
Introduction

Research Background

Existing research has shown that both climate 
extremes and air pollution have severe negative impacts 
on human health and the economy. There is an urgent 
need for humanity to take measures to address these 
problems. It is worth noting that climate extremes 
and air pollution are not independent of each other. 
For example, Schnell and Prather [1] observed the co-

occurrence of extremes in surface ozone (O3), fine 
particulate matter (PM2.5), and high temperature over 
eastern North America during the 1999-2013 period. 
Marcantonio et al. [2] analyzed data from 176 countries 
in 2018 and observed a positive correlation between 
climate risk and toxic pollution. We cannot simply treat 
the two issues of extreme climate and air pollution  
in isolation and deal with them separately.

There are at least three possible reasons for  
the positive correlation between climate extremes  
and air pollution. (1) Climate extremes and air pollution 
have some common causes. The occurrence of some 
extreme climate events and air pollution has common 
causes that stem from emissions due to human activities. 
Numerous studies have shown that socioeconomic 
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Abstract

Existing research has shown that both climate extremes and air pollution have adverse impacts 
on human health and the economy. It is worth noting that climate extremes and air pollution are not 
independent of each other. The complex relationship between the two needs more research. In this 
study, the impacts of climate extremes (extreme low temperature, extreme high temperature, extreme 
rainfall, and extreme drought) on ambient air pollution are assessed ex post using a multiple regression 
analysis. Based on data from 223 Chinese cities between 2007 and 2020, our analysis generates three 
findings. (1) Climate extremes lead to poorer air quality by significantly increasing the concentrations 
of black carbon (BC), nitrogen dioxide (NO2), ozone (O3), organic carbon (OC), particulate matter less 
than 1 micron in size (PM1), fine particulate matter (PM2.5), particulate matter less than 10 microns in 
size (PM10), and sulfur dioxide (SO2). (2) Mechanism analyses suggest that climate extremes increase 
energy consumption and depress green innovation, which provides explanations for the deterioration 
of air pollution. (3) Although the effects of different types of climate extremes on air quality vary, 
in general, it is confirmed that all four types of climate extremes worsen air quality.
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factors such as economic production activities, 
population density, urbanization, and industrial structure 
are among the crucial drivers of air pollution [3, 4]. For 
example, Hien et al. [5] identified rapid urbanization 
and urban land expansion as critical factors contributing 
to atmospheric pollution; Kim et al. [6] demonstrated 
that population density is a key socioeconomic factor 
influencing PM2.5; Zhao et al. [7] found that vehicle 
ownership is a significant driver of urban PM2.5 levels; 
Carrión-Flores and Innes [8] and Du et al. [9] emphasized 
the substantial impact of technological innovation on 
air pollution concentrations. Moreover, in addition 
to affecting air quality, these socioeconomic factors 
interact with environmental systems, triggering a range 
of extreme conditions [10, 11]. In particular, some types 
of extreme climate events (e.g., high temperatures, heavy 
rains, and droughts) are largely due to the accumulation 
of global greenhouse gases. Economic activities that 
emit greenhouse gases, especially the burning of 
fossil fuels and industrial production, often emit air 
pollutants as well [12, 13]. (2) Climate extremes affect the 
atmosphere and ecosystem. Climate extremes can alter 
the state of the atmosphere and ecosystem, influencing 
the physical and chemical processes through which 
pollutants are generated and accumulated [14]. Under 
certain conditions, this may increase the level of air 
pollution. (3)  Climate extremes affect human activities.  
The occurrence of climate extremes has considerable 
impacts on human activities that generate emissions  
[15-17]. For example, in bad weather, humans may 
increase energy consumption to maintain a suitable living 
environment. This will increase air pollutant emissions.

In the first case (i.e., climate extremes and air 
pollution have some common causes), which we have 
just mentioned earlier, there is only a positive statistical 
correlation between climate extremes and air pollution. 
Both occur at the same time. But climate extremes 
themselves do not affect air pollution. In the second case 
(i.e., climate extremes affect atmosphere and ecosystem), 
we need to apply environmental science methods to 
analyze in detail the complex relationships among 
climate, atmosphere, and ecosystem conditions, and 
the generation and accumulation of specific pollutants. 
These complex relationships cannot be altered by 
human activities in the short term. In the third case 
(i.e., climate extremes affect human activities), changes 
in human activities as well as public policies can make 
a difference. Therefore, in this study, we focus on the 
possibility of the third case.

China is a large country with frequent climate 
disasters and faces great climate risks. For example, 
according to the China Climate Bulletin 2024,  
China’s nationwide average temperature in 2024 was 
10.9 degrees Celsius. This was 1.01 degrees Celsius 
higher than the average level during 1991-2020 and was 
the highest in history since 1951. In 2024, there were 
42 regional torrential rain events across the country,  
4 more than the 1991-2020 average level [18]. China also 
faces the challenge of air pollution problems. Although 

the Chinese government and society have made many 
efforts to reduce air pollution in recent years, many 
regions are still challenged by air pollution. In 2024, 
the nationwide average concentration of fine particulate 
matter (PM2.5) was 29.3 µg/m3 [19]. This value was still 
much higher than the healthy level recommended by the 
World Health Organization.

Is there an explicit relationship between climate 
extremes and air pollution? How do climate extremes 
occurring in China affect air pollution in this country? 
These questions are worth studying. By analyzing the 
influence of climate extremes on air pollution, we can 
better understand how climate change is shaping the 
living environment and altering the welfare of humans.

Before formally conducting a rigorous empirical 
analysis, we observe some visual preliminary evidence. 
Fig. 1 presents a binned scatter plot for this study’s 
research sample, which covers 223 Chinese cities 
between 2007 and 2020. The plot is obtained by excluding 
the city- and year-fixed effects. The Fig. 1 includes eight 
subfigures, demonstrating the circumstances of eight 
kinds of pollutants: black carbon (BC), nitrogen dioxide 
(NO2), ozone (O3), organic carbon (OC), particulate 
matter less than 1 micron in size (PM1), fine particulate 
matter (PM2.5), particulate matter less than 10 microns 
in size (PM10), and sulfur dioxide (SO2), respectively. 
The vertical axis of the graph shows the average annual 
concentration of pollution in ambient air; the horizontal 
axis shows the frequency of climate extremes, which is 
measured by the climate risk index developed by Guo 
et al. [20]. This index comprehensively reflects the 
occurrence of four types of climate extremes: extreme 
low temperature, extreme high temperature, extreme 
rainfall, and extreme drought. As displayed in the Fig. 1, 
climate extremes have a positive correlation with the 
concentrations of multiple types of air pollutants. 
Generally speaking, when the degree of climate risk 
is greater, the level of air pollution is higher. Based on 
the Fig. 1, it is reasonable to conjecture that climate 
extremes may increase air pollution.

Research Purpose and Contributions

The research purpose of this study is to analyze 
whether and to what extent climate extremes affect air 
pollution using data from a wide range of regions in 
China. This study contributes to the literature in two 
aspects. (1) Although it has been previously suggested in 
the literature that climate extremes affect air pollution, 
to what extent extreme climate affects air quality has not 
been adequately analyzed. This study provides evidence 
from China that climate extremes can indeed lead to 
air quality degradation. This helps us to gain a deeper 
understanding of the impact of climate extremes on the 
environment. (2) This study analyzes a variety of air 
pollution indicators to provide a more comprehensive 
picture of air quality changes in China. This provides 
a new perspective for understanding the air pollution 
problem in China.
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Materials and Methods

Regression Model

This study evaluates the impact of climate extremes 
on air pollution based on the following econometric 
regression model:

	 AirPollutionit = 𝛼ClimateRiskIndexit  
	 + βControlVariablesit + ui + vt + εit	 (1)

In this Equation, the dependent variable AirPollutionit 
is the level of air pollution in region i in period t. The 
core explanatory variable ClimateRiskIndexit is an 
index of climate physical risk, reflecting the frequency 
of climate extremes. ControlVariablesit is a set of 
meteorological and socioeconomic control variables that 
may affect air pollution. ui is the city-fixed effect; vt is 
the year-fixed effect; εit is the residual term.

Variables

Dependent Variable

The dependent variable is AirPollutionit, the level of 
ambient air pollution. We examine the annual average 

concentration (μg/m3) of several different types of air 
pollutants: black carbon (BC), nitrogen dioxide (NO2), 
ozone (O3), organic carbon (OC), particulate matter 
less than 1 micron in size (PM1), fine particulate matter 
(PM2.5), particulate matter less than 10 microns in size 
(PM10), and sulfur dioxide (SO2).

Core Explanatory Variable

The core explanatory variable of interest is 
ClimateRiskIndexit, a composite index of climate 
physical risk. This variable reflects the frequency of 
four types of climate extremes, including extreme low 
temperature (LTDit), extreme high temperature (LHDit), 
extreme rainfall (ERDit), and extreme drought (EDDit), 
in region i in year t. This index was constructed by Guo 
et al. [20] on the basis of historical climatic data. In 
the section on heterogeneity analysis in this study, we 
will also separately inspect the impacts of four types of 
climate extremes. To make it easier to understand the 
magnitude of the regression coefficients, we rescaled 
the values of these indices to a range between 0 and 1. 
Larger index values indicate more frequent occurrences 
of extreme climate events.

Fig. 1. The positive correlation between climate extremes and air pollution, after excluding the city- and year-fixed effects.
Note: (1) Air pollution is measured by the annual average concentration (μg/m3) of several pollutants: black carbon (BC), nitrogen 
dioxide (NO2), ozone (O3), organic carbon (OC), particulate matter less than 1 micron in size (PM1), fine particulate matter (PM2.5), 
particulate matter less than 10 microns in size (PM10), and sulfur dioxide (SO2); the degree of climate extremes is measured by the climate 
risk index developed by Guo et al. [20]. (2) The binned scatter plot is obtained by using 20 bins. The graph would be similar if other 
numbers of bins are used. (3) The data sources are explained in Section “Data source”.
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Covariates

The vector ControlVariablesit includes the 
following fourteen meteorological and socioeconomic 
variables: (1) Precipitation is precipitation level 
(mm); (2) WindSpeed is average wind speed (m/s);  
(3) Sunlight is sunlight duration (h); (4) Temperature 
is average temperature (°C); (5) GDPPerCapita is 
GDP per capita (CNY) measured in 2000 constant 
price level; (6) Population is population scale (person);  
(7) IndustrialStructure, is industrial structure measured 
by the proportion of agricultural value added in GDP; 
(8) FinancialDevelopment is financial development, 
measured by the ratio of bank credits to GDP;  
(9) TradeOpenness is trade openness, measured 

by the ratio of international trade volume to GDP;  
(10) RoadDensity is road density calculated by 
the ratio of road length (km) to land area (km2); 
(11) HighSpeedRail is a binary dummy variable 
indicating the connection to the nationwide high-
speed railway network; (12) LowCarbonPolicyIntensity 
is an index measuring the intensity of low-carbon 
policies, scaled to the range between 0 and 1;  
(13) InternetDevelopmentPolicy is a binary dummy 
variable indicating the operation of the “Broadband 
China” pilot project; (14) BigDataDevelopmentPolicy 
is a binary dummy variable indicating the operation of 
the “National Big Data Comprehensive Pilot Zones” 
project. The data of the variables Precipitationit, 
WindSpeed, Sunlightit, GDPPerCapitait, Populationt, 

Table 1. Descriptive statistics of variables.

Variable Observations Mean Standard 
Deviation Minimum Maximum

BC 3,053 2.388 1.716 0.050 8.733 

NO2 2,832 24.379 8.883 9.430 54.265 

O3 3,053 86.803 10.250 57.195 122.189 

OC 3,053 5.933 3.312 0.213 16.101 

PM1 3,053 24.163 9.034 4.670 59.393 

PM2.5 3,053 44.201 16.342 12.817 112.078 

PM10 3,053 81.748 36.289 21.865 295.404 

SO2 1,727 18.873 11.773 4.952 102.562 

ClimateRiskIndex 3,053 0.206 0.058 0.000 1.000 

LTD 3,053 0.200 0.093 0.000 1.000 

HTD 3,053 0.461 0.136 0.000 1.000 

ERD 3,053 0.054 0.053 0.000 1.000 

EDD 3,053 0.189 0.121 0.000 1.000 

Precipitation 3,053 6.622 0.758 3.290 7.923 

WindSpeed 3,053 1.521 0.233 0.765 2.194 

Sunlight 3,053 7.617 0.271 6.623 8.129 

Temperature 3,053 12.200 6.673 −7.822 25.726 

GDPPerCapita 3,053 9.909 0.655 7.842 11.723 

Population 3,053 5.754 0.912 2.121 8.074 

IndustrialStructure 3,053 0.153 0.094 0.000 0.670 

FinancialDevelopment 3,053 0.955 0.608 0.075 5.748 

TradeOpenness 3,053 0.205 0.618 0.000 17.176 

RoadDensity 3,053 −0.509 0.947 −5.818 0.894 

HighSpeedRail 3,053 0.373 0.484 0.000 1.000 

LowCarbonPolicyIntensity 3,053 0.330 0.221 0.000 1.000 

InternetDevelopmentPolicy 3,053 0.132 0.338 0.000 1.000 

BigDataDevelopmentPolicy 3,053 0.082 0.274 0.000 1.000 
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2.636, 4.681, 2.211, 7.768, 10.89, 13.66, and 6.369 μg/m3, 
respectively.

Some other covariates, such as sunlight duration, 
GDP per capita, industrial structure, and financial 
development, also have an influence on air quality. 
Thus, it is reasonable to contain these covariates in the 
regression equation. Since the covariates are not the 
focus of this study, we do not discuss their coefficients 
in detail.

In order to compare the relative magnitude of 
the influences of climate extremes on different air 
pollutants, we calculate the standardized regression 
coefficients. The standardized regression coefficients 
measure how many standard deviations of change in the 
explained variables can be caused by a one-standard-
deviation change in the explanatory variables. Fig.  2 
visually demonstrates the standardized regression 
coefficients. As can be seen from the Fig. 2, while 
climate extremes have statistically significant positive 
effects on all eight types of air pollutants, the relative 
magnitude of the effects does vary. Extreme climate 
has the largest effect on PM1. A one-standard-deviation 
increase in the extreme climate index causes an increase 
in PM1 concentration of about 0.05 standard deviations. 
The effect of climate extremes on BC was minimal.  
A one-standard-deviation increase in the extreme 
climate index causes an increase in BC concentration of 
about 0.01 standard deviations.

In short, the combined evidence from Table 2 and 
Fig. 2 demonstrates that climate extremes serve as 
a critical stressor exacerbating air pollution, while 
exhibiting pollutant-specific effect magnitudes.  
The impacts of extreme climate on various air pollutants 
are qualitatively consistent but quantitatively divergent. 
On the one hand, all air pollutants show concentration 
increases under climate extremes; on the other hand, 
their sensitivity to the same climatic shocks varies 
substantially across pollutant categories.

Mechanism Analysis

Why do climate extremes increase air pollution? We 
consider three possible reasons. (1) In order to withstand 
extreme weather, residents and enterprises may increase 
their energy consumption. For example, more energy 
is used to keep warm in cold temperatures. Increased 
energy consumption can lead to increased pollution 
emissions. (2) Climate extremes are detrimental to 
human health and the economy. After extreme climatic 
events, both human capital and monetary resources that 
can be used for green innovation are reduced. Reduced 
green innovation can lead to increased pollution.  
(3) In extreme climates, governments may shift more 
attention to responding to extreme climatic events, 
thereby reducing the focus on air quality protection and 
the intensity of government environmental regulation. 
Lower stringency of environmental regulation may lead 
to greater pollution.

and RoadDensityit are originally expressed in levels. 
To mitigate the possible issue of heteroscedasticity, we 
take logarithms of them and use the log-transformed 
variables in regression analysis.

Data Source

The data were collected from several sources.  
(1) The data of BC and OC pollution were from NASA’s 
MERRA-2 M2T1NXAER product. The data of NO2, 
O3, PM1, PM2.5, PM10, and SO2 pollution were from 
the GlobalHighAirPollutants (GHAP) dataset [21-24].  
The original grid data offered by these data sources 
were processed to generate the values of annual average 
concentrations of different pollutants for each Chinese 
city. (2) The data on climate extremes are provided 
by Guo et al. [20]. (3) Meteorological data were from 
the ERA5-Land dataset of the European Union’s 
Copernicus Climate Change Service. (4) The index of 
low-carbon policy intensity is from Dong et al. [25].  
(5) The information about the internet and big data 
development policies was collected from relevant 
governmental websites. (6) The other variables, such 
as GDP per capita and population, were provided by 
the databases of the Chinese Research Data Services 
Platform and the EPS China Data.

Research Sample

The research sample was selected on the basis 
of the data availability of the main variables. In the 
geographical dimension, the research sample covers 223 
Chinese cities. More than 2/3 of Chinese regions have 
been included in the sample. In the time dimension, the 
research sample contains 14 years from 2007 to 2020 
when we analyze BC, O3, OC, PM1, PM2.5, and PM10; 
the sample contains 13 years from 2008 to 2020 when 
we analyze NO2; and the sample contains 8 years from 
2013 to 2020 when we analyze SO2. The number of 
observations ranges from 1727 to 3053, depending on 
the type of pollutant analyzed. The descriptive statistics 
of the variables analyzed in this study are reported in 
Table 1.

Results and Discussion

Main Results

Table 2 reports the results of coefficient estimation 
for Equation (1). The regression coefficients of 
ClimateRiskIndexit are all significantly positive when the 
explained variables are BC, NO2, O3, OC, PM1, PM2.5, 
PM10, and SO2. This indicates that climate extremes 
significantly increase air pollution concentration and 
deteriorate air quality in China. According to the 
regression results, if the climate risk index increases by 
one unit, the annual mean concentrations of BC, NO2, 
O3, OC, PM1, PM2.5, PM10, and SO2 would rise by 0.388, 
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Table 2. Estimated impact of climate extremes on air pollution.

Variables
BC NO2 O3 OC

(i) (ii) (iii) (iv)

ClimateRiskIndex
0.388*** 2.636** 4.681* 2.211***

[0.050] [1.180] [2.734] [0.347]

Precipitation
−0.0162 −1.007*** −3.106*** −0.243***

[0.017] [0.234] [0.568] [0.081]

WindSpeed
−0.0511 −1.883** −6.925*** 0.256

[0.046] [0.810] [2.558] [0.207]

Sunlight
−0.0981** −1.319** 15.70*** −0.201

[0.041] [0.615] [2.095] [0.252]

Temperature
−0.00828 −0.126 −0.300 0.298***

[0.006] [0.090] [0.243] [0.055]

GDPPerCapita
−0.0563** 1.649*** −0.913 −0.00254

[0.026] [0.516] [1.539] [0.147]

Population
0.0244 −0.622 2.025 −0.0887

[0.074] [1.304] [3.574] [0.302]

IndustrialStructure
0.562*** 3.254 −34.61*** 4.288***

[0.198] [2.753] [8.526] [1.399]

FinancialDevelopment
0.0301** 0.0307 1.390* 0.155*

[0.015] [0.243] [0.819] [0.090]

TradeOpenness
−0.0042 0.137* −1.411*** 0.0472***

[0.003] [0.076] [0.328] [0.016]

RoadDensity
0.0432** 0.0398 −1.291 0.309**

[0.021] [0.359] [0.978] [0.140]

HighSpeedRail
−0.0501*** −0.162 −1.215** −0.118**

[0.011] [0.186] [0.481] [0.053]

LowCarbonPolicyIntensity
−0.0797** −0.627 0.159 −0.377**

[0.031] [0.446] [1.261] [0.151]

InternetDevelopmentPolicy
−0.0312* −0.202 1.681** −0.150**

[0.017] [0.296] [0.822] [0.076]

BigDataDevelopmentPolicy
−0.0277* −0.856** −0.817 −0.229***

[0.016] [0.334] [1.101] [0.066]

City-fixed effects Yes Yes Yes Yes

Year-fixed effects Yes Yes Yes Yes

Number of cities 223 223 223 223

Number of observations 3053 2832 3053 3053

Within R2 0.548 0.566 0.653 0.376

Note: *, **, and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city 
level are reported in brackets under the coefficient estimates.
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Variables
PM1 PM2.5 PM10 SO2

(v) (vi) (vii) (viii)

ClimateRiskIndex
7.768*** 10.89*** 13.66*** 6.369**

[1.051] [1.913] [4.507] [3.004]

Precipitation
−1.645*** −3.063*** −4.330*** −4.880***

[0.248] [0.413] [0.864] [0.935]

WindSpeed
−1.374 −3.447* −1.384 5.062

[0.964] [1.956] [3.314] [4.446]

Sunlight
0.116 −0.940 −2.787 −12.09***

[0.872] [1.651] [2.691] [2.757]

Temperature
−0.202* 0.279 2.464*** 1.063***

[0.103] [0.191] [0.374] [0.360]

GDPPerCapita
0.297 0.771 3.640** 6.964***

[0.517] [0.958] [1.440] [2.486]

Population
−0.135 −0.212 2.487 −1.951

[1.334] [2.598] [4.587] [7.017]

IndustrialStructure
11.39*** 25.53*** 44.64*** 51.80***

[3.431] [6.475] [10.242] [12.339]

FinancialDevelopment
0.0745 −0.386 −0.469 −0.0652

[0.334] [0.627] [0.936] [1.343]

TradeOpenness
0.0668 0.253*** 0.721*** 0.507***

[0.046] [0.097] [0.155] [0.155]

RoadDensity
0.528* 0.776 1.297 −0.716

[0.312] [0.598] [1.088] [4.460]

HighSpeedRail
−0.571*** −0.454 −0.221 0.509

[0.205] [0.369] [0.571] [0.779]

LowCarbonPolicyIntensity
−0.808* −1.547* −3.239* −7.761***

[0.466] [0.881] [1.661] [2.864]

InternetDevelopmentPolicy
−0.841** −1.338* −2.142** −1.711

[0.359] [0.688] [1.051] [1.106]

BigDataDevelopmentPolicy
−1.004** −1.855* −2.986** −4.056***

[0.465] [0.944] [1.471] [1.421]

City-fixed effects Yes Yes Yes Yes

Year-fixed effects Yes Yes Yes Yes

Number of cities 223 223 223 222

Number of observations 3053 3053 3053 1727

Within R2 0.840 0.833 0.814 0.66

Note: *, **, and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city 
level are reported in brackets under the coefficient estimates.
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We examine each of these three possible 
mechanisms separately. First, we analyze the effect 
of climate extremes on energy consumption. Data on 
energy consumption are provided by Yang et al. [26]. 
We replace the dependent variable in Equation (1)  
with the logarithmic value of energy consumption.  
The regression coefficient is reported in Column (i) 
of Table 3. The coefficient of ClimateRiskIndexit is 
significantly positive. This indicates that climate 
extremes do significantly increase energy consumption.

Second, we analyze green innovation. We measure 
the degree of green innovation in a region by adding 
one to the number of green invention patents and 
taking the logarithm. The data on green patents were 
from the Chinese Research Data Services Platform.  
The result of the regression with green innovation  
as the explanatory variable is shown in Column (ii) 
of Table 3. The coefficient of ClimateRiskIndexit is 
significantly negative, indicating that climate extremes 
reduce green innovation.

Third, we analyze environmental regulation. We 
measure the stringency of environmental regulation by 
the proportion of environment-related words mentioned 
in local governments’ annual work reports to the total 
number of words in the reports. The government work 
reports were published on government websites. We 
use environmental regulation as the explained variable, 
and the regression coefficient is displayed in Column 
(iii) of Table 3. The coefficient of ClimateRiskIndexit 
is statistically nonsignificant. We do not find that 
environmental regulation is significantly affected by 
climate extremes.

We have just measured environmental regulation 
stringency using environment-related keyword 
frequency in government reports. However, we 
acknowledge that this approach may not fully capture the 
actual enforcement intensity in policy implementation. 
For instance, some regions might emphasize 
environmental rhetoric in official documents without 
actual strict enforcement, while others may implement 
stringent policies without abundant keyword mentions. 
This measurement limitation possibly attenuates  
the estimated effect, which may partially explain the 
lack of statistical significance in the regression result. 
Therefore, we additionally consider three alternative 
environmental regulation indicators: the removal rate of 
industrial SO2, the removal rate of industrial dust, and 
the utilization rate of industrial solid waste. The removal 
rate of industrial SO2 is defined as the ratio of SO2 
captured and removed by pollution control equipment 
to the total SO2 generated during industrial production 
processes. The removal rate of industrial dust is the 
proportion of dust collected and removed by emission 
control devices relative to total dust generated in 
industrial production. The utilization rate of industrial 
solid waste is calculated as the ratio of comprehensively 
utilized solid waste to the sum of current-year 
generation and prior-year stockpiles. Higher values of 
these indicators reflect stronger local commitment to 
environmental protection and greater efforts in pollution 
abatement, indicating more stringent environmental 
regulation. We employ these three metrics as dependent 
variables to assess the impact of climate extremes on 
environmental regulation. The results show statistically 

Fig. 2. The standardized regression coefficients.
Note: Solid dots show point estimates of the standardized regression coefficients. Dashed lines demonstrate the corresponding 90% 
confidence intervals.
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nonsignificant coefficients for ClimateRiskIndexit 
(coefficients not reported here to conserve space), 
suggesting no significant impact of climate extremes on 
environmental regulation.

In short, we find that climate extremes increase 
energy consumption and reduce green innovation. This 
provides an explanation for the phenomenon that climate 
extremes increase air pollution.

Heterogeneity Analysis

In the previous analysis, the explanatory variable 
we used was ClimateRiskIndexit. This index combines 
information on extreme low temperature, extreme high 
temperature, extreme rainfall, and extreme drought.  
The value of this index is the average of four sub-
indices: LTDit, HTDit, ERDit, and EDDit. The estimated 
coefficient of ClimateRiskIndexit reflects the average 
effect of the four types of climate extremes on air 
pollution. Now, we further explore whether there are 
some heterogeneities in the effects of the four kinds 
of climate extremes on air pollution. We replace 
ClimateRiskIndexit in Equation (1) with four sub-indices 
to construct the following regression model:

	 AirPollutionit = 𝛼1LTDit + 𝛼2HTDit + 𝛼3ERDit  
	 + 𝛼4EDDit + βControlVariablesit + ui + vt + εit  	(2)

where LTDit represents extreme low temperature; HTDit 
represents extreme high temperature; ERDit refers to 
extreme rainfall; and EDDit refers to extreme drought.

The coefficient estimates for Equation (2) are 
reported in Table 4. As the table shows, the effects of 
different types of climate extremes on air pollution do 
differ. For example, extreme low temperature, extreme 
rainfall, and extreme drought have significantly positive 
effects on most air pollutants; however, extreme high 
temperature does not have significant effects on any 
other types of air pollutants except that it increases 

O3. It is interesting to note that while extreme rainfall 
significantly increases SO2, extreme low temperature 
and extreme drought have significantly negative effects 
on SO2.

The heterogeneities we observe may be due to  
a variety of complex reasons that are possibly related 
to factors such as meteorological conditions, economic 
structure, and the way humans cope with climate 
extremes in each region. For instance, we take the 
impacts of four types of climate extremes on SO2 
concentrations as an example to discuss several plausible 
explanations. (1) Extreme low temperature shows  
a negative correlation with SO2 concentrations. This may 
occur because low temperature is often accompanied 
by thermal inversions and high-pressure systems, 
which suppress the dispersion of SO2 pollutants.  
(2) Extreme drought reduces SO2 concentrations, likely 
because drought leads to soil cracking and increased 
dust emissions. Airborne SO2 reacts chemically with 
the surface of dust particles, promoting its conversion 
to sulfate aerosols, which then rapidly settle out of the 
atmosphere, resulting in an observed decline in SO2 
concentrations. (3) Extreme heat has no statistically 
significant effect on SO2 levels. This could be attributed 
to offsetting mechanisms: on the one hand, high 
temperature may increase electricity demand, raising 
SO2 emissions from thermal power plants; on the other 
hand, heat typically enhances strong convection and 
vertical dispersion in the atmosphere, diluting SO2, 
while accelerated photochemical reactions promote 
its conversion into other chemical species. These 
opposing effects balance out, leading to a statistically 
nonsignificant net impact. (4) Extreme rainfall increases 
SO2 concentrations, possibly due to: leaching of sulfur 
compounds from the ground, re-releasing them as SO2; 
overflow events from wastewater treatment plants or 
industrial facilities during heavy rain, discharging 
sulfur-containing pollutants; post-disaster economic 
recovery after floods, which may stimulate industrial 

Table 3. Results of mechanism analysis.

Variables
Energy consumption Green innovation Environmental regulation

(i) (ii) (iii)

ClimateRiskIndex
0.433*** −0.901*** 0.032

[0.078] [0.208] [0.044]

Control variables Yes Yes Yes

City-fixed effects Yes Yes Yes

Year-fixed effects Yes Yes Yes

Number of cities 214 223 223

Number of observations 2955 3053 3053

Within R2 0.745 0.772 0.127

Note: *, **, and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city level 
are reported in brackets under the coefficient estimates. The coefficients of control variables are not reported to save space.
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activities and elevate SO2 emissions. The aggregate of 
these effects may outweigh the wet deposition removal 
of pollutants by rainfall, resulting in a net increase in 
SO2 levels.

It is not easy to specifically analyze all the possible 
causes of heterogeneities reported in Table 4. To do this, 
more detailed data and more sophisticated methods 

are needed. This is beyond the scope of this study. 
Therefore, we leave this important but difficult task for 
future research.

For the different types of climate extremes, although 
we observe some heterogeneities, we find that all 
four types of climate extremes significantly increase 
the concentration of at least one kind of air pollutant. 

Variables
PM1 PM2.5 PM10 SO2

(v) (vi) (vii) (viii)

LTD
3.942*** 5.756*** 8.230*** −9.650***

[0.947] [1.941] [3.161] [3.171]

HTD
0.246 0.571 1.250 0.762

[0.537] [1.069] [1.779] [1.396]

ERD
6.681*** 8.595*** 8.605 11.51***

[1.123] [1.900] [5.316] [2.444]

EDD
2.378*** 4.071*** 7.170*** −6.466***

[0.549] [1.062] [1.941] [2.348]

Control variables Yes Yes Yes Yes

City-fixed effects Yes Yes Yes Yes

Year-fixed effects Yes Yes Yes Yes

Number of cities 223 223 223 222

Number of observations 3053 3053 3053 1727

Within R2 0.841 0.834 0.815 0.666

Note: *, **, and *** represent significance levels of 10%, 5%, and 1%, respectively. Robust standard errors clustered at the city level 
are reported in brackets under the coefficient estimates. The coefficients of control variables are not reported to save space.

Table 4. Heterogeneity across different types of climate extremes.

Variables
BC NO2 O3 OC

(i) (ii) (iii) (iv)

LTD
0.175*** 3.080*** 3.307 1.139***

[0.047] [0.825] [2.396] [0.343]

HTD
−0.0113 −0.355 3.970*** 0.238

[0.027] [0.493] [1.375] [0.172]

ERD
0.323*** 1.170 0.713 1.259***

[0.051] [1.207] [2.509] [0.303]

EDD
0.176*** 2.354*** 0.696 1.389***

[0.031] [0.566] [1.659] [0.207]

Control variables Yes Yes Yes Yes

City-fixed effects Yes Yes Yes Yes

Year-fixed effects Yes Yes Yes Yes

Number of cities 223 223 223 223

Number of observations 3053 2832 3053 3053

Within R2 0.553 0.572 0.655 0.387
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This finding supports the core viewpoint of this study: 
climate extremes worsen air quality.

Discussion

As reported in this study, the occurrence of climate 
extremes exacerbates air pollution. This phenomenon 
takes a heavy toll on public health and economic 
development. Effective measures should be taken to 
address the serious environmental challenges posed by 
climate change.

First, the government should strengthen the early 
warning and emergency response mechanisms for 
extreme climate. As reported by the China Meteorological 
Administration [18], in recent years, the frequency of 
climate-related disasters such as extreme heatwaves, 
torrential rains, and floods has been increasing in 
China. These extreme climate events not only pose 
direct threats to public safety but also significantly 
exacerbate multiple pollution indicators such as NO2, O3,  
and PM2.5 (see Table 2), thereby indirectly endangering 
long-term public health. Therefore, given the 
compounded threats extreme climate events pose to 
both public health and environmental quality, there is a 
need to integrate data from multiple sectors, including 
meteorology, urban environmental management, and 
natural ecology protection, to improve the accuracy 
and timeliness of predictions of extreme climatic 
events [27]. For different types of extreme climatic 
events, differentiated emergency response plans and 
public health strategies should be formulated, and the 
responsibilities and action plans of each department 
should be clarified to enhance the efficiency of 
emergency response. It is also necessary to carry out 
publicity and education on extreme weather risks, 
popularize knowledge on disaster prevention and 
mitigation, and improve public awareness of risks and 
the ability of self-rescue [28, 29].

Second, China needs to actively adjust its energy 
structure and promote green innovation. Our mechanism 
analysis (see Table 3) shows that climate extremes 
aggravate air pollution through two main channels: 
increasing energy consumption and suppressing green 
innovation. Therefore, China should vigorously promote 
the transition to clean energy and enhance incentive 
mechanisms for green innovation and environmental 
research. Although China has made great efforts in 
transitioning to clean energy, the proportion of clean 
energy consumption in its total energy mix remains 
relatively low at present [30]. Clean energy substitution 
should be accelerated, and the production capacity of 
high‑energy‑consuming and high-emission industries 
should be controlled to reduce greenhouse gas and 
pollutant emissions. Green innovation should be strongly 
encouraged. Fiscal, financial, and regulatory instruments 
can motivate enterprises to phase out old, inefficient, 
and highly polluting equipment and technologies and 
to adopt greener and more environmentally friendly 
production methods [31, 32].

Third, vulnerable areas susceptible to extreme 
climate impacts have to continuously strengthen 
ecosystem protection and restoration and enhance 
ecosystem resilience. Important ecosystem protection 
and restoration projects that have been implemented 
previously, such as the Three-North Shelterbelt Forest 
Program and the Grain for Green Program, need to 
be maintained [33, 34]. Nature-based solutions such 
as afforestation, returning farmland to forests and 
grasslands, and wetland restoration need to be adopted 
according to local conditions. These actions will 
mitigate climate change and environmental pollution, 
and increase the resilience of the ecosystem and society 
to climate extremes. Furthermore, the heterogeneity 
analysis results of this study (see Table 4) indicate 
differential impacts of distinct extreme climate types 
on various pollutants. Consequently, beyond universal 
solutions like afforestation, local governments should 
also formulate targeted governance strategies based 
on regional climate characteristics and the dominant 
types of pollutants likely to be triggered. For instance, 
in areas where high temperatures frequently occur 
in summer, efforts should be made to strengthen the 
control of volatile organic compounds (VOCs) emissions 
to mitigate rising O3 concentrations.

Last but not least, effectively mitigating extreme 
climate events requires the implementation of robust 
climate policies and an emphasis on their roles. 
However, if governments fail to ensure transparency 
in information disclosure or frequently alter policies 
during implementation, public confidence in climate 
policies may erode, leading to climate policy 
uncertainty (CPU). Policymakers should not overlook 
the potential adverse effects of CPU, as it can influence 
the economic behaviors of firms and the public, thereby 
affecting emissions and harming the environment. 
For instance, Attílio [35] and Niu et al. [36] examined 
samples from multiple economies and found that CPU 
significantly suppresses green innovation. Yang et al. 
[37], based on data from 45 countries, demonstrated 
that when CPU exceeds a certain threshold, the positive 
effect of environmental taxes on renewable energy 
development weakens, impeding energy transition. 
This finding confirms that CPU may interfere with 
the effectiveness of environmental policies, ultimately 
harming the environment. Furthermore, utilizing 
micro-level data from China’s listed companies, Wang 
et al. [38] provided evidence that CPU negatively 
affects corporate adoption of low-carbon technologies, 
consequently undermining their carbon emission 
performance. Therefore, governments should take 
actions to reduce CPU in order to stabilize corporate 
expectations, enhance public confidence, and improve 
the effectiveness of climate policies and environmental 
governance. Specifically, policymakers can take the 
following steps. (1) Enhance climate policy transparency 
and forward-looking planning – clearly define 
policy objectives, implementation pathways, and 
technological roadmaps through long-term strategies 



Diwei Zheng, Daxin Dong12

to reduce arbitrary changes. (2) Establish a stable 
climate policy evaluation and feedback mechanism 
– regularly release assessment reports and address 
concerns from the public and businesses to strengthen 
policy credibility. (3) Strengthen communication and 
consultation with stakeholders – encourage public 
and corporate participation in policymaking through 
hearings and public consultations to reduce information 
asymmetry. (4) Embed stable green incentives in fiscal 
and financial systems – such as mid-to-long-term green 
credit incentives – to provide institutional stability for 
corporate green transition. Through these institutional 
measures, governments can effectively mitigate the 
disruptive effects of potential CPU, thereby laying a 
more solid foundation for achieving climate goals and 
improving environmental quality.

Conclusions

In this study, we utilize data for 223 Chinese cities 
from 2007 to 2020 to analyze the impacts of climate 
extremes on air quality. The regression estimation 
results show that climate extremes significantly increase  
the concentrations of BC, NO2, O3, OC, PM1, PM2.5,  
PM10, and SO2. It is found that climate extremes 
significantly impair air quality in China. Further 
analysis reveals that extreme climate increases energy 
consumption and depresses green innovation, which 
provides explanations for the deterioration of air 
pollution. Although there are differences in the effects 
of the four types of climate extremes (i.e., extreme 
high temperature, extreme low temperature, extreme 
rainfall, and drought) on different kinds of air pollutants, 
in general, all four types of climate extremes impair 
air quality. The findings in this study underscore 
the imperative for concrete actions to mitigate these 
emerging environmental challenges.
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