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Abstract

Existing research has shown that both climate extremes and air pollution have adverse impacts
on human health and the economy. It is worth noting that climate extremes and air pollution are not
independent of each other. The complex relationship between the two needs more research. In this
study, the impacts of climate extremes (extreme low temperature, extreme high temperature, extreme
rainfall, and extreme drought) on ambient air pollution are assessed ex post using a multiple regression
analysis. Based on data from 223 Chinese cities between 2007 and 2020, our analysis generates three
findings. (1) Climate extremes lead to poorer air quality by significantly increasing the concentrations
of black carbon (BC), nitrogen dioxide (NO,), ozone (O,), organic carbon (OC), particulate matter less
than 1 micron in size (PM)), fine particulate matter (PM, ), particulate matter less than 10 microns in
size (PM,), and sulfur dioxide (SO,). (2) Mechanism analyses suggest that climate extremes increase
energy consumption and depress green innovation, which provides explanations for the deterioration
of air pollution. (3) Although the effects of different types of climate extremes on air quality vary,

in general, it is confirmed that all four types of climate extremes worsen air quality.
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Introduction
Research Background

Existing research has shown that both climate
extremes and air pollution have severe negative impacts
on human health and the economy. There is an urgent
need for humanity to take measures to address these
problems. It is worth noting that climate extremes
and air pollution are not independent of each other.
For example, Schnell and Prather [1] observed the co-
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occurrence of extremes in surface ozone (O,), fine
particulate matter (PM, ), and high temperature over
eastern North America during the 1999-2013 period.
Marcantonio et al. [2] analyzed data from 176 countries
in 2018 and observed a positive correlation between
climate risk and toxic pollution. We cannot simply treat
the two issues of extreme climate and air pollution
in isolation and deal with them separately.

There are at least three possible reasons for
the positive correlation between climate extremes
and air pollution. (1) Climate extremes and air pollution
have some common causes. The occurrence of some
extreme climate events and air pollution has common
causes that stem from emissions due to human activities.
Numerous studies have shown that socioeconomic
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factors such as economic production activities,
population density, urbanization, and industrial structure
are among the crucial drivers of air pollution [3, 4]. For
example, Hien et al. [5] identified rapid urbanization
and urban land expansion as critical factors contributing
to atmospheric pollution; Kim et al. [6] demonstrated
that population density is a key socioeconomic factor
influencing PM, ;; Zhao et al. [7] found that vehicle
ownership is a significant driver of urban PM, ; levels;
Carrion-Flores and Innes [8] and Du et al. [9] emphasized
the substantial impact of technological innovation on
air pollution concentrations. Moreover, in addition
to affecting air quality, these socioeconomic factors
interact with environmental systems, triggering a range
of extreme conditions [10, 11]. In particular, some types
of extreme climate events (e.g., high temperatures, heavy
rains, and droughts) are largely due to the accumulation
of global greenhouse gases. Economic activities that
emit greenhouse gases, especially the burning of
fossil fuels and industrial production, often emit air
pollutants as well [12, 13]. (2) Climate extremes affect the
atmosphere and ecosystem. Climate extremes can alter
the state of the atmosphere and ecosystem, influencing
the physical and chemical processes through which
pollutants are generated and accumulated [14]. Under
certain conditions, this may increase the level of air
pollution. (3) Climate extremes affect human activities.
The occurrence of climate extremes has considerable
impacts on human activities that generate emissions
[15-17]. For example, in bad weather, humans may
increase energy consumption to maintain a suitable living
environment. This will increase air pollutant emissions.

In the first case (i.e., climate extremes and air
pollution have some common causes), which we have
just mentioned earlier, there is only a positive statistical
correlation between climate extremes and air pollution.
Both occur at the same time. But climate extremes
themselves do not affect air pollution. In the second case
(i.e., climate extremes affect atmosphere and ecosystem),
we need to apply environmental science methods to
analyze in detail the complex relationships among
climate, atmosphere, and ecosystem conditions, and
the generation and accumulation of specific pollutants.
These complex relationships cannot be altered by
human activities in the short term. In the third case
(i.e., climate extremes affect human activities), changes
in human activities as well as public policies can make
a difference. Therefore, in this study, we focus on the
possibility of the third case.

China is a large country with frequent climate
disasters and faces great climate risks. For example,
according to the China Climate Bulletin 2024,
China’s nationwide average temperature in 2024 was
10.9 degrees Celsius. This was 1.01 degrees Celsius
higher than the average level during 1991-2020 and was
the highest in history since 1951. In 2024, there were
42 regional torrential rain events across the country,
4 more than the 1991-2020 average level [18]. China also
faces the challenge of air pollution problems. Although

the Chinese government and society have made many
efforts to reduce air pollution in recent years, many
regions are still challenged by air pollution. In 2024,
the nationwide average concentration of fine particulate
matter (PM, ) was 29.3 pug/m’ [19]. This value was still
much higher than the healthy level recommended by the
World Health Organization.

Is there an explicit relationship between climate
extremes and air pollution? How do climate extremes
occurring in China affect air pollution in this country?
These questions are worth studying. By analyzing the
influence of climate extremes on air pollution, we can
better understand how climate change is shaping the
living environment and altering the welfare of humans.

Before formally conducting a rigorous empirical
analysis, we observe some visual preliminary evidence.
Fig. 1 presents a binned scatter plot for this study’s
research sample, which covers 223 Chinese cities
between 2007 and 2020. The plot is obtained by excluding
the city- and year-fixed effects. The Fig. 1 includes eight
subfigures, demonstrating the circumstances of eight
kinds of pollutants: black carbon (BC), nitrogen dioxide
(NO,), ozone (O,), organic carbon (OC), particulate
matter less than 1 micron in size (PM,), fine particulate
matter (PM, ,), particulate matter less than 10 microns
in size (PM,)), and sulfur dioxide (SO,), respectively.
The vertical axis of the graph shows the average annual
concentration of pollution in ambient air; the horizontal
axis shows the frequency of climate extremes, which is
measured by the climate risk index developed by Guo
et al. [20]. This index comprehensively reflects the
occurrence of four types of climate extremes: extreme
low temperature, extreme high temperature, extreme
rainfall, and extreme drought. As displayed in the Fig. 1,
climate extremes have a positive correlation with the
concentrations of multiple types of air pollutants.
Generally speaking, when the degree of climate risk
is greater, the level of air pollution is higher. Based on
the Fig. 1, it is reasonable to conjecture that climate
extremes may increase air pollution.

Research Purpose and Contributions

The research purpose of this study is to analyze
whether and to what extent climate extremes affect air
pollution using data from a wide range of regions in
China. This study contributes to the literature in two
aspects. (1) Although it has been previously suggested in
the literature that climate extremes affect air pollution,
to what extent extreme climate affects air quality has not
been adequately analyzed. This study provides evidence
from China that climate extremes can indeed lead to
air quality degradation. This helps us to gain a deeper
understanding of the impact of climate extremes on the
environment. (2) This study analyzes a variety of air
pollution indicators to provide a more comprehensive
picture of air quality changes in China. This provides
a new perspective for understanding the air pollution
problem in China.



Climate Extremes Increase Air Pollution...

2.44 24.8 . * 88 T
2.42 24.6 * 87.5 * .0
Q 2.4 N o44 ® * A 3 87 O, *
2.38 z 86.5 5 L3
24.2 » (4
2.36 86 «*
2.34 24 LS 85.5
0.1 0.15 0.2 0.25 0.3 0.35 0.1 0.15 0.2 0.25 0.3 0.35 0.1 0.15 0.2 0.25 0.3 0.35
Climate Risk Index Climate Risk Index Climate Risk Index
6.2 25.5 455
6.1 25 45
o 6 = on s *® o 445
O 59 E ' E 44 o
5.8 24 ¢ 43.5
* . L 2
5.7 235 “® 43 ™.
01 0.15 0.2 025 0.3 035 01 0.15 0.2 0.25 0.3 0.35 041 0.15 0.2 0.25 0.3 0.35
Climate Risk Index Climate Risk Index Climate Risk Index
84 20 * *
19.5
83 *
e o 19 y
= 82 B 185 o\t
81 18- @
80 17.5 .

01 015 02 025 03 0.35
Climate Risk Index

04 015 02 0.25 0.3 0.35
Climate Risk Index

Fig. 1. The positive correlation between climate extremes and air pollution, after excluding the city- and year-fixed effects.

Note: (1) Air pollution is measured by the annual average concentration (ug/m?®) of several pollutants: black carbon (BC), nitrogen
dioxide (NO,), ozone (O,), organic carbon (OC), particulate matter less than 1 micron in size (PM,), fine particulate matter (PM, ),
particulate matter less than 10 microns in size (PM, ), and sulfur dioxide (SO,); the degree of climate extremes is measured by the climate
risk index developed by Guo et al. [20]. (2) The binned scatter plot is obtained by using 20 bins. The graph would be similar if other
numbers of bins are used. (3) The data sources are explained in Section “Data source”.

Materials and Methods
Regression Model

This study evaluates the impact of climate extremes
on air pollution based on the following econometric
regression model:

AirPollution, = aClimateRiskIndex,
+ BControlVariables, +u, +v,+ ¢, )

In this Equation, the dependent variable AirPollution,,
is the level of air pollution in region 7 in period . The
core explanatory variable ClimateRiskindex, is an
index of climate physical risk, reflecting the frequency
of climate extremes. ControlVariables, is a set of
meteorological and socioeconomic control variables that
may affect air pollution. u, is the city-fixed effect; v, is
the year-fixed effect; ¢, is the residual term.

Variables
Dependent Variable

The dependent variable is AirPollution,, the level of
ambient air pollution. We examine the annual average

concentration (ug/m?®) of several different types of air
pollutants: black carbon (BC), nitrogen dioxide (NO,),
ozone (0,), organic carbon (OC), particulate matter
less than 1 micron in size (PM)), fine particulate matter
(PM, ), particulate matter less than 10 microns in size
(PM,)), and sulfur dioxide (SO,).

Core Explanatory Variable

The core explanatory variable of interest is
ClimateRiskIndex,, a composite index of climate
physical risk. This variable reflects the frequency of
four types of climate extremes, including extreme low
temperature (LTD,), extreme high temperature (LHD,),
extreme rainfall (ERD,), and extreme drought (EDD.),
in region i in year ¢. This index was constructed by Guo
et al. [20] on the basis of historical climatic data. In
the section on heterogeneity analysis in this study, we
will also separately inspect the impacts of four types of
climate extremes. To make it easier to understand the
magnitude of the regression coefficients, we rescaled
the values of these indices to a range between 0 and 1.
Larger index values indicate more frequent occurrences
of extreme climate events.
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Covariates

The vector  ControlVariables, includes the
following fourteen meteorological and socioeconomic
variables: (1) Precipitation 1is precipitation level
(mm); (2) WindSpeed is average wind speed (m/s);
(3) Sunlight is sunlight duration (h); (4) Temperature
is average temperature (°C); (5) GDPPerCapita is
GDP per capita (CNY) measured in 2000 constant
price level; (6) Population is population scale (person);
(7) IndustrialStructure, is industrial structure measured
by the proportion of agricultural value added in GDP;
(8) FinancialDevelopment is financial development,
measured by the ratio of bank credits to GDP;

by the ratio of international trade volume to GDP;
(10) RoadDensity is road density calculated by
the ratio of road length (km) to land area (km?);
(11) HighSpeedRail is a binary dummy variable
indicating the connection to the nationwide high-
speed railway network; (12) LowCarbonPolicylntensity
is an index measuring the intensity of low-carbon
policies, scaled to the range between 0 and I;
(13) InternetDevelopmentPolicy is a binary dummy
variable indicating the operation of the “Broadband
China” pilot project; (14) BigDataDevelopmentPolicy
is a binary dummy variable indicating the operation of
the “National Big Data Comprehensive Pilot Zones”
project. The data of the variables Precipitation,,

(9) TradeOpenness is trade openness, measured WindSpeed, Sunlight,, GDPPerCapita,, Population,
Table 1. Descriptive statistics of variables.
Variable Observations Mean g;ir;ggroi Minimum Maximum

BC 3,053 2.388 1.716 0.050 8.733

NO, 2,832 24.379 8.883 9.430 54.265

o, 3,053 86.803 10.250 57.195 122.189

ocC 3,053 5.933 3.312 0.213 16.101

PM, 3,053 24.163 9.034 4.670 59.393

PM, 3,053 44.201 16.342 12.817 112.078

PM,, 3,053 81.748 36.289 21.865 295.404

SO, 1,727 18.873 11.773 4.952 102.562
ClimateRiskIndex 3,053 0.206 0.058 0.000 1.000

LTD 3,053 0.200 0.093 0.000 1.000

HTD 3,053 0.461 0.136 0.000 1.000

ERD 3,053 0.054 0.053 0.000 1.000

EDD 3,053 0.189 0.121 0.000 1.000
Precipitation 3,053 6.622 0.758 3.290 7.923
WindSpeed 3,053 1.521 0.233 0.765 2.194
Sunlight 3,053 7.617 0.271 6.623 8.129
Temperature 3,053 12.200 6.673 —7.822 25.726
GDPPerCapita 3,053 9.909 0.655 7.842 11.723
Population 3,053 5.754 0.912 2.121 8.074
IndustrialStructure 3,053 0.153 0.094 0.000 0.670
FinancialDevelopment 3,053 0.955 0.608 0.075 5.748
TradeOpenness 3,053 0.205 0.618 0.000 17.176
RoadDensity 3,053 —-0.509 0.947 —5.818 0.894
HighSpeedRail 3,053 0.373 0.484 0.000 1.000
LowCarbonPolicylntensity 3,053 0.330 0.221 0.000 1.000
InternetDevelopmentPolicy 3,053 0.132 0.338 0.000 1.000
BigDataDevelopmentPolicy 3,053 0.082 0.274 0.000 1.000
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and RoadDensity, are originally expressed in levels.
To mitigate the possible issue of heteroscedasticity, we
take logarithms of them and use the log-transformed
variables in regression analysis.

Data Source

The data were collected from several sources.
(1) The data of BC and OC pollution were from NASA’s
MERRA-2 M2TINXAER product. The data of NO,,
O,, PM,, PM,, PM,, and SO, pollution were from
the GlobalHighAirPollutants (GHAP) dataset [21-24].
The original grid data offered by these data sources
were processed to generate the values of annual average
concentrations of different pollutants for each Chinese
city. (2) The data on climate extremes are provided
by Guo et al. [20]. (3) Meteorological data were from
the ERAS-Land dataset of the European Union’s
Copernicus Climate Change Service. (4) The index of
low-carbon policy intensity is from Dong et al. [25].
(5) The information about the internet and big data
development policies was collected from relevant
governmental websites. (6) The other variables, such
as GDP per capita and population, were provided by
the databases of the Chinese Research Data Services
Platform and the EPS China Data.

Research Sample

The research sample was selected on the basis
of the data availability of the main variables. In the
geographical dimension, the research sample covers 223
Chinese cities. More than 2/3 of Chinese regions have
been included in the sample. In the time dimension, the
research sample contains 14 years from 2007 to 2020
when we analyze BC, O,, OC, PM,, PM,, and PM_;
the sample contains 13 years from 2008 to 2020 when
we analyze NO,; and the sample contains 8 years from
2013 to 2020 when we analyze SO,. The number of
observations ranges from 1727 to 3053, depending on
the type of pollutant analyzed. The descriptive statistics
of the variables analyzed in this study are reported in
Table 1.

Results and Discussion
Main Results

Table 2 reports the results of coefficient estimation
for Equation (1). The regression coefficients of
ClimateRiskIndex, are all significantly positive when the
explained variables are BC, NO,, O,, OC, PM,, PM,,
PM,,, and SO,. This indicates that climate extremes
significantly increase air pollution concentration and
deteriorate air quality in China. According to the
regression results, if the climate risk index increases by
one unit, the annual mean concentrations of BC, NO,,
O,, OC,PM,, PM, ,, PM,, and SO, would rise by 0.388,

2.5 10°

2.636, 4.681, 2.211, 7.768, 10.89, 13.66, and 6.369 pg/m’,
respectively.

Some other covariates, such as sunlight duration,
GDP per capita, industrial structure, and financial
development, also have an influence on air quality.
Thus, it is reasonable to contain these covariates in the
regression equation. Since the covariates are not the
focus of this study, we do not discuss their coefficients
in detail.

In order to compare the relative magnitude of
the influences of climate extremes on different air
pollutants, we calculate the standardized regression
coefficients. The standardized regression coefficients
measure how many standard deviations of change in the
explained variables can be caused by a one-standard-
deviation change in the explanatory variables. Fig. 2
visually demonstrates the standardized regression
coefficients. As can be seen from the Fig. 2, while
climate extremes have statistically significant positive
effects on all eight types of air pollutants, the relative
magnitude of the effects does vary. Extreme climate
has the largest effect on PM . A one-standard-deviation
increase in the extreme climate index causes an increase
in PM, concentration of about 0.05 standard deviations.
The effect of climate extremes on BC was minimal.
A one-standard-deviation increase in the extreme
climate index causes an increase in BC concentration of
about 0.01 standard deviations.

In short, the combined evidence from Table 2 and
Fig. 2 demonstrates that climate extremes serve as
a critical stressor exacerbating air pollution, while
exhibiting  pollutant-specific  effect = magnitudes.
The impacts of extreme climate on various air pollutants
are qualitatively consistent but quantitatively divergent.
On the one hand, all air pollutants show concentration
increases under climate extremes; on the other hand,
their sensitivity to the same climatic shocks varies
substantially across pollutant categories.

Mechanism Analysis

Why do climate extremes increase air pollution? We
consider three possible reasons. (1) In order to withstand
extreme weather, residents and enterprises may increase
their energy consumption. For example, more energy
is used to keep warm in cold temperatures. Increased
energy consumption can lead to increased pollution
emissions. (2) Climate extremes are detrimental to
human health and the economy. After extreme climatic
events, both human capital and monetary resources that
can be used for green innovation are reduced. Reduced
green innovation can lead to increased pollution.
(3) In extreme climates, governments may shift more
attention to responding to extreme climatic events,
thereby reducing the focus on air quality protection and
the intensity of government environmental regulation.
Lower stringency of environmental regulation may lead
to greater pollution.
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Table 2. Estimated impact of climate extremes on air pollution.

BC NO, O, oC
Variables
® (i) (iif) (iv)
0.388*** 2.636** 4.681* 2.211%**
ClimateRiskIndex
[0.050] [1.180] [2.734] [0.347]
-0.0162 —1.007*** —3.106*** —0.243***
Precipitation
[0.017] [0.234] [0.568] [0.081]
—0.0511 —1.883%%* —6.925%** 0.256
WindSpeed
[0.046] [0.810] [2.558] [0.207]
—0.0981** —1.319%* 15.70%** —0.201
Sunlight
[0.041] [0.615] [2.095] [0.252]
—0.00828 —0.126 —-0.300 0.208***
Temperature
[0.006] [0.090] [0.243] [0.055]
—0.0563** 1.649%** -0.913 —0.00254
GDPPerCapita
[0.026] [0.516] [1.539] [0.147]
0.0244 —0.622 2.025 —0.0887
Population
[0.074] [1.304] [3.574] [0.302]
0.562%** 3.254 —34.61%** 4.288%**
IndustrialStructure
[0.198] [2.753] [8.526] [1.399]
0.0301** 0.0307 1.390* 0.155*
FinancialDevelopment
[0.015] [0.243] [0.819] [0.090]
—0.0042 0.137%* 0 0.0472%**
TradeOpenness
[0.003] [0.076] [0.328] [0.016]
0.0432%* 0.0398 —-1.291 0.309**
RoadDensity
[0.021] [0.359] [0.978] [0.140]
—0.0501*** —0.162 —1.215%* —0.118**
HighSpeedRail
[0.011] [0.186] [0.481] [0.053]
—0.0797** -0.627 0.159 —0.377**
LowCarbonPolicyIntensity
[0.031] [0.446] [1.261] [0.151]
—0.0312* —0.202 1.681%* —0.150**
InternetDevelopmentPolicy
[0.017] [0.296] [0.822] [0.076]
—0.0277* —0.856** —-0.817 —0.229***
BigDataDevelopmentPolicy
[0.016] [0.334] [1.101] [0.066]
City-fixed effects Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes
Number of cities 223 223 223 223
Number of observations 3053 2832 3053 3053
Within R? 0.548 0.566 0.653 0.376

Note: *, ** and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city
level are reported in brackets under the coefficient estimates.

Y
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PM, PM, | PM,, SO,
Variables :
) (vi) (vii) (viii)
7.768%** 10.89%** 13.66%** 6.369%*
ClimateRiskIndex
[1.051] [1.913] [4.507] [3.004]
—1.645%** —3.063*** —4.330%** —4.880%***
Precipitation
[0.248] [0.413] [0.864] [0.935]
-1.374 —3.447* —1.384 5.062
WindSpeed
[0.964] [1.956] [3.314] [4.446]
0.116 —0.940 —2.787 —12.09%**
Sunlight
[0.872] [1.651] [2.691] [2.757]
—0.202* 0.279 2.464%** 1.063%**
Temperature
[0.103] [0.191] [0.374] [0.360]
0.297 0.771 3.640** 6.964***
GDPPerCapita
[0.517] [0.958] [1.440] [2.486]
—0.135 —-0.212 2.487 -1.951
Population
[1.334] [2.598] [4.587] [7.017]
11.39%** 25.53%%* 44.64%** 51.80%**
IndustrialStructure
[3.431] [6.475] [10.242] [12.339]
0.0745 —0.386 —0.469 —0.0652
FinancialDevelopment
[0.334] [0.627] [0.936] [1.343]
0.0668 0.253%*%* 0.721%** 0.507***
TradeOpenness
[0.046] [0.097] [0.155] [0.155]
0.528* 0.776 1.297 —-0.716
RoadDensity
[0.312] [0.598] [1.088] [4.460]
—0.571%** —0.454 —0.221 0.509
HighSpeedRail
[0.205] [0.369] [0.571] [0.779]
—0.808* —1.547* —3.239% =7.761%**
LowCarbonPolicylntensity
[0.466] [0.881] [1.661] [2.864]
—0.841** —1.338% —2.142%* -1.711
InternetDevelopmentPolicy
[0.359] [0.688] [1.051] [1.106]
—1.004** —1.855% —2.986** —4.056%**
BigDataDevelopmentPolicy
[0.465] [0.944] [1.471] [1.421]
City-fixed effects Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes
Number of cities 223 223 223 222
Number of observations 3053 3053 3053 1727
Within R? 0.840 0.833 0.814 0.66

Note: *, ** and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city
level are reported in brackets under the coefficient estimates.
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Fig. 2. The standardized regression coefficients.

Note: Solid dots show point estimates of the standardized regression coefficients. Dashed lines demonstrate the corresponding 90%

confidence intervals.

We examine each of these three possible
mechanisms separately. First, we analyze the effect
of climate extremes on energy consumption. Data on
energy consumption are provided by Yang et al. [26].
We replace the dependent variable in Equation (1)
with the logarithmic value of energy consumption.
The regression coefficient is reported in Column (i)
of Table 3. The coefficient of ClimateRiskindex, is
significantly positive. This indicates that climate
extremes do significantly increase energy consumption.

Second, we analyze green innovation. We measure
the degree of green innovation in a region by adding
one to the number of green invention patents and
taking the logarithm. The data on green patents were
from the Chinese Research Data Services Platform.
The result of the regression with green innovation
as the explanatory variable is shown in Column (ii)
of Table 3. The coefficient of ClimateRiskindex, is
significantly negative, indicating that climate extremes
reduce green innovation.

Third, we analyze environmental regulation. We
measure the stringency of environmental regulation by
the proportion of environment-related words mentioned
in local governments’ annual work reports to the total
number of words in the reports. The government work
reports were published on government websites. We
use environmental regulation as the explained variable,
and the regression coefficient is displayed in Column
(iii) of Table 3. The coefficient of ClimateRiskindex,
is statistically nonsignificant. We do not find that
environmental regulation is significantly affected by
climate extremes.

We have just measured environmental regulation
stringency  using  environment-related  keyword
frequency in government reports. However, we
acknowledge that this approach may not fully capture the
actual enforcement intensity in policy implementation.
For instance, some regions might emphasize
environmental rhetoric in official documents without
actual strict enforcement, while others may implement
stringent policies without abundant keyword mentions.
This measurement limitation possibly attenuates
the estimated effect, which may partially explain the
lack of statistical significance in the regression result.
Therefore, we additionally consider three alternative
environmental regulation indicators: the removal rate of
industrial SO,, the removal rate of industrial dust, and
the utilization rate of industrial solid waste. The removal
rate of industrial SO, is defined as the ratio of SO,
captured and removed by pollution control equipment
to the total SO, generated during industrial production
processes. The removal rate of industrial dust is the
proportion of dust collected and removed by emission
control devices relative to total dust generated in
industrial production. The utilization rate of industrial
solid waste is calculated as the ratio of comprehensively
utilized solid waste to the sum of current-year
generation and prior-year stockpiles. Higher values of
these indicators reflect stronger local commitment to
environmental protection and greater efforts in pollution
abatement, indicating more stringent environmental
regulation. We employ these three metrics as dependent
variables to assess the impact of climate extremes on
environmental regulation. The results show statistically
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Table 3. Results of mechanism analysis.

Energy consumption Green innovation Environmental regulation
Variables
() (ii) (iii)
0.433%%%* —0.9071#** 0.032
ClimateRiskIndex
[0.078] [0.208] [0.044]
Control variables Yes Yes Yes
City-fixed effects Yes Yes Yes
Year-fixed effects Yes Yes Yes
Number of cities 214 223 223
Number of observations 2955 3053 3053
Within R? 0.745 0.772 0.127

Note: *, ** and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city level
are reported in brackets under the coefficient estimates. The coefficients of control variables are not reported to save space.

nonsignificant  coefficients  for  ClimateRiskindex,
(coefficients not reported here to conserve space),
suggesting no significant impact of climate extremes on
environmental regulation.

In short, we find that climate extremes increase
energy consumption and reduce green innovation. This
provides an explanation for the phenomenon that climate
extremes increase air pollution.

Heterogeneity Analysis

In the previous analysis, the explanatory variable
we used was ClimateRiskIndex,. This index combines
information on extreme low temperature, extreme high
temperature, extreme rainfall, and extreme drought.
The value of this index is the average of four sub-
indices: LTD,, HTD,, ERD,, and EDD,. The estimated
coefficient of ClimateRiskIndex, reflects the average
effect of the four types of climate extremes on air
pollution. Now, we further explore whether there are
some heterogeneities in the effects of the four kinds
of climate extremes on air pollution. We replace
ClimateRiskindex, in Equation (1) with four sub-indices
to construct the following regression model:

AirPollution,= a LTD, + a,HTD + a,ERD,
+a,EDD, + BControlVariables, +u +v + e, (2)

where LTD, represents extreme low temperature; HTD,
represents extreme high temperature; ERD, refers to
extreme rainfall; and EDD, refers to extreme drought.
The coefficient estimates for Equation (2) are
reported in Table 4. As the table shows, the effects of
different types of climate extremes on air pollution do
differ. For example, extreme low temperature, extreme
rainfall, and extreme drought have significantly positive
effects on most air pollutants; however, extreme high
temperature does not have significant effects on any
other types of air pollutants except that it increases

O,. It is interesting to note that while extreme rainfall
significantly increases SO,, extreme low temperature
and extreme drought have significantly negative effects
on SO,.

The heterogeneities we observe may be due to
a variety of complex reasons that are possibly related
to factors such as meteorological conditions, economic
structure, and the way humans cope with climate
extremes in each region. For instance, we take the
impacts of four types of climate extremes on SO,
concentrations as an example to discuss several plausible
explanations. (1) Extreme low temperature shows
a negative correlation with SO, concentrations. This may
occur because low temperature is often accompanied
by thermal inversions and high-pressure systems,
which suppress the dispersion of SO, pollutants.
(2) Extreme drought reduces SO, concentrations, likely
because drought leads to soil cracking and increased
dust emissions. Airborne SO, reacts chemically with
the surface of dust particles, promoting its conversion
to sulfate aerosols, which then rapidly settle out of the
atmosphere, resulting in an observed decline in SO,
concentrations. (3) Extreme heat has no statistically
significant effect on SO, levels. This could be attributed
to offsetting mechanisms: on the one hand, high
temperature may increase electricity demand, raising
SO, emissions from thermal power plants; on the other
hand, heat typically enhances strong convection and
vertical dispersion in the atmosphere, diluting SO,,
while accelerated photochemical reactions promote
its conversion into other chemical species. These
opposing effects balance out, leading to a statistically
nonsignificant net impact. (4) Extreme rainfall increases
SO, concentrations, possibly due to: leaching of sulfur
compounds from the ground, re-releasing them as SO,;
overflow events from wastewater treatment plants or
industrial facilities during heavy rain, discharging
sulfur-containing pollutants; post-disaster economic
recovery after floods, which may stimulate industrial
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Table 4. Heterogeneity across different types of climate extremes.

BC NO, (ON oC
Variables -
) (ii) (iii) (iv)
0.175%%*%* 3.080%*%* 3.307 1.139%%**
LTD
[0.047] [0.825] [2.396] [0.343]
-0.0113 —0.355 3.970%%** 0.238
HTD
[0.027] [0.493] [1.375] [0.172]
0.323%%** 1.170 0.713 1.259%%*
ERD
[0.051] [1.207] [2.509] [0.303]
0.176%%*%* 2.354%%* 0.696 1.389%3**
EDD
[0.031] [0.566] [1.659] [0.207]
Control variables Yes Yes Yes Yes
City-fixed effects Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes
Number of cities 223 223 223 223
Number of observations 3053 2832 3053 3053
Within R? 0.553 0.572 0.655 0.387
PM PM PM SO
Variables L 23 0 2
) (vi) (vii) (viii)
3.942%** 5.756%%* 8.230%*** —9.650%**
LTD
[0.947] [1.941] [3.161] [3.171]
0.246 0.571 1.250 0.762
HTD
[0.537] [1.069] [1.779] [1.396]
6.681%*%* 8.595%#%* 8.605 11.51%**
ERD
[1.123] [1.900] [5.316] [2.444]
2.378%%* 4.071%** 7.170%%* —6.466%**
EDD
[0.549] [1.062] [1.941] [2.348]
Control variables Yes Yes Yes Yes
City-fixed effects Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes
Number of cities 223 223 223 222
Number of observations 3053 3053 3053 1727
Within R? 0.841 0.834 0.815 0.666

Note: *, ** and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city level

are reported in brackets under the coefficient estimates. The coefficients of control variables are not reported to save space.

activities and elevate SO, emissions. The aggregate of
these effects may outweigh the wet deposition removal
of pollutants by rainfall, resulting in a net increase in
SO, levels.

It is not easy to specifically analyze all the possible
causes of heterogeneities reported in Table 4. To do this,
more detailed data and more sophisticated methods

are needed. This is beyond the scope of this study.
Therefore, we leave this important but difficult task for
future research.

For the different types of climate extremes, although
we observe some heterogeneities, we find that all
four types of climate extremes significantly increase
the concentration of at least one kind of air pollutant.
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This finding supports the core viewpoint of this study:
climate extremes worsen air quality.

Discussion

As reported in this study, the occurrence of climate
extremes exacerbates air pollution. This phenomenon
takes a heavy toll on public health and economic
development. Effective measures should be taken to
address the serious environmental challenges posed by
climate change.

First, the government should strengthen the early
warning and emergency response mechanisms for
extreme climate. As reported by the China Meteorological
Administration [18], in recent years, the frequency of
climate-related disasters such as extreme heatwaves,
torrential rains, and floods has been increasing in
China. These extreme climate events not only pose
direct threats to public safety but also significantly
exacerbate multiple pollution indicators such as NO,, O,,
and PM, . (see Table 2), thereby indirectly endangering
long-term  public health. Therefore, given the
compounded threats extreme climate events pose to
both public health and environmental quality, there is a
need to integrate data from multiple sectors, including
meteorology, urban environmental management, and
natural ecology protection, to improve the accuracy
and timeliness of predictions of extreme climatic
events [27]. For different types of extreme climatic
events, differentiated emergency response plans and
public health strategies should be formulated, and the
responsibilities and action plans of each department
should be clarified to enhance the efficiency of
emergency response. It is also necessary to carry out
publicity and education on extreme weather risks,
popularize knowledge on disaster prevention and
mitigation, and improve public awareness of risks and
the ability of self-rescue [28, 29].

Second, China needs to actively adjust its energy
structure and promote green innovation. Our mechanism
analysis (see Table 3) shows that climate extremes
aggravate air pollution through two main channels:
increasing energy consumption and suppressing green
innovation. Therefore, China should vigorously promote
the transition to clean energy and enhance incentive
mechanisms for green innovation and environmental
research. Although China has made great efforts in
transitioning to clean energy, the proportion of clean
energy consumption in its total energy mix remains
relatively low at present [30]. Clean energy substitution
should be accelerated, and the production capacity of
high-energy-consuming and high-emission industries
should be controlled to reduce greenhouse gas and
pollutant emissions. Green innovation should be strongly
encouraged. Fiscal, financial, and regulatory instruments
can motivate enterprises to phase out old, inefficient,
and highly polluting equipment and technologies and
to adopt greener and more environmentally friendly
production methods [31, 32].

Third, vulnerable areas susceptible to extreme
climate impacts have to continuously strengthen
ecosystem protection and restoration and enhance
ecosystem resilience. Important ecosystem protection
and restoration projects that have been implemented
previously, such as the Three-North Shelterbelt Forest
Program and the Grain for Green Program, need to
be maintained [33, 34]. Nature-based solutions such
as afforestation, returning farmland to forests and
grasslands, and wetland restoration need to be adopted
according to local conditions. These actions will
mitigate climate change and environmental pollution,
and increase the resilience of the ecosystem and society
to climate extremes. Furthermore, the heterogeneity
analysis results of this study (see Table 4) indicate
differential impacts of distinct extreme climate types
on various pollutants. Consequently, beyond universal
solutions like afforestation, local governments should
also formulate targeted governance strategies based
on regional climate characteristics and the dominant
types of pollutants likely to be triggered. For instance,
in areas where high temperatures frequently occur
in summer, efforts should be made to strengthen the
control of volatile organic compounds (VOCs) emissions
to mitigate rising O, concentrations.

Last but not least, effectively mitigating extreme
climate events requires the implementation of robust
climate policies and an emphasis on their roles.
However, if governments fail to ensure transparency
in information disclosure or frequently alter policies
during implementation, public confidence in climate
policies may erode, leading to climate policy
uncertainty (CPU). Policymakers should not overlook
the potential adverse effects of CPU, as it can influence
the economic behaviors of firms and the public, thereby
affecting emissions and harming the environment.
For instance, Attilio [35] and Niu et al. [36] examined
samples from multiple economies and found that CPU
significantly suppresses green innovation. Yang et al.
[37], based on data from 45 countries, demonstrated
that when CPU exceeds a certain threshold, the positive
effect of environmental taxes on renewable energy
development weakens, impeding energy transition.
This finding confirms that CPU may interfere with
the effectiveness of environmental policies, ultimately
harming the environment. Furthermore, utilizing
micro-level data from China’s listed companies, Wang
et al. [38] provided evidence that CPU negatively
affects corporate adoption of low-carbon technologies,
consequently undermining their carbon emission
performance. Therefore, governments should take
actions to reduce CPU in order to stabilize corporate
expectations, enhance public confidence, and improve
the effectiveness of climate policies and environmental
governance. Specifically, policymakers can take the
following steps. (1) Enhance climate policy transparency
and forward-looking planning - clearly define
policy objectives, implementation pathways, and
technological roadmaps through long-term strategies
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to reduce arbitrary changes. (2) Establish a stable
climate policy evaluation and feedback mechanism
— regularly release assessment reports and address
concerns from the public and businesses to strengthen
policy credibility. (3) Strengthen communication and
consultation with stakeholders — encourage public
and corporate participation in policymaking through
hearings and public consultations to reduce information
asymmetry. (4) Embed stable green incentives in fiscal
and financial systems — such as mid-to-long-term green
credit incentives — to provide institutional stability for
corporate green transition. Through these institutional
measures, governments can effectively mitigate the
disruptive effects of potential CPU, thereby laying a
more solid foundation for achieving climate goals and
improving environmental quality.

Conclusions

In this study, we utilize data for 223 Chinese cities
from 2007 to 2020 to analyze the impacts of climate
extremes on air quality. The regression estimation
results show that climate extremes significantly increase
the concentrations of BC, NO,, O,, OC, PM,, PM_,
PM,, and SO,. It is found that climate extremes
significantly impair air quality in China. Further
analysis reveals that extreme climate increases energy
consumption and depresses green innovation, which
provides explanations for the deterioration of air
pollution. Although there are differences in the effects
of the four types of climate extremes (i.e., extreme
high temperature, extreme low temperature, extreme
rainfall, and drought) on different kinds of air pollutants,
in general, all four types of climate extremes impair
air quality. The findings in this study underscore
the imperative for concrete actions to mitigate these
emerging environmental challenges.
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