nadu
state in India. According to the analysis, mild drought
conditions were seen in 2013-14, 2016-17, 2018-19, and
2019-20. Additionally, the time series analysis reveals
that no drought conditions were present in the other years
(2000-01 to 2009-10, 2010-11 to 2012-13, 2015-16, 2017-18,
and 2020-21 to 2022-23).

The time series data of BMDI obtained through
the GEE, as depicted in Fig. 1, demonstrate that
the average BMDI values fluctuate between -1.55
and 1.70 throughout the duration of the study.
The maximum BMDI value observed was 1.70 in
the year 2007-08, and the minimum BMDI value
observed was -1.55 in the year 2013-14.

(b) RSADIs

The spatial and temporal distribution of RSADIs was
obtained from GEE for the period 2000-01 to 2022-23.
As a sample, the spatial resolution maps and temporal
distribution plots are given in this paper for NDVI
alone. For other indices, observations from the map and
plot alone are given to minimize the number of pages in
this paper.

(i) NDVI

Fig. 2 and Fig. 3 show the spatial and temporal
distribution of NDVI from 2000-01 to 2022-23 for

the Pudukkottai district of Tamil Nadu state in India. The
NDVI time series obtained through GEE, as depicted in
Fig. 3, indicates that the average NDVI values fluctuated
between 0.25 and 0.38 in the entire study duration.
The NDVI time series graph shows that the study area
continuously faced moderate drought conditions from
the year 2000-01 to 2022-23. While the highest NDVI
value recorded was 0.38 during the 2021-22 period, the
lowest NDVI value observed was 0.25 in the 2006-07
period.

(i) VCI

The average VCI values fluctuated between 40.11
and 77.55 throughout the duration of the study. The
study area experienced no drought in all the
years from 2000-01 to 2022-23. The maximum VCI
value observed was 77.55 in the year 2010-11, and the
minimum VCI value observed was 40.11 in the year
2021-22. A condition of no drought is indicated by the
minimum and maximum values falling between 40 and
100 on the VCI scale.

(iii) TCI

The average TCI values varied between 8.27 and
50.06 throughout the study period, suggesting that mild
drought conditions were present in the years 2002-03,
2004-05, 2005-06, 2007-08, 2008-09, 2014-15, 2019-20,
2021-22, and 2022-23. Moderate drought conditions
were observed in the years 2013-14, 2015-16, 2017-18,
2018-19, and 2020-21. Severe drought conditions were
noted during the years 2010-11 and 2012-13, while
extreme drought was noted in 2009-10 and 2011-12.
Additionally, time series analyses indicate that
no drought conditions occurred in the other
years (2000-01, 2001-02, 2003-04, and 2006-07).
The maximum TCI value observed was 50.06 in the
year 2006-07, which indicates no drought conditions,
and the minimum TCI value observed was 8.27 in
the year 2011-12, which indicates excessive drought.

BMDI Values
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Fig. 1. Time series graph of BMDI for study area extracted using GEE.
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(iv) VHI

The average VHI values fluctuated between 35.95 and
54.28 throughout the study period, suggesting that mild
drought conditions were present in the years 2009-10,
2011-12, and 2012-13. Additionally, the time series
analyses indicate that there were no drought conditions
indicated in the years 2000-01, 2001-02, 2002-03,
2003-04, 2004-05, 2005-06, 2006-07, 2007-08,
2008-09, 2010-11, 2013-14, 2014-15, 2015-16, 2016-17,
2017-18,2018-19,2019-20,2020-21,2021-22, and 2022-23.
The maximum VHI value observed was 54.28 in the
year 2016-17, which indicates no drought condition, and
the minimum VHI value observed was 35.95 in the year
2009-10, which indicates mild drought.

(v) NDWI

The average NDWI values fluctuated between 0.04
and 0.15 throughout the duration of the study. The study
area experienced no drought in all the years from 2000-01
to 2022-23. The highest NDWI value recorded was 0.15
during the 2020-21 period, while the lowest NDWI
value was 0.04 in the 2002-03 period. Both values fall
within the NDWI range of 0-0.2, indicating the absence
of drought conditions.

(vi) TVDI

The mean TVDI values fluctuated between 0.50

and 0.92 throughout the study duration. This indicates
that mild agricultural drought conditions existed during
the years 2002-03, 2004-05, 2013-14, 2014-15, 2015-16,
2017-18, and 2020-21. A moderate drought condition
was noted in 2018-19, while severe drought conditions
were present in 2009-10, 2010-11, 2011-12, and 2012-13.
Additionally, time series analyses reveal that no drought
conditions occurred in the remaining years (2000-01,
2001-02, 2003-04, 2005-06, 2006-07, 2007-08, 2008-09,
2016-17, 2019-20, 2021-22, and 2022-23). The highest
TVDI value recorded was 0.92 in 2011-12, indicating

severe drought, whereas the lowest value of 0.50 was
observed in 2006-07, signifying no drought.

(vil) Dev_NDVI

The mean Dev_ NDVI values fluctuate between -0.24
and 0.17 throughout the study period. This implies that
moderate drought conditions were present during the
years 2002-03 and 2009-10, while an extreme drought
occurred in 2006-07. Additionally, time series analyses
revealed that no drought conditions were recorded
in the other years (2000-01, 2001-02, 2003-04, 2004-05,
2005-06, 2007-08, 2008-09, 2010-11, 2011-12, 2012-13,
2013-14, 2014-15, 2015-16, 2016-17, 2017-18, 2018-19,
2019-20, 2020-21, 2021-22, and 2022-23). The highest
Dev NDVI value recorded was 0.17 in 2021-22,
indicating no drought, while the lowest value of -0.24
was noted in 2006-07, signifying severe drought.

(viii) EVI

The mean EVI values ranged from 0.27 to 0.39
during the study period. The study area experienced
moderate vegetation health in all the years from 2000-01
to 2022-23. The highest EVI value recorded was 0.39
during the years 2015-16, 2019-20, 2020-21, and 2021-22,
while the lowest EVI value noted was 0.27 in the years
2003-04 and 2006-07. Both the minimum and maximum
values fall within the EVI range of 0.20-0.60, indicating
moderate vegetation health.

(ix) NDTI

The average NDTI values varied from 0 to 0.91
throughout the duration of the study. It indicates that
moderate temperature stress conditions were observed
in the years 2016-17 and 2019-20. Normal temperature
stress conditions were observed in the year 2014-15.
Moreover, the time series analyses depict cooler
conditions in other years (2000-01, 2001-02, 2002-03,
2003-04, 2004-05, 2005-06, 2006-07, 2007-08, 2008-09,
2009-10, 2010-11, 2011-12, 2012-13, 2013-14, 2015-16,
2017-18, 2018-19, 2020-21, 2021-22, and 2022-23).
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The highest recorded NDTI value was 0.91 during the
2000-01 period, suggesting cooler conditions, while
the lowest NDTI value of 0 was noted in the 2014-15
period, indicating normal temperature stress conditions.
Consequently, throughout the whole study period, no
drought conditions were noted.

(x) SAVI

The mean SAVI values varied between 0.16 and 0.25
during the study period, indicating the occurrence of mild
drought conditions from the years 2000-01 to 2022-23.
Moderate drought conditions were observed in the
years 2002-03, 2003-04, 2006-07, 2007-08, 2008-09,
and 2009-10. The highest recorded SAVI value was
0.25 during the years 2020-21 and 2021-22, suggesting
mild drought conditions, while the lowest SAVI value of
0.16 was noted in 2006-07, indicating moderate drought
conditions.

Multi-Index Approach for Drought Dynamics

All ten remote sensing-based drought indices were
calculated for the study period. Drought conditions vary
across indices, even for the same location and time,
because each index captures different environmental
parameters like precipitation, vegetation condition, or
land surface temperature. These components respond
differently in terms of timing, intensity, and spatial
distribution, leading to variation in drought classification.
This variability is expected and underscores the value
of a multi-index approach for capturing the complex
nature of drought. Correlation analysis was performed
between BMDI, a conventional ground-based index, and
each of the remote sensing drought indices to evaluate
the consistency and reliability of remote sensing-based
assessments.

Correlation between BMDI and RSADIs

BMDI, a widely used ground-based drought index
in India, was selected as a benchmark for comparison,

Table 1. PCC, SE, and RMSE of RSADIs.

as it provides reliable historical precipitation data for
evaluating the consistency and performance of remote
sensing-based drought indices (RSADIs). The study
assessed the linear correlations between BMDI and
RSADIs from the year 2000-01 to 2022-23 using the
Pearson Correlation Coefficient (PCC). The Standardized
Anomaly Index (SAI) was employed to detect anomalies
in RSADIs. Subsequently, the anomalies in RSADIs
were compared with BMDI to evaluate their correlation.
The SAI is calculated using the following equation
[19, 20].

SAL =(X.-X)/o

Where,

Xi = value of RSADI at any month

X = long-term mean of RSADI for the study duration
o = standard deviation of RSADI for the study duration

The PCC was computed between the ground-based
agricultural drought index (BMDI) and various RSADIs
(including NDVI, VCI, TCI, VHI, NDWI, TVDI,
Dev NDVI, EVI, NDTI, and SAVI) over the study
period from 2000-01 to 2022-23, as shown in Table 1.
Notably, NDTI demonstrated a strong correlation with
BMDI during this timeframe, yielding a PCC of 0.50,
with a Standard Error Estimate (SEE) of 0.89 and a Root
Mean Square Error (RMSE) of 0.95.

The PCC value indicates the correlation between
RSADIs and the explanatory variable (BMDI),
illustrating the degree of agreement between these
variables, which can vary from -1 (representing negative
correlation) to +1 (representing positive correlation).
The Standard Error of Estimate (SEE) derived from
PCC is wused to estimate errors between BMDI
and RSADIs, as this statistic facilitates the creation
of a confidence interval that encompasses the true
population correlation [21]. In Table 1, it is found that
NDTI with BMDI has a relatively higher PCC value and
lower SEE and RMSE values when compared to other
RSADIs.

S.NO Correlation Between Indices PCC SE RMSE
1 BMDI - NDVI 0.30 0.98 1.10
2 BMDI - VCI 0.40 0.98 1.07
3 BMDI - TCI 0.06 1.02 1.27
4 BMDI — VHI 0.34 0.96 1.07
5 BMDI - NDWI 0.36 0.95 1.05
6 BMDI - TVDI -0.06 1.08 1.40
7 BMDI - Dev_NDVI 0.29 0.98 1.11
8 BMDI - EVI -0.01 1.16 1.42
9 BMDI - NDTI 0.50 0.89 0.95
10 BMDI - SAVI 0.06 1.27 1.47
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Hence, among the 10 RSADIs considered in this
study, NDTI is the best RSADI. Even though NDTI is
the best RSADI, the PCC value of 0.50 is not satisfactory.
Next to NDTI, the other better indices are VCI with
a PCC of 0.40 and NDWI with a PCC of 0.36. But SEE
and RMSE are higher with VCI and NDWI. Consistent
statistical trends are available only with NDTI, i.e.,
higher PCC values and lower SEE and RMSE values.

Observations from Correlation Analysis

This study utilized Landsat satellite imagery
and carried out a time series analysis through GEE
to investigate the spatial and temporal patterns of
agricultural drought in the study area. It compared
the ground-based agricultural drought index BMDI
with RSADIs for monitoring purposes. The findings
indicate that NDTI is an effective RSADI among
the ten commonly used RSADIs evaluated in this
study.

Out of 10 RSADIs, 8 RSADIs are positively
correlated, and 2 RSADIs are negatively correlated.
The RSADIs with positive correlation in decreasing
order of PCC values are NDTI, VCI, NDWI, VHI,
NDVI, Dev_NDVI, TCI, and SAVI, with values of 0.50,
0.40, 0.36, 0.34, 0.30, 0.29, 0.06, and 0.06, respectively.
NDTI value is calculated from the remote sensing
parameters such as the temperature of the land surface
(Ts), simulated surface temperature with infinite surface
resistance (Too), and simulated surface temperature
with zero surface resistance (To). These parameters
can be treated as the most influential parameters. VCI
is calculated from the remote sensing parameter NDVI.
Therefore, NDVI can be treated as the next influencing
parameter. The NDWI value is calculated from the
reflectance value in the NIR band. VHI is calculated
from VCI and TCI. Dev_NDVI is calculated from NDVI.
SAVI is derived from the reflectance measurements in
NIR and RED spectral bands. Summarizing the above,
remote sensing parameters influencing the value of
the ground-based agricultural drought index (BMDI)
are found to be temperature of the land surface (Ts),
simulated surface temperature with infinite surface

Table 2. Hyperparameter search space and best-performing value.

resistance (Too), simulated surface temperature with
zero surface resistance (To), NDTI, NDVI, VCI, TCI,
and reflectance values at NIR & RED bands. Hence, the
development of a new RSADI or the modification of
an existing RSADI with remote sensing-based input
parameters such as the temperature of the land surface
(Ts), simulated surface temperature with infinite surface
resistance (Too), simulated surface temperature with zero
surface resistance (To), NDTI, NDVI, NDWI, VCI, VHI,
TCI, and reflectance values at NIR & RED bands can be
attempted with the artificial neural network concept
for replacing the existing ground-based agricultural
drought index (BMDI) for facilitating drought
management in a very easy and versatile manner.
This research alerts policymakers, researchers,
and the government to develop alternative, better
RSADI or modify the existing RSADI using recent
advancements in technology.

Development of a New Remote
Sensing-Based ANN Model

A model of BMDI was developed using ANN
incorporating various remote sensing parameters,
including temperature of the land surface (Ts), simulated
surface temperatures with infinite (Too) and zero (To)
surface resistance, as well as NDTI, NDVI, NDWI, VCI,
TCI, VHI, and reflectance values in NIR and RED bands
[22]. The reasons for considering these remote sensing
parameters are explained in the previous paragraph
of this paper. All possible non-empty combinations of
the eleven input features were generated, resulting in
2,047 unique input subsets. Each of these combinations
was evaluated to determine its predictive strength
in estimating BMDI, thereby allowing the model to
identify feature interactions and remove redundancy.

In this study, the ANN architecture utilized
a fully connected feedforward design featuring two
hidden layers. Each of these layers was succeeded by
an activation function and a dropout layer to reduce
the risk of overfitting. The output layer comprised
a single neuron that generated the predicted BMDI
value. Training was carried out using the Mean Squared

S1. No. Hyperparameters Search Space Best Value
1 Input Feature Combination 2,047 combinations of 11 input variables RED, NIR, VCI, VHI, TCI, To
2 Train-Test Split Ratio 0.1t00.5 0.10
3 Hidden Layer 1 Size 8 to 128 (step = 8) 56
4 Hidden Layer 2 Size 8 to 128 (step = 8) 72
5 Dropout Rate 0.1t0 0.5 (step=0.1) 0.3
6 Activation Function ReLU, Sigmoid, Tanh, Leaky ReLU, SiLU ReLU
7 Learning Rate 1x107 to 1x107? 0.0018
8 Number of Epochs 50 to 300 (step = 10) 200
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Error (MSE) loss function, with optimization performed
via the Adam optimizer.

To ensure optimal model performance, a rigorous
hyperparameter tuning process was employed using
the Optuna optimization framework. Optuna was
selected due to its ability to perform efficient and
adaptive hyperparameter search using the Tree-
structured Parzen Estimator (TPE) algorithm. Unlike
traditional grid or random search, the TPE algorithm
models the likelihood of achieving high performance
based on past trial outcomes, enabling faster
and more informed exploration of the search space.
In this study, a total of 8 different hyperparameters
were chosen, and a suitable search space was defined
for each parameter. By using the TPE algorithm from
the Optuna module, the hyperparameters were tuned to
acquire the optimal value for each parameter as given
in Table 2.

Activation functions are crucial in artificial neural
networks, as they introduce non-linearity to the model.
This non-linearity is vital for allowing the network to
learn and approximate intricate relationships between
inputs and outputs. Without activation functions, an
ANN would be reduced to a linear model, incapable of
capturing intricate patterns present in environmental
and remotely sensed data. Activation functions convert
the weighted sum of inputs in each neuron into a
nonlinear output, enabling the network to capture more
abstract and higher-level features as its depth increases.

In this study, five activation functions were
considered as part of the hyperparameter tuning
process, as given in Table 3. Each function has distinct
characteristics that influence the learning behavior and
effectiveness of the network.

ANN Model Results

To get a clear understanding of the correlation
between the different input variables and the target
index (BMDI), a correlation heatmap was generated.
From this heatmap, it was seen that different indices
on their own can correlate with BMDI only to a

Table 3. ANN activation function description.

certain extent, with NDTI being the highest correlated
index with BMDI, with a PCC of 0.5, which is not
very adequate in identifying drought. Furthermore, the
heatmap shown in Fig. 4 also highlights the correlation
between the different indices, indicating the collinearity
among the different input variables.

The Artificial Neural Network (ANN) model
was trained and validated across 1,000 trials using
Optuna’s hyperparameter optimization framework.
The objective was to enhance the model’s capacity
to forecast the BMDI using input parameters derived
from remote sensing. The optimal model configuration,
chosen based on the correlation coefficient (R)
that measures the relationship between predicted
and actual BMDI values, utilized a selection of six
features: RED, NIR, VCI, VHI, TCI, and To. This
feature subset was identified as the most informative
combination among the 2,047 possible input
combinations generated.

The ideal hyperparameter configuration for this
model included a train-test split ratio of 0.1, 56 neurons
in the first hidden layer, 72 neurons in the second
hidden layer, a dropout rate of 0.3, the ReLU activation
function, a learning rate of 0.0018, and a total of 200
training epochs.

The stability and reliability of the ANN model
during training were assessed by tracking the loss
values over epochs for both the training and testing
datasets. A consistently decreasing training loss,
coupled with a relatively stable and low testing loss,
indicates that the model was capable of successively
learning the wunderlying data distribution without
succumbing to overfitting. This behavior reflects not
only a well-tuned learning process but also a strong
generalization capability. The training loss demonstrates
a steady downward trend over the 200 training epochs,
while the testing loss maintains a relatively flat profile,
suggesting that the model performance remained stable
throughout the training process (Fig. 5). It is important
to note that it displays loss values (Mean Squared Error)
over epochs, not accuracy metrics, and the stable testing
loss indicates the model did not overfit. In parallel,

ActlvaFlon Mathematical Expression Range Characteristics
Function
Efficient and widely used; avoids vanishing gradient
x) = max (0,x S
RelL.U e (0,x) [0, <) but may suffer from the dying neuron problem.
. . 1 Smooth, probabilistic output; can lead to vanishing
Sigmoid f@) = 1+e™* ©. 1) gradients in deep networks.
Tanh F(x) = tanh(x) = e}’: - e:x 1, 1) Zero-centered; strongf-:r gradients than sigmoid for
eX 4+ X most input ranges.
_(xx>0 _ _ Solves the dying ReLU problem by allowing small
Leaky ReLU fe) = {ax x<0’%” 0.01 (o0, 20) gradients when input is negative.
1 _ [ ..
SiLU (Swish) FOO) =x. _ Unbounded Smgoth, non-monotonic; §mp1r1cally shown to
1+e* improve performance in deep networks.
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to assess the predictive accuracy of the final model,
a comparison between the actual BMDI values and the
ANN-predicted outputs was conducted.

The results, depicted in Fig. 6, reveal a high degree of
correlation, with most predictions clustering around the
1:1 reference line. This strong alignment demonstrates
that the model successfully captured the nonlinear
relations among the chosen remote sensing indices
and the drought severity metrics. The model’s capacity
to represent these interactions is further sustained by
a strong correlation coefficient (R = 0.87) and a

100 125 150 175 200
Epochs

coefficient of determination (R?> = 0.75), emphasizing
the reliability of the developed ANN framework for
estimating drought.

Applications in Agricultural Drought
Monitoring and Management

The outcomes of this study present substantial
practical relevance in the context of agricultural drought
monitoring and management, especially for regions like
India, where agriculture is highly dependent on climatic
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Fig. 6. Target vs. output.

conditions and timely drought information is critical
for decision-making.

Agricultural extension services can use the ANN-
based model to offer irrigation and crop advisories,
plan effective drought relief and resource allocation,
and promote climate-resilient farming practices through
timely, data-driven decision-making tailored to drought
severity and local conditions [23]. The model also has
applicability beyond India. As BMDI-like indices
are used in other regions under different names or
with similar methodologies [24], the same modeling
framework can be retrained and customized for those
areas using their own satellite and limited ground data.

Conclusions

The findings derived from the analysis performed in
this study are given below.

(i) The most often used traditional ground-based
agricultural drought indices are BMDI, SMDI, EDI,
RDI, DTx, MAI, SMAI, and SMAvI. BMDI has been
used in most of the research studies in India.

(i) The most often used RSADIs are NDVI, VCI,
TCI, VHI, NDWI, TVDI, Dev NDVI, EVI, NDTI, and
SAVL

(i) Out of 10 RSADIs, 8 RSADIs are positively
correlated and 2 RSADIs are negatively correlated
with BMDI. The RSADIs with positive correlation in
decreasing order of PCC values are NDTI, VCI, NDWI,
VHI, NDVI, Dev_NDVI, TCI, and SAVI, with values
of 0.50, 0.40, 0.36, 0.34, 0.30, 0.29, 0.06, and 0.06,
respectively.

(iv) The results show that NDTI is a relatively
better remote sensing-based agricultural drought index
with a PCC value of 0.50 with BMDI, which is not
satisfactory.

(v)  This research study attempted to verify whether
any RSADI can replace the ground-based BMDI.

It was found that BMDI cannot be replaced by any of
the RSADIs, which warrants the development of a new
RSADIL

(vi) The remote sensing parameters influencing
the value of the ground-based agricultural drought
index (BMDI) were found to be temperature of the land
surface (Ts), simulated surface temperature with infinite
surface resistance (Too), simulated surface temperature
with zero surface resistance (To), NDTI, NDVI, NDWI,
VCI, TCI, VHI, and reflectance values at NIR & RED
bands.

(vii) A new ANN-based RSADI has been developed
in this study with only remote sensing-based input
parameters for replacing BMDI. The artificial neural
network (ANN) architecture utilized in this research
comprised a fully connected feedforward structure
featuring two hidden layers. Each of these layers was
equipped with an activation function and a dropout
layer to reduce the risk of overfitting. The output layer
contained a single neuron that generated the predicted
BMDI value. Training was carried out using the Mean
Squared Error (MSE) loss function, with optimization
performed via the Adam optimizer. The optimal model
configuration, chosen based on the correlation coefficient
(R) that measures the relationship between predicted and
actual BMDI values, utilized a selection of six features:
RED, NIR, VCI, VHI, TCI, and To. This feature subset
was identified as the most informative combination
among the 2,047 possible input combinations generated.

(viii) The ANN model exhibited impressive
predictive capabilities, achieving a coefficient of
determination (R?) of 0.75 and a Pearson Correlation
Coefficient (R) of 0.87. These metrics suggest that the
model successfully accounted for 75% of the variance in
the BMDI and demonstrated a strong linear correlation
between the observed and predicted values.

(ix) The ANN model created in this research can
serve as a substitute for the ground-based agricultural
drought index (BMDI), as it produces results
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that are more aligned with BMDI. Hence, the
laborious process of ground data collection for
calculating BMDI can be dispensed with, and this
ANN model can be used for calculating BMDI with
remote sensing data alone.

(x) The ANN model developed in this study can
facilitate agricultural drought management in a very
easy and versatile manner with satellite data.

(xi) This research bridges traditional ground-
based drought assessment and modern satellite-driven
analytics, providing a practical tool for enhancing
drought resilience. Its adoption can support sustainable
agriculture, efficient water management, and climate
adaptation across drought-prone regions. Future studies
could explore similar ANN-based models for other
ground-based indices used globally.

(xil) The ANN model can be extended to simulate
other drought indices used globally, promoting broader
applications. However, its accuracy depends on satellite
data quality and may require regional calibration to
maintain reliable performance across varying agro-
climatic and geographic conditions.

Suggestions for Further Study

Since BMDI is the most commonly used ground-
based agricultural drought index in India, this research
study aims to substitute it with RSADI utilizing an
ANN model. Similar studies can be attempted for other
ground-based agricultural drought indices, which are
also used in other countries.
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