
Introduction

Tree species diversity plays a crucial role in 
ecosystems, as it not only enhances the stability of the 
ecosystem but also effectively resists natural disasters 

such as pests and diseases. Protecting and restoring tree 
species diversity has immeasurable value in maintaining 
the ecological balance of the Earth and promoting 
sustainable human development [1-3]. Plant species 
diversity is crucial for enhancing ecosystem services.

The degree of mixed forest, as the core representative 
of tree species diversity in forest spatial structure, has 
become an important indicator for evaluating forest 

DOI: 10.15244/pjoes/208931 ONLINE PUBLICATION DATE: 2025-09-24

*e-mail: 673390302@qq.com
**e-mail: 1006308937@qq.com
°ORCID iD: 0000-0002-1341-0231

Original Research

Multi-Objective Optimization of Natural 
Secondary Forest Stand Mixing Degree 

Using Particle Swarm Algorithm

Hongmei Li1, Dongsheng Qing1, 2°*, Qiaoling Deng1**, 
Jinxiang Peng1, Runmiao Zhou3

1School of Information Engineering, Hunan Applied Technology University, Changde, 415000, China
2College of Forestry, Central South University of Forestry and Technology, Changsha, 410000, China

3Furong College, Hunan University of Science and Arts, Changde, 415000, China 

Received: 13 February 2025
Accepted: 3 August 2025

Abstract

In order to study the performance of the particle swarm optimization (PSO) algorithm in optimizing 
the mixing degree of forest stands, this study constructs an optimization model for the mixing degree 
of natural secondary forest stands based on PSO. The secondary mixed forest in Hupingshan Nature 
Reserve, Hunan Province, was used as a case study to explore the optimization effect under different 
cutting intensities (5%, 10%, 15%). The results showed that the mixing degree and fitness of forest 
stands increased nonlinearly with the increase of cutting intensity, and the uniformity of mixing degree 
distribution was significantly improved. At a small scale, PSO reduces the running time by 98.8% 
(2.70 seconds vs. 239.67 seconds) compared to the mixed integer programming (MIP) method, with 
an optimal solution achievement rate of 70% and no significant difference in solution quality between 
PSO and MIP. In medium to large-scale scenarios, the convergence time of PSO is 41.5%-50.9% shorter 
than that of the genetic algorithm (GA) and artificial bee colony (ABC) algorithm, and the number 
of iterations is reduced by 21.3%. This confirms that PSO can achieve both optimization accuracy 
and efficient computational performance in solving forest mixing degree optimization problems.

Keywords: particle swarm algorithm, natural secondary forest, optimization of mixed degree, forest spatial 
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diversity in recent years. It quantifies the degree of mutual 
isolation between tree species in the horizontal direction 
of the forest stand and is one of the key parameters 
for describing the spatial structure of the forest stand  
[5-8]. However, under certain conditions, mixed forests 
may lead to increased competition among tree species 
[9-11]. Overall, the construction of mixed forests 
can effectively promote soil and water conservation, 
improve soil quality, and enhance biodiversity [12-14]. 
In addition, mixed forests can also alter the composition 
and function of fungal communities, which is beneficial 
for improving soil quality and effectively obtaining  
tree nutrients [15]. Introducing local nitrogen-fixing 
broad-leaved tree species into coniferous forests can also 
improve the chemical stability of soil organic carbon 
[16], which can affect the cycling of metal elements 
in forest soils [17, 18]. Overall, mixed forests play  
an important role in maintaining the health and stability 
of forest ecosystems.

Natural secondary forest is a type of forest that is 
naturally restored to its original state after logging or 
repeated destruction. Its basic structure and original 
function may have been damaged to a certain extent, 
and how to improve its mixed value has become  
a focus of concern for many forest managers [19-22]. 
Given the uniqueness of natural forests, the current 
mainstream forest management strategies tend to adopt 
replanting and selective logging methods. However, 
optimizing the blending degree of forest stands requires 
reconstructing the relationships between adjacent 
trees after each logging to truly reflect the changes in 
forest spatial structure. However, this dynamism can 
lead to nonlinearity of the objective function, making 
traditional mixed integer programming (MIP) no longer 
able to solve medium to large-scale problems (such as 
problems with over 50 trees). At present, there are not 
many reports on how to optimize mixed forests, and the 
potential for optimizing mixed forests is still unclear 
[23].

In order to explore the feasibility of the particle 
swarm optimization (PSO) algorithm in optimizing 
forest mixing degree, this study takes Hupingshan 
National Nature Reserve in Hunan Province, southern 
China, as the research area. The region has a subtropical 
monsoon climate with an annual precipitation of over 
1500 mm, an average annual temperature of 16-18ºC, 
and a long frost-free period. Select four representative 
secondary mixed forest stands as research objects. Based 
on the basic principles of particle swarm optimization, 
a multi-objective optimization model for forest mixed 
degree was constructed, attempting to answer the 
following key questions:

(1) How to quickly and accurately determine the 
trees to be selected for cutting in the study plot without 
reducing the number of forest species in the plot in order 
to improve the blending degree value of the forest stand?

(2) How effective is the particle swarm optimization 
algorithm in solving the optimization problem of  
the Stand Mixing Degree?

(3) Is there a linear relationship between the mixed 
degree value of the forest stand and the selective cutting 
ratio of the forest stand? What is the optimal selective 
cutting ratio and the upper limit of the mixed degree 
value of the forest stand for a certain plot?

Materials and Methods

Study Area and Data Sources

Hunan Hupingshan National Nature Reserve is 
located in Shimen County, Changde City, Hunan 
Province, China. It is situated between longitude 
110°29′~110°59′ and latitude 29°50′~30°09′. With a total 
area of 66,568 hectares, it is the largest nature reserve of 
forest ecosystem in Hunan Province, China. The forest 
coverage rate is as high as 90.1%, and the vegetation 
coverage reaches 98.7%. It is one of the few well-
preserved areas in subtropical China. To conduct relevant 
research, four typical natural secondary mixed forests 
with an area of 20 m × 30 m were carefully selected in 
the Hupingshan National Nature Reserve as the research 
objects. The dominant tree species to be studied include 
Cinnamomum camphora, Acer palmatum, Paulownia 
fortunei, Pinus massoniana Lamb., etc. (Fig. 1).

In the study area, detailed records were obtained for 
the number, coordinates, species name, height, diameter 
at breast height (DBH), and average crown width of 
trees in plots P1 to P4. The total number of trees ranged 
from 63 to 84, with average heights between 11.25 m 
and 13.92 m, average DBH values between 14.26 cm 
and 18.57 cm, and average Mixing Degrees between 
0.37 and 0.54. The dominant tree species and their 
proportions varied among plots. The basic information 
regarding the main tree species and their proportions, 
total number of trees, average tree height, average DBH, 
and average Mixing Degree in plots P1, P2, P3, and P4 
is presented in Table 1.

Methods

Quantification of the Stand Mixing Degree

Species Mixture Degree refers to the proportion of 
neighboring individuals that do not belong to the same 
species as the target tree among its n nearest neighbors. 
This metric is utilized to quantify the degree of spatial 
isolation or mingling among tree species, reflecting 
the species composition and spatial arrangement 
(indicating non-homogeneity) within a forest stand. It is 
mathematically expressed by Equation (1), as referenced 
in [24, 25].
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Mi is the Mixture Degree value of the target tree i, n 
is the number of neighboring trees of the target tree i,  
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and ϑij is the variable value. When the j-th neighboring 
tree is of the same species as the target tree i, ϑij = 0; 
otherwise it is ϑij = 1. For example, the spatial 
distribution of the target tree with a Mixture Degree of 
0.83 and 0.40 is shown in Fig. 2.

The Stand Mixing Degree value is the average  
of the mingling degrees of all trees, as expressed by 
Equation (2).

	 1

1 N

i
i

M M
N =

= ∑
	 (2)

M̅  is the Stand Mixing Degree value, and N is the total 
number of trees in the forest stand.

Neighboring Tree Selection Scheme

Selecting neighboring trees for a target tree is 
fundamental to the quantification of the Stand Mixing 
Degree. The Mixture Degree of the same tree can vary 
under different neighboring tree selection schemes. 
Common schemes include the “1+4” theory, the radius R 
circle theory, and the Voronoi diagram theory [26, 27], 
with the latter being the most scientific [28]. Therefore, 

Fig. 1. Study area.

Table 1. Basic characteristics of forest stands in the study plots.

Plot Dominant Tree Species & Proportions Total 
(trees)

Stand Height 
(m)

Stand DBH 
(cm)

Stand Mixing 
Degree

P1

Acer buergerianum (3.6%)
Sapindus mukorossi (4.76%)

Koelreuteria paniculata (11.90%)
Cinnamomum camphora (L.) Presl. (64.29%)

Paulownia fortunei (11.90%)
Pinus massoniana Lamb. (7.14%)

84 11.25 14.26 0.37

P2

Elaeocarpus sylvestris (73.3%)
Cinnamomum camphora (L.) Presl. (12.0%)

Rhus chinensis (5.3%)
Pinus massoniana Lamb. (9.3%)

76 13.07 15.04 0.44

P3

Elaeocarpus sylvestris (11.3%)
Cunninghamia lanceolata (4.8%)

Cinnamomum camphora (L.) Presl. (12.9%)
Pinus massoniana Lamb. (71.0%)

63 13.48 18.46 0.54

P4

Sassafras tzumu (1.4%)
Osmanthus fragrans (4.2%)

Cunninghamia lanceolata (5.6%)
Cinnamomum camphora (L.) Presl. (80.3%)

Pinus massoniana Lamb. (8.5%)

72 13.92 18.57 0.46
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this study employs the Voronoi diagram theory to 
determine neighboring trees for the target tree. To 
avoid edge effects, trees with incomplete boundaries in 
Voronoi diagrams are excluded as target trees but can 
serve as neighboring trees. For example, trees numbered 
15 and 3 are excluded as target trees. The neighboring 
trees of tree number 17 are {8, 16, 9, 6, 30}, and those 
of tree number 18 are {19, 13, 28, 31}. The spatial 
distribution of trees based on Voronoi diagram theory is 
shown in Fig. 3.

Mathematical Model for Multi-Objective 
Optimization of the Stand Mixing Degree

In order to enhance the tree species diversity of 
the stand, this study is carried out based on the design 
idea of the maximum upper limit of the Stand Mixing 
Degree improvement under different selective cutting 
ratios in the same sample plot. Three optimization 
objectives are set: (1) To ensure the diversity of tree 
species in the stand, the number of tree species in the 
stand after optimization should not decrease. (2) After 
optimization, the Species Mixture Degree should tend to 

be as uniform as possible. (3) The Stand Mixing Degree 
after optimization should increase.

For the convenience of optimization, this paper 
converts multiple objectives into a single-objective 
problem using the numerator-denominator method. The 
basic mathematical model is shown in formulas (3) to 
(8).
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Fig .2. Examples of spatial distribution of species mixture degree.

Fig. 3. Spatial distribution of trees based on Voronoi Diagram theory.
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Initialization

(1) Initial number of particles
The initial particle count in Particle Swarm 

Optimization (PSO) constitutes a pivotal parameter. An 
insufficient number of particles may lead the algorithm 
into local optima. Conversely, an excessive number 
can enhance the algorithm’s convergence and global 
search capabilities, yet it also augments computational 
complexity and runtime, thereby slowing down the 
algorithm’s convergence rate. Drawing upon the unique 
characteristics of the forest mixed-degree optimization 
problem and through extensive experimental validation, 
this article establishes the initial particle count as 
formulated in Equations (9) and (10).

	

50
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7

c

c
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N N N

 ×  ≤  = 
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	 cN N p= × 	 (10)

INI is the initial number of particles, N is the total 
number of trees in the forest plot, Nc is the number of 
trees that need to be selectively cut during the process 
of optimizing the Forest Stand Mixing Degree, using 
the standard rounding scheme. p is the proportion of 
selective cutting, and the range of values generally does 
not exceed 25%;     is the symbol for rounding up.

(2) Particle dimensions
The particle dimension corresponds to the length of 

each particle’s solution vector, reflecting the complexity 
and structure of the problem’s solution space. According 
to the design concept of the particle swarm optimization 
algorithm presented in this article, since each particle 
represents a feasible solution in the optimization process 
of the Stand Mixing Degree, the particle dimension is 
equivalent to the number of trees selected for cutting. 
This value is specified in Equation (11).

	 cd N= 	 (11)

d is the dimension of particles, and Nc is the number 
of trees that need to be selectively cut during the 
optimization process of the Stand Mixing Degree.

(3) Particle initialization value
The initial value of a particle is a set of random and 

unique tree numbers with a length of d. For example, the 
initial value x0

id of the particle i is shown in Equation 
(12).

	 	 (12)

In the above equation, x0
id represents the initialization 

value of the particle i composed of d random numbers 

	 	 (7)

	 	 (8)

f is the comprehensive objective function (Forest Stand 
Fitness), Yl is the number of tree species in the forest 
stand after optimization, Yo is the number of tree 
species in the forest stand before optimization, f lo is 
the function of the number of tree species before and 
after optimization, fσt is the standard deviation of the 
optimized The Stand Mixing Degree, U is the initial 
set of trees, Z is the collection of selected trees to be 
selectively cut, z is the total number of trees for selective 
cutting, N is the initial total number of trees, Mi is the 
mixed degree value of the i-th tree, P is the selective 
cutting ratio, M̅ i is the Stand Mixing Degree value 
after optimization, Nt is the total number of trees after 
selective cutting.

The Design Concept of the Stand Mixing Degree 
Optimization Model Based on Particle Swarm Algorithm

The Particle Swarm Optimization (PSO) algorithm 
was initially proposed by Kennedy and Eberhart [29] 
and has been widely applied in various fields due to its 
robust convergence ability in complex solution spaces 
[30, 31]. Because the optimization problem of mixed 
forest stands is similar to a highly discrete and spatially 
complex nonlinear problem, in order to address these 
challenges, this study introduces three key modifications 
to the traditional PSO algorithm:

(1) A dynamic search radius mechanism (Equation 
(13)) was developed to balance the trade-off between 
exploration and development, and an initial radius of 8 
m was determined based on standard forestry practices.

(2) The location update strategy combines Voronoi-
based neighborhood analysis (Fig. 4) to limit the search 
to the tree clusters that are closest to the individual best 
solution (Equations (14-15)).

(3) A multi-objective fitness function (Equation 
(3)) was constructed to maximize the forest stand 
combination (Equation (6)) while minimizing its spatial 
variance (Equation (5)), ensuring the maintenance of 
species richness (Equation (4)).

In addition, the initialization parameters of particles 
are determined based on the size of the forest stand 
and the intensity of logging (Equations (9-12)), which 
enables dynamic exploration of datasets of different sizes 
in the study plot. Through novel configurations of initial 
position, particle velocity, quantity, velocity update 
rules, and position adjustment strategies, the complex 
optimization problem of the Forest Stand Mixing Degree 
is transformed into an optimization problem of the PSO 
algorithm, achieving effective optimization of the Forest 
Stand Mixing Degree.
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from tree numbers 1 to N, and rand() is the random 
value function.

Particle Velocity Update Strategy

The mixed degree of some secondary forests in 
southern China shows a clear trend of low aggregation. 
In order to solve the problem of clustering distribution 
of trees with low mixed degree values, the algorithm 
dynamically adjusts the priority of adjacent trees 
within the neighborhood search radius based on spatial 
distance during the optimization process, achieving  
a breakthrough in spatial pattern homogenization. By 
removing redundant individuals of the same tree species, 
the proportion of neighbors of different tree species 
around the target tree species is effectively increased, 
thereby improving the overall mixed degree value of 
the forest stand. Based on the observation that “if a 
certain tree is harvested, its neighboring trees are more 
likely to become the target of harvesting”, this study 
introduces the particle search radius R in the particle 
swarm optimization (PSO) process. R defines the range 
of the particle’s next search space and decreases with 
increasing iteration times. To improve the accuracy and 
efficiency of the particle swarm optimization algorithm, 
it is stipulated that when selecting a tree for logging, all 
trees within a circular area with a radius R centered on 
the tree should be considered in the next search for the 
optimal solution. The specific definition of the search 
radius R is shown in Equation (13).

	
3 1.55( 0.26 10 )

max 0tagR r e R
−− × ×= × ≥ 	 (13)

R is the search radius during the particle optimization 
process. rmax is the initial search radius of the particle, 
which is 8 m in this text. tag is the number of cycles. 

Particle Position Update Strategy

According to the design concept that any particle 
represents a feasible solution in the optimization 
process of the Stand Mixing Degree, assuming that the 
historical local optimal value of particle i in the t round 
is pbesti (the set composed of selected tree numbers) and 

the global optimal value is gbest, based on the updated 
particle velocity scheme mentioned above, taking the 
positions of each tree in pbesti and gbest as the center, 
the sets of all trees within a circular area with radius R 
are Dit and Ft, respectively. Therefore, the search space 
Ui

t+1 for the optimal solution of particle i in the t+1 
round is defined as the local optimal solution(pbesti), 
global optimal solution(gbest), and the union of sets Dit  
and Ft of particle i in the t round (Equation (14)). Then, 
d trees are randomly selected from Ui

t+1 as the positions 
of particle i in the t+1 round, as shown in Equation (15).

	
1t

i i it tU pbest gbest D F+ = ∪ ∪ ∪ 	 (14)

	
1 1rand( , )t t

id ix U d+ += 	 (15)

In order to clarify the update scheme of particle 
position, assuming that the individual optimal 
solution vector of particle i in the 200-th round is  
pbesti = {13,35,44,51,57}, the global optimal solution 
is gbest = {13,35,42,55,58}, and the initial radius is  
rmax = 8m. According to formula (13), it can be seen that 
R = 3.06m, so the values of R, Di200, F200, Ui

201, and xid
201 

for particle i in the 201-th round are shown in Fig. 4.
Ui

201 = {1,2,12,13,16,26,35,42,44,45,47,51,55,57,58,61,62}
Di200 = {2,44,47,26,12}
F200 = {45,61,1,16,47,62} xid

201 = rand(Ui
201, d)

The Execution Process of the Algorithm

The execution process of the algorithm follows steps 
1 through 4. The specific steps are as follows:

Step 1: Initialization 
a) Project all the trees in the sample plot forest onto 

a two-dimensional plane based on their geographical 
coordinates. Each tree is represented by a weighted 
point, which encapsulates the tree’s type, location, height 
information, etc. These weighted points collectively 
form the solution space for the particle swarm algorithm 
(PSO) to search for optimal configurations or solutions.

b) Generate the number of initialization particles  
INI according to formulas (9) and (10); Determine  
the particle dimension d according to formula (11); 

Fig. 4. Case study of particle i’s search radius parameters R, Di200, F200 values during optimization.
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Generate particle initialization value xid
0 according to 

formula (12); According to formula (13), the particle 
initialization speed and update speed are determined, 
which are represented by the search radius R in this 
article.

c) Set the initialization values for parameters such as 
the maximum number of particle cycles k, the historical 
individual optimal solution pbesti and historical optimal 
position li of particle i, the global optimal solution gbest 
and global optimal position L, and the maximum search 
range. 

Step 2: Evaluation Stage
Calculate the fitness value fi

t of particle i(i∈1, INI)  
in the t(t∈(1, k)) round based on xid

t and formulas (1) 
to (8) to evaluate the quality of particle i. The initial 
fitness value of the forest stand is the fitness value f 
without selective cutting, with the goal of maximizing 
the comprehensive fitness of the forest stand ( f ) under a 
certain proportion of selective cutting.

Step 3: Update Phase
a) Update individual optimal values
Compare the current fitness value fi

t of particle i with 
the historical optimal fitness value pbesti. If the current 
fitness value is better ( fi

t >pbesti), update the historical 
best fitness value and historical best position of particle 
i, so that pbesti = fi

t, li = xid
t i(i∈1, INI).

b) Update the global optimal value
Find the globally optimal fitness value gbestt  

= Max(pbesti) i∈1, INI and its corresponding position Lt 
among all particle local optima, update gbest and L, and 
let gbest = gbestt, L = Lt.

c) Update the velocity and position of particles
Due to the particularity of optimizing the Forest 

Stand Mixing Degree, in order to prevent the algorithm 
from entering local optima, this paper sets the weights 
of each individual and global convergence radius R in 
the particle swarm to 1. It updates the search radius R 
and next round position xid

t+1 of each particle according 
to formulas (13) to (15).

Step 4: Iteration and Termination
If the algorithm reaches the maximum number 

of iterations k, it ends and outputs the global optimal 
solution gbest and the set of tree numbers L that are 
for selective cutting. Otherwise, it returns to Step 2 to 
continue iteration.

Results

To evaluate the optimization effect of the particle 
swarm algorithm on the Forest Stand Mixing Degree, 
this study selected four natural secondary mixed forest 
plots (P1, P2, P3, P4) of 20 m × 30 m in Hupingshan 
National Nature Reserve, Hunan Province, for testing 
and analysis. Three selective cutting ratios ‒ 5%, 10%, 
and 15% ‒ were applied to each plot. The relevant 
parameter settings for the experimental operations are 
detailed in Table 2. Note that, given the characteristics 
of intelligent algorithms in the optimization process,  
the optimal values of all indicators in the article are 
defined as the relative optimal values within a specified 
number of cycles.

Number of Selectively Logged Trees 
and Their Spatial Distribution

Based on the algorithm’s output, the “optimal” trees 
for selective cutting in plots P1, P2, P3, and P4 can be 
identified. For instance, under a 5% selective cutting 
ratio, the selected tree numbers in plot P1 are 12, 22, 
30, and 57, while those in plot P2 are 27, 30, 10, and 3. 
The detailed tree numbers for each plot under different 
selective cutting ratios are provided in Table 3. 
Generally, trees with lower Mixing Degrees are more 
likely to be selected for cutting. In plot P1, for example, 
under a 15% selective cutting ratio, the selected trees 
have relatively low Mixing Degrees, ranging from 0 
to 0.4 with an average of 0.16. Specifically, 26.67% 
of the selected trees have a Mixing Degree of 0, 20% 
have a Mixing Degree of 0.17, and 73.33% have a 
Mixing Degree below 0.29. However, the selected trees 
vary with different selective cutting ratios. The spatial 
distribution of selected trees in plot P1 under various 
cutting intensities is illustrated in Fig. 5.

Changes in Forest Stand Fitness

The research results show that under different 
logging intensities (5%, 10%, 15%), the fitness values 
of all plots are significantly improved, proving the 
feasibility of using this algorithm to optimize forest 
stand combinations. However, the growth rate of fitness 
values varies depending on the cutting strength. As 
the cutting intensity increases, the growth rate also 

Table 2. Setting of some experimental parameters.

Plot Selective 
Cutting Ratio%

Number of 
Selectively Cut Trees 

(trees)

Initial Number 
of Particles

Particle 
Dimension

Maximum 
Number of 
Iterations

Initial 
Convergence 
Radius R (m)

P1

5%, 10%, 15%

4, 8, 13 48, 96, 156 4, 8, 13

500 8
P2 4, 8, 11 48, 96, 132 4, 8, 11

P3 3, 6, 9 36, 72, 108 3, 6, 9

P4 4, 8, 11 48, 96, 132 4, 8, 11
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increases, although the growth curve is not strictly 
linear (Fig. 6). For example, in plot P1, when the cutting 
intensities are 5%, 10%, and 15%, respectively, the 
fitness values increase from the baseline of 4.12 to 5.63, 
8.17, and 15.87. In plot P2, the fitness values increased 
from 3.99 to 6.75, 7.92, and 10.98, while in plot P3, the 
fitness values increased from 5.29 to 8.50, 9.38, and 
13.64 (Table 4). These results indicate that moderate 
selective logging can improve the overall adaptability of 
forest stands.

Changes in Forest Stand Mixing Degree

The mixed degree value of forest stands is a key 
indicator for evaluating the diversity and spatial 
pattern of tree species in forest ecosystems, which 
shows significant dynamic changes after selective 
logging optimization. In the studies of plots P1 to P4, 
although there were fluctuations in the particle swarm 
optimization process, the overall trend was upward, 
especially at a cutting intensity of 15%, where this 
improvement was most significant (Fig. 7). For example, 
under selective logging ratios of 5%, 10%, and 15%,  

Table 3. Optimal tree numbers for selective cutting in plots at different ratios.

Table 4. Forest stand fitness changes with selective cutting.

Plot
Numbers of Trees Selected for Optimal Selective Cutting

Selective Cutting Ratio 5% Selective Cutting Ratio 10% Selective Cutting Ratio 15%

P1 12, 22, 30, 57 15, 12, 25, 26, 30, 37, 42, 57 4, 5, 6, 12, 13, 24, 25, 26, 30, 34, 42, 57, 64

P2 27, 30, 10, 3 28, 7, 27, 63, 3, 30, 10, 64 18, 63, 41, 9, 27, 39, 5, 3, 10, 32, 43

P3 13, 58, 6 58, 46, 13, 6, 60, 19 60, 62, 52, 58, 13, 19, 6, 16, 59

P4 3, 6, 31, 48 3, 6, 10, 31, 36, 45, 47 2, 3, 6, 14, 18, 30, 31, 34, 36, 45, 48

Fig. 5. Spatial distribution of selectively cut trees in plot P1 under various selective cutting intensities.

Plot Initial value
Selective Cutting Ratio 5% Selective Cutting Ratio 10% Selective Cutting Ratio 15%

After 
optimization

Change 
amplitude

After 
optimization

Change 
amplitude

After 
optimization

Change 
amplitude

P1 4.12 5.63 +36.65% 8.17 +98.30% 15.87 +285.19%

P2 3.99 6.75 +69.17% 7.92 +98.50% 10.98 +175.19%

P3 5.29 8.49 +60.68% 9.38 +77.32% 13.64 +157.84%

P4 3.52 4.66 +32.39% 5.68 +61.36% 9.73 +176.42%
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the mixing degree values of the P1 plot increased 
by 15.22%, 30.43%, and 52.17%, respectively. 
Similarly, the growth rates of the mixed degree 
values in plot P2 were 20.45%, 22.73%, and 
31.82%, respectively. The mixed degree values in 
the P3 chart increased by 18.87%, 22.64%, and 
35.85%, respectively. The mixed degree value  
of the P4 plot also achieved significant growth, with 
improvement rates of 13.04%, 21.74%, and 47.83%, 
respectively (Table 5). Selective logging not only 
promotes tree species diversity but also optimizes the 
spatial distribution of tree species, enhances the stability 
and resistance of forest ecosystems, and provides  
a scientific basis for sustainable forest management.

Changes in the standard deviation 
of the Stand Mixing Degree

After implementing the selective logging 
optimization strategy, the standard deviation of the 
mixed degree in the four experimental forest plots 
significantly decreased. For example, in plot P1, under 
selective cutting of 5%, 10%, and 15%, the standard 
deviation decreased by 18.18%, 36.36%, and 63.64%, 
respectively, and plot P2 decreased by 27.27%, 36.36%, 
and 54.55%; plot P3 decreased by 30.00% and 50.00%, 
respectively; and the P4 plot decreased by 8.33%, 
16.67%, and 41.67% (Table 6). These results indicate 
that selective logging optimization leads to a more 
uniform degree of forest mixing, with an increase  

Fig. 6. Trends in forest stand fitness during the algorithm optimization process.
(a), (b), (c), and (d) depict the changing trends of Forest Stand Fitness in plots P1, P2, P3, and P4, respectively, throughout the algorithm 
optimization process. 

Table 5. Forest stand Mixing Degree changes with selective cutting.

Plot Initial value
Selective Cutting Ratio 5% Selective Cutting Ratio 10% Selective Cutting Ratio 15%

After 
optimization

Change 
amplitude

After 
optimization

Change 
amplitude

After 
optimization

After 
optimization

P1 0.46 0.53 +15.22% 0.60 +30.43% 0.70 +52.17%

P2 0.44 0.53 +20.45% 0.54 +22.73% 0.58 +31.82%

P3 0.53 0.63 +18.87% 0.65 +22.64% 0.72 +35.85%

P4 0.46 0.52 +13.04% 0.56 +21.74% 0.68 +47.83%
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in the number of trees with a mixing degree between  
0.4 and 0.8. The proportion of individual plants with 
a low mixing degree, especially those with a mixing 
degree of 0, significantly decreased. This indicates 
that the distribution of tree species is more reasonable, 
and the stability and biodiversity of the ecosystem are 
enhanced. 

Changes in Tree Species Number and Proportion

The optimization results indicate that the number 
of tree species in plots P1, P2, P3, and P4 remained 
unchanged under selective cutting ratios of 5%, 10%, 
and 15%, but the proportion of dominant tree species 
changed, meeting the expected target requirements of 

the particle swarm algorithm (Table 7). For example, 
in plot P1, the initial proportion of Acer buergerianum 
was 3.6%. Under selective cutting ratios of 5%, 10%, 
and 15%, its proportion increased to 3.75% (+0.15%), 
3.95% (+0.35%), and 4.23% (+0.63%), respectively. 
The proportion of Sapindus mukorossi increased from 
4.76% to 5.00% (+0.24%), 5.26% (+0.50%), and 5.63% 
(+0.87%), respectively. In contrast, the Cinnamomum 
camphora proportion decreased significantly from 
64.29% to 61.25% (-3.04%), 59.21% (-5.08%), and 
56.34% (-7.95%). After optimization, the overall types 
of trees in each plot remained unchanged, despite some 
changes in proportions (Table 7).

Fig. 7. Trends in forest stand mixing degree during the algorithm optimization process.
(a), (b), (c), and (d) depict the changing trends of Forest Stand Mixing Degree in plots P1, P2, P3, and P4, respectively, throughout the 
algorithm optimization process.

Table 6. The standard deviation of the stand Mixing Degree changes with selective cutting.

Plot Initial value
Selective Cutting Ratio 5% Selective Cutting Ratio 10% Selective Cutting Ratio 15%

After 
optimization

Change 
amplitude

After 
optimization

Change 
amplitude

After 
optimization

Change 
amplitude

P1 0.11 0.09 -18.18% 0.07 -36.36% 0.04 -63.64%

P2 0.11 0.08 -27.27% 0.07 -36.36% 0.05 -54.55%

P3 0.1 0.07 -30.00% 0.07 -30.00% 0.05 -50.00%

P4 0.12 0.11 -8.33% 0.10 -16.67% 0.07 -41.67%
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Discussion

Response Analysis of the Stand Mixing Degree 
Under Different Selective Cutting Ratios

As an important indicator of forest spatial structure, 
the degree of mixed forest plays a crucial role in 
measuring forest diversity. Most researchers now consider 
using selective cutting to improve forest spatial structure 
and increase the degree of mixed forest [32, 33].

Selective cutting can improve the Mixing Degree 
of forest stands, but the response of the Mixing Degree 
to different selective cutting ratios is not clear. To 
study the variation of the Forest Stand Mixing Degree 
with selective cutting ratio, this paper investigated 
selected plots P1, P2, P3, and P4 at 2% intervals within 
an optimal range of 5% to 25%. Results showed that 
the optimal Mixing Degree values and corresponding 
selective cutting ratio for the four plots were: P1 (0.82, 
21%), P2 (0.66, 21%), P3 (0.82, 23%), and P4 (0.84, 
25%). Overall, the Mixing Degree values of plots P1 to 
P4 increased with increasing selective cutting ratios up 
to 25%, but the trends varied and fluctuated, without 
showing strong linear changes (Fig. 8).

Specifically, plot P1 had a relatively concentrated 
tree species distribution and weak mixing, which 

improved as the selective cutting ratio increased, 
reaching a maximum Mixing Degree of 0.82 at 21%. 
Plot P2 also showed an upward trend, with a maximum 
Mixing Degree of 0.62 at 23%, although the increase 
was smaller than in P1. Plot P3’s Mixing Degree 
remained relatively stable but generally increased with 
higher selective cutting ratios. Plot P4 exhibited a weak 
linear upward trend, with the most significant change 
among the plots, reaching a maximum Mixing Degree 
of 0.84 at 25%. Its tree species composition and spatial 
distribution pattern were highly sensitive to selective 
cutting, which strongly promoted mixing.

Despite overall increases in Mixing Degree with 
higher selective cutting ratios, differences existed among 
plots. For example, plot P4 showed more significant 
changes, likely due to its greater sensitivity to selective 
cutting. Improved mixing can enhance forest community 
diversity and complexity, thereby increasing ecosystem 
stability and resistance. However, excessively high 
selective cutting ratios may cause irreversible damage 
and reduce ecosystem stability [34]. Therefore, in 
practice, it is essential to consider the specific conditions 
of each plot and control selective cutting intensity to 
achieve sustainable forest management.

Table 7. Changes in tree species number and proportion in plots P1 to P4. 

Plot Initial value
Selective Cutting Ratio 5% Selective Cutting Ratio 10% Selective Cutting Ratio 15%

(Proportion and magnitude of change)

P1

Acer buergerianum (3.6%) (3.75%, +0.15%) (3.95%, +0.35%) (4.23%, +0.63%)

Sapindus mukorossi (4.76%) (5.00%, +0.24%) (5.26%, +0.50%) (5.63%, +0.87%)

Koelreuteria paniculata (11.90%) (11.25%, -0.65%) (11.84%, -0.06%) (12.68%, +0.78%)

Cinnamomum camphora (64.29%) (61.25%, -3.04%) (59.21%, -5.08%) (56.34%, -7.95%)

Paulownia tomentosa (11.90%) (11.25%, -0.65%) (11.84%, -0.06%) (12.68%, +0.78%)

Pinus massoniana (7.14%) (7.50%, +0.36%) (7.89%, +0.75%) (8.45%, +1.31%)

P2

Elaeocarpus decipiens (73.3%) (71.83%, -1.47%) (72.06%, -1.24%) (70.31%, -2.99%)

Cinnamomum camphora (12.0%) (12.68%, +0.68%) (11.76%, -0.24%) (12.50%, +0.50%)

Rhus chinensis (5.3%) (5.63%, +0.33%) (5.88%, +0.58%) (6.25%, +0.95%)

Pinus massoniana (9.3%) (9.86%, +0.56%) (10.29%, +0.99%) (10.94%, +1.64%)

P3

Elaeocarpus decipiens (11.3%) (11.86%, +0.56%) (12.73%, +1.43%) (13.73%, +2.43%)

Cunninghamia lanceolata (4.8%) (5.08%, +0.28%) (3.64%, -1.16%) (1.96%, -2.84%)

Cinnamomum camphora (12.9%) (13.56%, +0.66%) (10.91%, -1.99%) (7.84%, -5.06%)

Pinus massoniana (71.0%) (69.49%, -1.51%) (72.73%, +1.73%) (76.47%, -5.47%)

P4

Sapium sebiferum (1.4%) (1.49%, +0.09%) (1.56%, +0.16%) (1.67%, +0.27%)

Osmanthus fragrans (4.2%) (4.48%, +0.28%) (4.69%, +0.49%) (5.00%, +0.80%)

Cunninghamia lanceolata (5.6%) (5.97%, +0.37%) (6.25%, +0.65%) (6.67%, +1.07%)

Cinnamomum camphora (80.3%) (79.10%, -1.20%) (78.12%, -2.17%) (76.67%, -3.63%)

Pinus massoniana (8.5%) (8.96%, +0.46%) (9.38%, +0.88%) (10.00%, +1.50%)
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Comprehensive Analysis of PSO in the 
Optimization of Forest Mixing Degree

As a classic global optimization method, Mixed-
Integer Programming (MIP) typically achieves implicit 
enumeration and converges to the absolute optimal 
solution through techniques such as branch-and-bound 
and cutting planes [35, 36]. In this study, the dynamic 
Voronoi neighborhood model requires reconstructing 
topological relations after forest harvesting, leading 
to strong nonlinearity in the objective function.  
As a result, the implicit enumeration of traditional MIP 
cannot exclude invalid branches, and solution time may 
grow exponentially with the increase of problem scale 
[37].

To verify the effectiveness of Particle Swarm 
Optimization (PSO) in terms of solution quality and time 
efficiency, this paper compares MIP (full combinatorial 
enumeration) with PSO in 10 small-scale plots with 
30 trees each (LS1-LS10). In 4 medium-scale plots 
with 79-200 trees (MS1-MS4) and 2 large-scale plots 
with 350-499 trees (HS1-HS2), PSO is compared with 

Genetic Algorithm (GA), Artificial Bee Colony (ABC), 
and Differential Evolution (DE) algorithms to evaluate 
the solution quality of PSO at different scales. The 
specific experimental design is shown in Table 8 (the 
cutting ratio is 15%). To minimize random impacts on 
intelligent algorithms and enhance result reliability, this 
paper executed the algorithm 30 times per experimental 
plot and used the average values as the analytical basis 
for comparison.

The research results indicate that the small-
scale PSO strictly converges to the absolute optimal 
solutions of the MIP (Mixed-Integer Programming) 
in 70% of the plots (LS1, LS2, LS3, LS5, LS6, LS7, 
LS9), demonstrating full equivalence to the exact 
algorithm. This suggests that it possesses the capability 
to solve for global optimal solutions in most scenarios.  
For the remaining 30% of the plots (LS4, LS8, LS10), 
the maximum relative error between the PSO solutions 
and the MIP optimal solutions is only 1.47% (LS8: 
0.5240 vs. 0.5318) (Table 9).

Based on the initial values, the MIP algorithm 
achieves an average improvement of 23.67%, while  

Fig. 8. Changes in mixed degree values of Plots P1 to P4 under different selective cutting ratios.

Table 8. Test plots and algorithm parameters.

Plot Scale Plot Name and Number of Trees Comparative Algorithms

Small-scale LS1-LS10(30) MIP (characterized by enumerating all combinations) PSO

Medium-scale MS1(79), MS2(110), MS3(150), MS4(200) PSO, GA, ABC, DE

Large-scale HS1(350), HS2(499) PSO, GA, ABC, DE
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the PSO algorithm achieves an average improvement 
of 22.89%, with a difference of only -0.78%. The 
paired t-test shows that the mean difference between 
the PSO solutions and the MIP optimal solutions is not 
statistically significant (p = 0.14) (Table 10), proving 
that the optimization capability of PSO is essentially 
comparable to that of the exact algorithm as a whole.

The average running time of the MIP algorithm is 
239.67 seconds, while that of PSO is only 2.70 seconds, 
representing an efficiency improvement of approximately 
88.8 times (Table 9). Notably, the speed difference  
in Plot LS7 reaches 137 times (MIP: 234.63 seconds 
vs. PSO: 1.71 seconds), highlighting the overwhelming 
advantage of PSO in computational efficiency.

The standard deviation of PSO running time is 
0.24 seconds, which is only 2% of that of MIP (12.14 
seconds), indicating its stable convergence across 
different problem structures and avoiding the time 
fluctuations of the exact algorithm caused by problem 
complexity.

Based on the paired t-test (t = -1.62, p = 0.14) and 
Wilcoxon test (W = 0, p = 0.17), both tests indicate that 
there is no significant difference in solution quality 
between PSO and MIP when solving the stand mixing 
degree optimization problem in small-scale scenarios. 
In contrast, the t-test for the average computation times 
between the two shows a highly significant difference 
(p<0.001) (Table 10).

Table 9. Performance comparison between MIP and PSO algorithms.

Table 10. Comparison of statistical test results between MIP and PSO.

Table 11. Optimization efficiency in medium-scale problems.

Evaluation Indicators MIP Algorithm PSO Algorithm Difference Comparison

Optimal Solution Achievement Rate 100% (10/10) 70% (7/10) PSO achieves absolute optimality in 70% of scenarios

Average Improvement Percentage 23.67% 22.89% Difference of only -0.78% (no significant difference 1)

Maximum Relative Error 0% 1.47% (LS8) Negligible gap in minority scenarios

Average Running Time 239.67 seconds 2.70 seconds Efficiency improvement of approximately 88.8-fold

Time Stability (Standard Deviation) 12.14 seconds 0.24 seconds PSO running time fluctuation is only 2% of MIP

Test Type Test Object Statistic df / Effective 
Samples p-value Key Conclusion

Paired t-test 
(Parametric)

Solution quality 
difference t = -1.62 df = 9 0.14 No significant 

difference (p>0.05)
Time efficiency 

difference t = 61.78 df = 9 <0.001 Highly significant 
difference (p<0.05)

Wilcoxon test 
(Non-parametric)

Solution quality 
difference W = 0 ( W– = 6) Non-zero samples 

n = 3 0.17 No difference in 
median values

Comparison 
Dimensions

Algorithm 
Comparison Core Metric Comparisons U 

value p value Significance

Average Relative 
Optimal Value

PSO vs GA 0.7796 vs 0.7773
(Improvement Rate :21.02% vs 20.78%) 22 >0.05 No significant 

difference

PSO vs ABC 0.7796 vs 0.7794
(Improvement Rate :21.02% vs 20.98%) 18 >0.05 No significant 

difference

PSO vs DE 0.7796 vs 0.7400
(Improvement Rate :21.02% vs 16.82%) 10 <0.01 **

Average Execution 
Time (Unit: s)

PSO vs GA 84.84 vs 180.44 8 <0.01 **
PSO vs ABC 84.84 vs 162.43  12 <0.01 **

PSO vs DE 84.84 vs 68.82  20 >0.05 No significant 
difference

Average 
Convergence 

Iterations (Unit: 
iterations)

PSO vs GA 211.75 vs 231.75 10 <0.01 **
PSO vs ABC 211.75 vs 269.00 6 <0.01 **

PSO vs DE 211.75 vs 136.50 22 >0.05 No significant 
difference
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In the four medium-scale plots (79-200 trees, MS1-
MS4), PSO showed no statistically significant difference 
in the relative optimal values for stand mixing degree 
optimization compared with GA (U = 22, p = 0.08) 
and ABC (U = 18, p = 0.11), but exhibited a highly 
significant difference from DE (U = 10, p<0.01).  
The median optimal value of DE was 5.08% lower than 
that of PSO (95% CI: 4.21%-5.93%).

No significant difference was found in convergence 
time between DE (68.82±28.31 s) and PSO  
(84.84±32.56 s) (U = 20, p=0.07), whereas PSO was 
significantly faster than both GA and ABC (all p<0.01). 
Notably, the median computation time of GA (180.44 s) 
was 2.13-fold that of PSO.

PSO required significantly fewer convergence 
iterations (211.75±38.62) than GA and ABC (all 
p<0.01) but showed no significant difference from DE 
(136.50±45.71) (p = 0.06), suggesting that DE may trade 
solution quality for speed by reducing iteration counts, 
as shown in Table 11.

In two large-scale plots (350-499 trees, HS1-
HS2), PSO and GA exhibited comparable average 
improvement rates (12.45% vs. 12.30%), with PSO 
slightly outperforming GA in Plot HS2 (16.17% vs. 
16.04%), which demonstrates PSO’s superiority in 
convergence precision for high-complexity problems. 
DE achieved only 5.47% average improvement, 
significantly lower than other algorithms, indicating its 
limited global search capability (Table 12).

The average computation time of PSO (411.25 
seconds) was approximately 41.5% that of GA (991.95 
seconds) and 50.9% that of ABC (807.46 seconds), 
highlighting its remarkable efficiency advantage. 
Although DE’s average time (483.4 seconds) was 
comparable to PSO, its inferior solution quality suggests 
that this may be attributed to premature convergence 
(e.g., only 53 iterations in Plot HS1).

PSO required fewer average iterations (384.5) than 
GA (442) and ABC (433.5), yet significantly more than 
DE (114.5). This indicates that PSO strikes a better 
balance between rapid convergence and avoidance of 
premature convergence compared to GA/ABC and is 
less prone to local optima than DE.

Overall, in small-scale problems, PSO (Particle 
Swarm Optimization) not only achieves solution quality 
close to that of MIP (Mixed-Integer Programming), but 

also demonstrates extremely high time efficiency and 
strong algorithmic stability. In medium-to-large-scale 
problems, by balancing the number of iterations and 
convergence accuracy, PSO exhibits stronger global 
search capability in complex-scale problems. Compared 
with evolutionary algorithms such as GA (Genetic 
Algorithm) and ABC (Artificial Bee Colony), PSO has 
superior time efficiency under the premise of comparable 
solution quality. Compared with the DE (Differential 
Evolution) algorithm, PSO significantly outperforms DE 
in solution quality and avoids “premature convergence”.

Conclusions

This study constructed a natural secondary forest 
blending optimization model based on the particle 
swarm optimization (PSO) algorithm. It verified the 
optimization efficiency of PSO under different logging 
intensities (5%, 10%, 15%) using the forest stands in 
Hupingshan Nature Reserve, Hunan Province, as the 
object. The main conclusions are as follows:

(1) With the increase of logging intensity, the forest 
mix shows a nonlinear increase (31.82%~52.17% at 15% 
intensity), and the spatial distribution uniformity of tree 
species is significantly improved. PSO optimization 
did not reduce the number of tree species but adjusted 
the proportion of dominant tree species reasonably, 
confirming the feasibility of optimizing spatial structure 
while maintaining biodiversity.

(2) In small-scale scenarios, compared with mixed 
integer programming (MIP), PSO reduces the running 
time by 98.8% (2.70 vs. 239.67 seconds), 70% of the 
plots converge to the global optimal solution, and the 
maximum relative error of the remaining plots is only 
1.47%. On a medium to large scale, compared with 
the genetic algorithm (GA) and artificial bee colony 
algorithm (ABC), PSO has shortened the convergence 
time by 41.5% to 50.9% and reduced the number of 
iterations by 21.3%. The quality of the solution is 
comparable to traditional algorithms, but it is more 
efficient.

(3) There is no strict linear relationship between 
the degree of mixing and harvesting intensity, and the 
optimal harvesting intensity varies depending on forest 
characteristics (21%~25%). In practical management, 

Table 12. Optimization efficiency in large-scale problems.

Algorithm Solution Quality (Average Improvement %) Average Convergence Time (s) Average Number of Iterations

PSO 12.45% (D1:8.73%, D2:16.17%) 411.25 (D1:295.43, 
D2:527.07) 384.5 (D1:300, D2:469)

GA 12.295% (D1:8.55%, D2:16.04%) 991.9 (D1:727.47, 
D2:1256.43) 442 (D1:394, D2:490)

ABC 11.05% (D1:8.25%, D2:13.85%) 807.46 (D1:573.83, 
D2:1041.09) 433.5 (D1:389, D2:478)

DE 5.465% (D1:3.53%, D2:7.40%) 483.4 (D1:449.14, D2:517.66) 114.5 (D1:53, D2:176)
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it is recommended to control the logging intensity to ≤ 
25% and prioritize the logging of trees with a mixing 
degree ≤0.4 to balance structural optimization and 
ecological stability.
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