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Abstract

In the Yangtze River Economic Belt, extreme rainfall events have a substantial impact on economic 
activities in agriculture, energy consumption, and associated industries. Consequently, precise rainfall 
forecasting is of paramount importance for these sectors. This study utilizes rainfall data from 
11 provinces (municipalities) within the Yangtze River Economic Belt spanning from 2004 to 2023 
to construct both the Seasonal Autoregressive Integrated Moving Average (SARIMA) model 
and the Ornstein-Uhlenbeck (O-U) model for the rainfall index. Based on the models’ fitting 
performance, a more appropriate rainfall index prediction model is selected. Furthermore, by integrating 
option pricing theory, this paper designs an option contract contingent on rainfall. Through the analysis 
of rainfall prediction in the Yangtze River Economic Belt and its derivative pricing, we have identified 
several key findings. Firstly, after differential processing, the rainfall data from this region exhibits 
stability, making it suitable for time series model analysis. Secondly, by fitting the rainfall data using 
both the SARIMA and O-U models, we found that the predicted values closely align with actual 
observations, indicating that these models provide accurate fits. Thirdly, employing the SARIMA and 
O-U models simulation to predict rainfall, we observed that the SARIMA model yields superior fit
accuracy when comparing their respective errors. Fourthly, option contracts designed based on the
SARIMA model reveal that increased climate volatility and higher climate risk correlate with higher
pricing. Additionally, this study explores the practical application potential of weather derivatives in
the Yangtze River Economic Belt and how they can be utilized to mitigate climate risks associated
with rainfall fluctuations. The overarching goal is to effectively reduce climate risks faced by industries
within the Yangtze River Economic Belt through scientifically sound rainfall predictions and derivative
pricing, thereby promoting regional economic stability.

Keywords: climate risk, SARIMA model, option pricing model, rainfall prediction, weather derivatives 
pricing 
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Introduction

Since the Industrial Revolution, global temperatures 
have risen by about 1.1ºC, and this trend is expected to 
continue [1]. This will lead to an increase in extreme 
climate events, such as extreme rainfall. The Yangtze 
River Economic Belt, one of China’s most economically 
active regions, is vulnerable to natural disasters such 
as floods and mudslides caused by extreme rainfall. 
According to the “China Flood and Drought Disaster 
Bulletin” (2016-2020), the annual direct economic losses 
from flooding in the 11 provinces and municipalities 
within this region amounted to 135.4 billion yuan, 
accounting for 54% of the national total during 
that period. Over 230 million people were affected, 
representing 62.6% of the national total. More than  
4.5 million hectares of farmland were damaged 
annually, constituting 51% of the country’s total affected 
area [2]. Therefore, analyzing precipitation patterns in 
the Yangtze River Economic Belt is crucial to enhancing 
climate risk prevention capabilities and providing 
scientific support for soil and water conservation efforts.

In recent years, weather derivatives - financial 
instruments based on meteorological indices - have 
gained increasing attention in addressing disaster risks 
caused by climate change. Compared to traditional 
agricultural insurance, these derivatives offer several 
advantages. Traditional agricultural insurance 
typically bases claims on crop yields or income. This 
makes it susceptible to moral hazards and adverse 
selection. The claim processes are cumbersome, and 
the responses are delayed [3]. However, weather index 
insurance products rely on objective meteorological 
data, effectively avoiding moral hazards stemming 
from information asymmetry. Additionally, weather 
derivatives’ streamlined claims process eliminates 
the need for on-site loss assessments, significantly 
improving compensation efficiency and providing 
farmers and businesses with timely risk protection. 
International experience also demonstrates that weather 
derivatives excel at mitigating the economic impacts of 
extreme weather events. For example, countries such 
as Switzerland and the United States have substantially 
increased the resilience of their agriculture and energy 
sectors through weather options [4]. In China, as 
related products gain wider adoption and policy support 
strengthens, weather derivatives are poised to become 
a crucial supplementary tool for regional climate risk 
management.

Scholars worldwide have laid the groundwork for 
weather derivatives research. The relevant literature 
primarily focuses on two aspects: weather prediction 
models and financial instruments in climate risk 
management. First, various methods have been proposed 
for weather forecasting: the O-U model [5, 6], time 
series models [7], and machine learning algorithms 
[8]. Second, financial instruments for climate risk 
management mainly include traditional agricultural 
insurance [9] and weather derivatives [10]. Traditional 

agriculture insurance, plagued by high claims costs, 
information asymmetry, and lengthy claim processing 
times, has driven the emergence of weather derivatives. 
As a financial risk transfer tool, weather derivatives offer 
advantages such as flexibility, operational simplicity, 
and high marketization [11]. However, their limitations 
include limited market scale, a lack of mature pricing 
models, inadequate regulatory mechanisms, and 
restricted adoption due to policy and technological 
constraints. 

In conclusion, weather derivatives demonstrate 
unique advantages. However, research on this subject 
is limited, especially regarding rainfall analysis in 
the Yangtze River Economic Belt, where existing 
studies are insufficient. This study aims to provide 
new perspectives and practical tools for climate risk 
management and promote sustainable economic 
development by conducting an in-depth analysis of 
rainfall forecasting and derivative pricing within the 
Yangtze River Economic Belt.

Compared with existing studies, this paper’s 
innovations are reflected in three aspects. First, it 
focuses on the Yangtze River Economic Belt to enhance 
regional characteristic analysis. Second, it employs 
multiple models for rainfall prediction, demonstrating 
greater scientific validity and rationality than single 
models. Third, it innovatively designs practical 
rainfall derivatives tailored to real-world needs. 
These derivatives provide more effective risk transfer 
channels for local governments and enterprises, thereby 
promoting the in-depth development of climate risk 
financialization.

The remainder of this paper is organized as follows: 
the second part elaborates on the theoretical framework 
underlying this study. The third part uses the SARIMA 
model to forecast rainfall, and the fourth part uses the 
O-U model for similar predictions. The fifth part prices 
weather derivatives by integrating the forecast results 
with an option pricing model. The sixth part examines 
the practical applications of weather derivatives. 
Finally, the seventh part summarizes the key findings, 
the limitations of this paper, and the future research 
direction.

Materials and Methods

The Prediction Model of the Climate Index

SARIMA 

The concept of time series primarily denotes that 
a random variable evolves in response to temporal 
changes, exhibiting autocorrelation, which suggests 
a degree of continuity in the predicted variable. 
This characteristic allows for the development of 
mathematical models that can express this relationship, 
thereby enabling predictions of future trends based 
on historical data [12]. The Seasonal Autoregressive 
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Integrated Moving Average (SARIMA) model extends 
this foundation by accounting for periodic patterns 
within the time series. To enhance the prediction 
accuracy for non-stationary time series, SARIMA builds 
upon the ARIMA framework, incorporating seasonal 
components. The ARIMA model, or Autoregressive 
Integrated Moving Average model, is extensively 
utilized in academia. It achieves stationarity through 
differencing and subsequently performs predictive 
analysis on the transformed data [13]. According to 
relevant literature [14], the general form of the ARIMA 
model is as follows:

	 	 (1)

The aforementioned equation represents the 
ARIMA(p,d,q) model. In this context, xt denotes 
the time series data, εt signifies a zero-mean white 
noise sequence, p indicates the autoregressive order,  
q denotes the moving average order, and d represents 
the differencing order. B is the lag operator, Φ(B)  
is the polynomial of autoregressive coefficients, and 
θ(B) is the polynomial of moving average coefficients. 
Typically, this model is more appropriate when the 
selected sequence exhibits significant time trends or 
seasonal variations. According to relevant literature [15], 
the general form of the SARIMA model is as follows:

	 	 (2)

The formula represents the SARIMA(p,d,q)(P,D,Q)s 
model. Here, Bs denotes the length of the seasonal cycle, 
D represents the order of seasonal differencing, B_s is 
the seasonal backshift operator, while P and Q denote 
the orders of the seasonal autoregressive and seasonal 
moving average components, respectively.

	 t
p xB=p-tx

	 (3)

If the difference operation is expressed by the delay 
operator, the d-th order difference can be expressed as:  

	 t
d

t
d xB-1x ）（=∇ 	 (4)

And the polynomials related to B in the formula can 
be expressed respectively as:  
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O-U 

Typically, following the application of differencing 
procedures, the corresponding climate index tends 
to exhibit characteristics consistent with a normal 
distribution and demonstrates pronounced mean-
reverting properties. Consequently, in alignment with 
relevant literature [16], the Ornstein-Uhlenbeck (O-U) 
model is employed for modeling purposes. The detailed 
procedure is outlined below:

	 	 (9)

	 )sin(S 11t ϕωα +++= ttba 	 (10)

In the formula, TPt represents the daily rainfall 
climate index, St denotes the long-term trend and 
seasonal variation, қt signifies the mean reversion rate, 
and σt indicates the rainfall fluctuation. The term dSt 
ensures that TPt reverts to St over time. Bt

1 represents 
standard Brownian motion. Additionally, ω is defined 
as 2π/365, and φ serves as the phase shift parameter, 
primarily adjusting the initial position of the daily 
climate index.

For St, its parameters are estimated using the least 
squares method. After simplification, Equation (9) 
transforms into Equation (11). Additionally, under the 
equivalent martingale measure Q, the market price 
of risk λt is incorporated into this model [17]. This 
incorporated market price can be treated as a piecewise 
continuous function. Consequently, Equation (10) is 
reformulated as Equation (12).

	 (11)

	 	 (12)

Among these, c1 = αcosφ and d1 = αsinφ.   represent 
the standard Brownian motions under the equivalent 
martingale measure Q.

Second, given that σt may exhibit seasonality and 
periodicity, it is also represented by the Ornstein-
Uhlenbeck (O-U) model as follows:

	 	 (13)

	 )(sinaY 2t ϕωβ ++= t 	 (14)

Among these components, Xt denotes climate 
fluctuations, Bt

2 represents the standard Wiener process, 
and Yt captures the long-term trend along with seasonal 
variations. The long-term trend is not a static value 
but rather a time-varying function. The parameters are 
estimated using the least squares method, leading to the 
following simplified equation [16]:

	 tdt ωω cossincaY 222t ++= 	 (15)



Yi Li, Bing Zhou4

Among them, c2 = β cosφ, and d2 = β sinφ.
Furthermore, with regard to the fluctuations in 

the climate index, while the year-on-year changes are 
relatively insignificant, the month-on-month variations 
are notably pronounced. Consequently, σt should be 
considered as a piecewise continuous function [17]. 
The formula for the monthly volatility of rainfall is 
expressed as:

	
∑
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Among these, the daily climate index is denoted 
by TPi.  represents the average climate index.  
σy,m explains the standard deviation of the climate 
index in the m-th month of year y. Nm shows the total 
number of days in that month. The estimations of Xt 
and θt employ the quadratic variation method and the 
martingale estimation method proposed by Alaton et 
al. (2002), with the corresponding expressions given as 
follows [17]:
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Among these, Xm
2, σm,t, and θm respectively denote 

the volatility, standard deviation of climatic conditions, 
and the mean reversion rate of climatic fluctuations in the 
m-th month. Additionally, қt is a piecewise continuous 
function that adjusts according to temporal variations. 
The estimation methodology for қt parallels that of θt. 
Based on the aforementioned estimation outcomes, by 
refining Equation (11), we can derive a forecast for λt, 
with the corresponding expression being:

	 t
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The Option Pricing Model

Regarding the current situation, compared to the 
domestic market, the international market offers a 
greater variety and volume of climate index derivatives. 
For instance, the Chicago Mercantile Exchange 

primarily trades climate futures, with trading periods 
typically defined on a monthly or quarterly basis. 
Commonly used climate indices include the Cumulative 
Average Temperature (CAT), Heating Degree Days 
(HDD), and Cooling Degree Days (CDD). CAT is 
predominantly utilized in regions where climate 
variability is minimal. Meanwhile, HDD and CDD are 
comprehensively employed based on existing climate 
change characteristics to achieve reasonable pricing of 
derivatives. The calculation formulas are as follows [16]:

	 	 (21)

	 	 (22)

Among these, Hi denotes the HDD, Ci denotes the 
CDD. TPδ represents the benchmark climate index, 
while TPi represents the climate index for the i-th day. 
HDDs signify the cumulative heating index, which is 
calculated as the summation of Hi values. Similarly, 
CDDs signify the cumulative cooling index, which is 
calculated as the summation of Ci values.

From the perspective of purchasing HDD call 
options, let Vt

h denote the contract price of the option 
at time t. Under identical conditions, the contract price 
of the HDD European put option at time t is denoted as 
Pt

h. The respective calculation formulas are presented as 
follows [18]:
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In the formula, rf denotes the risk-free interest rate. 
T and t represent the contract’s expiration date and 
the current time, respectively. Np1 and K1 signify the 
nominal value and strike price of the unit climate index, 
respectively. The HDDs during the period from t1 to t2 
are denoted by H(t1, t2), with the actual value represented 
as H(0, t). The Monte Carlo simulation predicted value 
for the corresponding period is indicated by H(t+1, T).

Similarly, when considering the purchase of a CDD 
call option, the contract price of the call option at time 
t is denoted as Vt

c. Under identical conditions, the 
contract price of the CDD European put option at time t 
is represented as Pt

c. The respective calculation formulas 
are presented below:
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Stationarity Test

Both SARIMA and ARIMA models fall under the 
umbrella of time series analysis. Before constructing 
these models, it is crucial to ensure the stationarity of 
the time series, making stationarity testing the primary 
task. The Autoregressive Integrated Moving Average 
(ARIMA) test is a more rigorous statistical method 
commonly used to verify time series stationarity. The 
validation results using the ADF test are shown in 
Table 1 below. The results indicate that all variables 
are stationary at the 1% significance level. These 
results confirm that the data meet the stationarity 
requirements, rendering them suitable for subsequent 
model construction and analytical work. 

Results and Discussion

Construction and Prediction of Climate Models

Construction and Prediction of SARIMA Model

Model Construction

The establishment of the SARIMA model first 
requires the determination of the selection of p and q in 
the ARIMA(p, q) model. Usually, the values of p and 
q are 1, 2, or 3. Specifically, it is necessary to combine 
the information criteria of different combinations, 
compare the significance of the coefficients, and select 
the appropriate model using the Akaike Information 
Criterion [22]. 

After comparing the AIC values presented in 
Table 2, it is evident that for Sichuan’s rainfall data, 
the ARIMA(1,1) model yields the lowest AIC value. 
Consequently, both p and q are set to 1. Similarly, for 
other provinces, the models are selected based on the 
minimum AIC criterion. Specifically, Anhui, Jiangsu, 
and Zhejiang adopt the ARIMA(1,1) model to describe 
rainfall patterns. Hubei, Jiangxi, Guizhou, and Shanghai 
utilize the ARIMA(0,1) model, Hunan employs the 
ARIMA(1,2) model, while Yunnan and Chongqing opt 
for the ARIMA(2,2) model.

Following the model trials, the SARIMA(1,0,1)
(1,1,1)12 model with a 12-month seasonal period was 
ultimately selected for the rainfall models of Sichuan, 
Anhui, Jiangsu, and Zhejiang. For Hubei, Jiangxi, 
Guizhou, and Shanghai, the SARIMA(0,0,1)(1,1,1)12 
model with a 12-month seasonal period was chosen. The 
SARIMA(1,0,2)(1,1,1)12 model with a 12-month seasonal 
period was adopted for Hunan, while Yunnan and 
Chongqing utilized the SARIMA(2,0,2)(1,1,1)12 model 
with a 12-month seasonal period. The autocorrelation 
function (ACF) plots of residuals across provinces 
are presented in Fig. 1. The ACF diagrams show that 
none of the residual coefficients exceed the upper 
boundary of the 95% confidence interval, indicating 
low autocorrelation. Based on this analysis, we obtained 

In the formula, Np2 represents the nominal value of 
the unit climate index, K2 denotes the strike price, C(t1,t2) 
signifies the CDDs from time t1 to t2, C(0,t) indicates 
the actual observed value, and C(t,T) represents the 
forecasted value.

Research Area

The Yangtze River, as the main artery of China’s 
ecology, plays a crucial role in conserving water 
sources, regulating the climate, purifying the air, and 
nourishing the ecosystem [19]. However, extreme 
climate events such as rainstorms and floods often 
cause damage to the ecological environment, triggering 
a series of problems such as soil erosion, reduction in 
biodiversity, and degradation of ecosystem functions. 
Studying the weather derivatives of the Yangtze River 
Economic Belt will help alleviate these extreme climate 
risks, effectively protect the ecological environment, and 
thereby promote the green and sustainable development 
of the region [20].

Data Source

The theory of climate system dynamics underscores 
the critical role of rainfall in the formation of extreme 
climates. Daily rainfall data have been selected as 
the fundamental dataset for this analysis. This data 
originates from the National Oceanic and Atmospheric 
Administration (NOAA) of the United States, providing 
ground meteorological information pertinent to our 
country [21]. For this study, all provinces within the 
Yangtze River Economic Belt have been included, with 
the temporal coverage spanning daily precipitation data 
from January 1, 2004, to December 31, 2023. Notably, 
the obtained precipitation data are recorded in inches 
and must be converted to millimeters for subsequent 
analysis.

Table 1. Results of the Unit Root Test.

Variables ADF Statistic P

TSC -6.536 0.000

THB -10.006 0.000

TAH -14.004 0.000

TYN -6.047 0.000

THN -10.185 0.000

TJS -13.811 0.000

TJX -13.811 0.000

TZJ -11.523 0.000

TGZ -8.134 0.000

TSH -34.143 0.000

TCQ -9.459 0.000
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the parameter coefficients for each model, as detailed 
in Table 3. As shown in Table 3, most parameters 
demonstrate statistical significance, further validating 
the appropriateness of the selected models. 

Model Prediction

Based on the aforementioned model, the rainfall 
data for the Yangtze River Economic Belt from 
January 2024 to December 2026 were forecasted. 
As illustrated in Fig. 2, the predicted values exhibit  

AIC
q

0 1 2

p

TSC

0 1490.182 1381.568 1376.368

1 1436.960 1374.727 1376.055

2 1432.301 1375.012 1376.143

THB

0 1749.954 1602.886 1604.440

1 1671.135 1604.334 1606.886

2 1657.419 1603.055 1605.000

TAH

0 1661.916 1544.988 1540.963

1 1614.584 1540.616 1543.494

2 1591.610 1542.472 1543.754

TYN

0 1470.662 1404.856 1382.875

1 1445.470 1380.676 1382.650

2 1437.177 1382.640 1372.850

THN

0 1810.179 1672.650 1672.648

1 1769.603 1673.035 1672.617

2 1733.839 1672.849 1674.842

TJS

0 1707.764 1579.916 1578.671 

1 1651.107 1578.298 1579.724 

2 1632.576 1579.654 1581.642

TJX

0 1942.779 1791.000 1792.798

1 1883.949 1792.806 1794.435

2 1852.022 1794.720 1796.355

TZJ

0 1878.747 1717.361 1719.334

1 1814.559 1719.335 1721.361

2 1780.822 1721.187 1723.132

TGZ

0 1649.502 1553.536 1544.094

1 1612.091 1543.028 1544.996

2 1600.667 1544.981 1545.929

TSH

0 1876.446 1734.028  1734.947

1 1822.152 1734.990 1736.817 

2 1797.541 1736.866 1738.563

TCQ

0 1594.908 1595.922 1590.927 

1 1595.636 1596.588 1592.033

2 1592.767 1594.675 1584.098

Table 2. The AIC values of the model.
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a strong fit with the original data within the confidence 
interval. Furthermore, the Root Mean Square Errors 
(RMSEs) of the SARIMA(1,0,1)(1,1,1)12 model applied 
in Sichuan, Anhui, Jiangsu, and Zhejiang were 3.673, 
5.566, 5.22, and 8.352, respectively. The RMSEs for 
the SARIMA(0,0,1)(1,1,1)12 model utilized in Hubei, 

Jiangxi, Guizhou, and Shanghai were 6.585, 9.523, 
3.513, and 8.79, respectively. For Hunan, the RMSE of 
the SARIMA(1,0,2)(1,1,1)12 model was 7.403, while the 
RMSEs for the SARIMA(2,0,2)(1,1,1)12 model in Yunnan 
and Chongqing were 6.566 and 6.05, respectively. 
Given the low RMSE values across all provinces,  

Fig. 1. ACF Chart.
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it can be concluded that the prediction error is minimal, 
indicating that this model is suitable for forecasting 
rainfall in each region.

Construction and Prediction of the OU Model

Model Construction

The OU model was used to fit the rainfall index (Pt) 
and rainfall fluctuation (σt), and the estimated results of 
its fitting parameters are respectively presented in Tables 
4 and 5. Given that the P-values of St and Yt are mostly 
significant, the fitting effect of the OU model is good. 
In addition, after discretizing Formula (13) and without 
considering the disturbance term, the fluctuation σm of 
precipitation for 12 months was calculated. 

By conducting an autocorrelation function (ACF) 
test on the σt residuals, we can assess the model’s fitting 
performance. The ACF of the σt residuals is illustrated 
in Fig. 3. Examination of Fig. 3 indicates that the 
lagged values are minimal, suggesting insignificant 
autocorrelation. Based on the analysis of these graphical 
representations, it can be concluded that the OU model 
exhibits satisfactory fitting performance.

Based on the foregoing analysis, it is evident that the 
OU model exhibits a highly satisfactory fitting effect 
on the rainfall index, thereby yielding the parameter 
estimates κt and λt. Through these parameters, 
significant variations in the rainfall characteristics 
across different provinces become apparent. To elucidate 
this observation, the data from Sichuan Province were 
selected as a case study. For detailed results, please refer 

to Table 6. As shown in Table 6, κt and λt in Sichuan 
Province exhibit contrasting trends. Similarly, when 
examining the data of other provinces, analogous 
findings are observed. This suggests that during periods 
of substantial rainfall fluctuation, the rate at which 
rainfall returns to its mean is relatively slow, and under 
the equivalent martingale measure, the market price of 
risk is correspondingly higher.

Model Prediction

Based on the histogram and QQ plot of the σt 
residuals, it is evident that the OU model exhibits  
a satisfactory fitting performance. Consequently, the 
OU model was utilized to forecast daily rainfall in 2023. 
It offers robust data support for the pricing strategy of 
future weather derivatives, thereby presenting new 
opportunities for mitigating climate risks.

Option Contract Design

Model Comparison

To ensure the optimal performance of multiple 
models in fitting climate data, this study selected the 
2023 climate data from the Yangtze River Economic 
Belt. By applying the SARIMA and OU models 
in conjunction with Monte Carlo (MC) simulation 
technology, we predicted and analyzed HDDs and 
CDDs. The performance of these two models in climate 
prediction was evaluated by comparing their predicted 
values with actual observed values and calculating 
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Table 4. Estimation results of St. 

Provinces  Parameter Estimated 
value

Standard 
error  t P

Sichuan 
Province  

a1 -0.467 0.044 -10.57 0.000
b1 0.001 10.000 1.26 0.205
c1 -0.602 0.031 -19.25 0.000
d1 -1.840 0.031 -58.85 0.000

Hubei 
Province  

a1 -1.104 0.070 -15.78 0.000
b1 0.001 0.001 0.90 0.370
c1 -0.064 0.049 1.31 0.190
d1 -1.377 0.049 -27.85 0.000

Anhui 
Province  

a1 -0.707 0.068 -10.29 0.000
b1 -0.001 0.001 -2.38 0.017
c1 -0.203 0.048 -4.18 0.001
d1 -0.856 0.048 -17.62 0.000

Yunnan 
Province  

a1 -0.489 0.042 -11.54 0.000
b1 0.001 0.001 1.92 0.054
c1 -0.689 0.030 -22.95 0.000
d1 -2.195 0.029 -73.21 0.000

Hunan 
Province  

a1 -0.539 0.064 -8.39 0.000
b1 0.001 0.001 2.01 0.044
c1 0.429 0.045 9.45 0.000
d1 -1.049 0.045 -23.09 0.000

Jiangsu 
Province  

a1 -0.851 0.068 -12.50 0.000
b1 -0.001 0.001 -1.49 0.136
c1 -0.371 0.048 -7.71 0.000
d1 -0.740 0.048 -15.38 0.000

Jiangxi 
Province  

a1 -0.395 0.065 -6.04 0.000
b1 0.001 0.001 1.38 0.168
c1 0.533 0.046 11.51 0.000
d1 -0.948 0.046 -20.51 0.000

Zhejiang 
Province  

a1 -0.319 0.064 -4.98 0.000
b1 -0.001 0.001 -0.25 0.803
c1 0.029 0.045 0.64 0.522
d1 -0.822 0.045 -18.13 0.000

Guizhou 
Province  

a1 -0.528 0.050 -10.42 0.000
b1 0.001 0.001 4.22 0.000
c1 0.003 0.035 0.925 0.000
d1 -1.296 0.035 -36.16 0.000

Shanghai
 City

a1 -0.497 0.056 -8.77 0.000
b1 -0.001 0.001 -0.57 0.570
c1 -0.070 0.040 -1.76 0.078
d1 -0.125 0.040 -3.13 0.001

Chongqing 
City  

a1 -0.834 0.060 -13.71 0.000
b1 0.001 0.001 2.20 0.027
c1 -0.261 0.043 -6.07 0.000
d1 -1.351 0.043 -31.40 0.000
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the corresponding error metrics. For the calculation of 
the cumulative index, we adopted the practice of the 
Chicago Mercantile Exchange, using the average rainfall 
in the Yangtze River Economic Belt as the benchmark. 
In simulating rainfall changes, the SARIMA model 
(referred to as M1) was utilized for fitting, while the 
OU model (referred to as M2) was employed to describe 

the fluctuation characteristics of rainfall with a fixed 
mean reversion rate. Based on the M2 model, the mean 
reversion speed of rainfall fluctuation was modified to 
become a time-varying function, thereby addressing 
the issue where the residual term failed to pass the 
normality test. The enhanced model was designated 
as M3. In conjunction with MC simulation techniques, 
the three models were further evaluated through 10,000 
simulations to derive the rainfall index. Relative error 
was utilized to assess the accuracy of these models, with 
detailed results presented in Table 7. According to the 
simulation outcomes in Table 7, it is evident that the 
M1 model exhibits lower relative errors in predicting 
HDDs and CDDs for the Yangtze River Economic 
Belt. Although the M3 model demonstrates smaller 
relative errors in some instances, the difference between 
it and the M1 model is not statistically significant. 
Consequently, the M1 model provides a more stable 
and accurate fit for the Yangtze River Economic Belt 
compared to the other two models. Based on this 
analysis, we decided to adopt the SARIMA model’s 
prediction results for pricing options in the Yangtze 
River Economic Belt.

Option Pricing

Following a comprehensive comparative analysis 
of the aforementioned models, it is evident that the 
SARIMA model exhibits a significant advantage 
in forecasting rainfall within the Yangtze River 
Economic Belt. Consequently, the daily rainfall data 
for 11 provinces in the Yangtze River Economic Belt 
in 2024, as predicted by the SARIMA model, will be 
utilized. Additionally, the European pricing method will 
be employed to conduct an in-depth study on rainfall 
option pricing [23]. Prior to initiating the option pricing 
process, it is imperative to establish its fundamental 
elements. First, the time element pertinent to the option 
must be defined. Considering the substantial role of 
weather derivatives in mitigating extreme climate risks 
in agriculture and the Yangtze River Economic Belt 
being a major rice-producing region, the contract’s 
validity period should be set from early May to late 
July, aligning with the entire growth cycle of rice and 
accommodating widespread contract demand [24]. 
Second, the nominal value must be determined. 
Initially, the CME established the nominal value of 
the rainfall index futures contract at $100 per index 
unit, which was excessively high for medium and small 
investors, thereby hindering their market participation. 
To attract these investors, the contract specifications 
were adjusted downward in 2004. Drawing upon the 
adjustment experience of rainfall index futures contract 
specifications, to facilitate farmers’ participation in and 
transfer of climate risks, the specification for climate 
index futures contracts in China can be set at 10 yuan 
per index point. Additionally, regarding the selection 
of the risk-free interest rate, the Shanghai Interbank 
Offered Rate (SHIBOR) is chosen as the benchmark. 

Table 5. Estimation results of Yt. 

Provinces  Parameter Estimated 
value

Standard 
error  t P

Sichuan 
Province  

a2 -0.419 0.022 -18.95 0.000

c2 -0.604 0.031 -19.32 0.000

d2 -1.840 0.031 -58.85 0.000

Hubei 
Province  

a2 -1.050 0.034 -30.02 0.000

c2 -0.066 0.049 -1.34 0.178

d2 -1.377 0.049 -27.85 0.000

Anhui 
Province  

a2 -0.849 0.034 -24.70 0.000

c2 -0.199 0.048 -4.09 0.000

d2 -0.856 0.048 -17.61 0.000

Yunnan 
Province  

a2 -0.419 0.021 -19.76 0.000

c2 -0.691 0.030 -23.04 0.000

d2 -2.195 0.029 -73.20 0.000

Hunan 
Province  

a2 -0.427 0.032 -13.31 0.000

c2 0.426 0.045 9.38 0.001

d2 -1.048 0.045 -23.09 0.000

Jiangsu 
Province  

a2 -0.939 0.034 -27.59 0.000

c2 -0.368 0.048 -7.65 0.000

d2 -0.740 0.048 -15.38 0.000

Jiangxi 
Province  

a2 -0.317 0.032 -9.71 0.000

c2 0.530 0.046 11.46 0.000

d2 -0.948 0.046 -20.51 0.000

Zhejiang 
Province  

a2 -0.333 0.032 -10.40 0.000

c2 0.029 0.045 0.65 0.000

d2 -0.822 0.045 -18.13 0.000

Guizhou 
Province  

a2 -0.343 0.025 -13.53 0.000

c2 -0.002 0.035 -0.07 0.000

d2 -1.295 0.035 -36.11 0.000

Shanghai
 City

a2 -0.525 0.028 -18.54 0.000

c2 -0.069 0.040 -1.74 0.000

d2 -0.125 0.040 -3.13 0.001

Chongqing 
City  

a2 -0.718 0.030 -23.61 0.000

c2 -0.265 0.043 -6.16 0.000

d2 -1.351 0.043 -31.39 0.000
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Fig. 2. Prediction fitting diagram.
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Fig. 3. ACF diagram of σt. 
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With the SHIBOR on May 20, 2024, being 3.45%, 
the risk-free interest rate is accordingly set at 3.45% 
[25]. Furthermore, concerning the determination of 
the exercise price, taking into account farmers’ risk 
tolerance and market acceptance, the exercise price 
should closely reflect the actual cost of climate risks 

to ensure effective risk management through option 
contracts. According to relevant literature [26], an 
exercise price of 300 is selected. Given that agricultural 
output is significantly influenced by changes in rainfall, 
particularly heavy rain, which may reduce crop yields 
and potentially cause losses to farmers, this paper 
will use call options as a case study to illustrate the 
principles of option pricing. For detailed information, 
please refer to Table 8.

In conjunction with the aforementioned fundamental 
parameter configurations and utilizing the option 
pricing model, we can calculate the price of call options 
for the Yangtze River Economic Belt, as detailed in 
Table 9. Taking Sichuan’s call option as an example, 

Table 6. Parameter estimation results.

Month σt θt Xt қt λt

1 2.397 0.479 0.096 0.097 0.437

2 2.277 0.459 0.095 0.098 0.419

3 2.206 0.453 0.088 0.106 0.416

4 1.889 0.445 0.077 0.087 0.413

5 1.690 0.402 0.067 0.110 0.376

6 1.283 0.387 0.052 0.112 0.368

7 1.313 0.388 0.052 0.087 0.368

8 1.482 0.480 0.059 0.107 0.453

9 1.602 0.546 0.065 0.090 0.512

10 1.607 0.573 0.064 0.100 0.538

11  2.051 0.532 0.083 0.083 0.491

12 2.327 0.516 0.093 0.105 0.472

Table 7. Comparative analysis of prediction outcomes.

Provinces  
M1 M2 M3

HDDs CDDs HDDs CDDs HDDs CDDs
Sichuan 
Province  

230
(0.91)

451.07
(0.33)

231.59
(0.22)

449.04
(0.33)

 232.56
(0.19)

435.70
(0.29)

Hubei 
Province  

 227.92
(0.25)

294.33
(0.45)

 225.10
(0.23)

465.27
(1.29)

 225.50
(0.23)

387.06
(0.90)

Anhui 
Province  

200.19
(0.10)

268.16
(0.28)

235.84
(0.30)

309.24
(0.48)

219.81
(0.21)

308.37
(0.48)

Yunnan 
Province  

239.37
(2.50)

380.21
(0.22)

239.62
(2.4)

387.5
(0.23)

241.24
(1.74)

380.05
(0.21)

Hunan 
Province  

358.40
(0.31)

369.84
(0.36)

389.94
(0.43)

402.51
(0.48)

387.44
(0.42)

389.35
(0.43)

Jiangsu 
Province  

199.84
(0.05)

276.55
(0.27)

228.50
(0.2)

336.04
(0.54)

207.71
(0.09)

321.72
(0.48)

Jiangxi 
Province  

318.54
(0.02)

488.65
(0.31)

387.71
(0.46)

519.41
(0.40)

360.77
(0.36)

485.09
(0.30)

Zhejiang 
Province  

282.51
(0.19)

537.52
(0.51)

386.29
(0.64)

994.58
(1.79)

330.00
(0.40)

702.54
(0.97)

Guizhou 
Province  

242.76
(2.00)

316.57
(0.16)

 259.52
(4.77)

529.69
(0.95)

246.32
(0.56)

380.91
(0.40)

Shanghai
 City

231.68
(0.15)

409.61
(0.47)

342.1
(0.64)

649.32
(1.34)

279.75
(0.38)

419.64
(0.51)

Chongqing 
City  

194.26
(0.07)

299.93
(0.39)

168.69
(0.06)

336.03
(0.57)

176.83
(0.01)

302.25
(0.40)

Note: The content in brackets is the relative error.

Table 8. European call option contracts.  

The underlying index  CDDs

Exercise price 300

Contract period 2024.5.1-2024.7.31

Contract value 1CDDs = 10CNY

Location The Yangtze River Economic Belt  

Payment method Cash

Note: CNY stands for Chinese Yuan.
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the contract price is 2,984.63 yuan. If the actual CDDs 
in May, June, July, and August 2023 are 337.40 points, 
exceeding the strike index by 37.4 points, growers who 
choose to exercise the option can receive a cash payment 
of 374 yuan on the first trading day of September. 
Therefore, purchasing this option can mitigate the 
impact of weather risks on asset price volatility. In the 
event of extreme climates, higher CDDs would further 
enhance risk transfer capabilities under such conditions. 
Additionally, based on the model’s pricing results, it is 
observed that provinces with higher rainfall levels (such 
as Zhejiang, Jiangxi, and Sichuan) generally have higher 
option prices. Particularly during June, July, and August, 
precipitation exhibits significant fluctuations due to the 
influence of the plum rain season, typhoons, and heavy 
storms. This suggests that greater climate volatility and 
higher climate risk correlate with higher option pricing, 
aligning with the principles of financing cost theory.

The Application of Weather Derivatives

Weather derivatives, as an emerging financial 
instrument, have effectively facilitated the transfer of 
climate-related risks. They provide insurance companies 
with an innovative risk management tool, enabling 
them to partially mitigate the financial exposure 
associated with extreme weather events through the 
trading of weather derivatives [27]. The utilization 
of these instruments not only enhances the ability of 
market participants to manage climate risks but also 
fosters innovation in the financial market and diversifies 
financial services. Specifically, the application scenarios 
for both buyers and sellers in the market are as follows:

For the buyer, weather derivatives provide call 
options with elevated strike prices and put options with 
reduced strike prices. These can be utilized to mitigate 
the risks associated with extreme climate events, such 

as low rainfall and excessive rainfall, respectively. 
Consequently, the primary beneficiaries of these options 
are entities that stand to incur losses due to extreme 
rainfall conditions, with agricultural producers and 
related industries being the most significant participants 
[28]. Weather derivatives are designed specifically 
for rainfall management. Producers can assess the 
sensitivity of their future income to rainfall levels and 
purchase corresponding call or put options based on 
their specific needs [29].

The sellers of this option are primarily entities that 
stand to benefit when rainfall significantly deviates from 
expected levels [30]. These benefits are realized through 
price changes in related assets. Sellers typically hold 
assets whose values are influenced by rainfall patterns. 
By employing an opposite “option + asset” strategy, 
these sellers can mitigate the volatility of their earnings. 
Research by Georgios (2017) examined the effectiveness 
of weather derivatives in the energy sector [31]. The 
study found that the company effectively stabilized its 
revenue despite fluctuations in hydropower production, 
thus confirming the value of weather derivatives in 
mitigating financial risks in the energy sector.

In summary, compared to traditional methods of 
climate risk management, weather derivatives offer 
several advantages, including high flexibility, objective 
maturity value, fewer restrictions on participants, and 
lower internal costs. These instruments help mitigate 
the volatility of future income for trading entities and 
provide an effective hedge against climate risks [32]. 
Their application in key industries such as agriculture 
[33] and energy [34] effectively deals with industry-
specific quantitative risks and income risks caused by 
adverse meteorological conditions, highlighting their 
practical application value. Consequently, this market 
attracts a broad range of participants and mitigates price 
risks associated with market speculation.

Conclusions

This paper addresses the underexplored area of 
weather derivatives within climate response strategies, 
focusing on the Yangtze River Economic Belt. Utilizing 
historical rainfall data (2004-2023) and the SARIMA 
model for time series analysis and forecasting, this 
research calculated option prices based on an option 
pricing model and formulated a comprehensive option 
contract. This work contributes valuable insights for 
developing weather options in China and offers a novel 
approach for agricultural producers and investors to 
mitigate abnormal rainfall risks.

However, this study has several limitations that 
warrant acknowledgment. Firstly, while SARIMA 
effectively captured historical rainfall trends at  
the regional scale of the Yangtze River Economic Belt, 
the model’s performance and the generalizability of  
the derived option pricing to more localized areas or 
regions with distinct climatic characteristics remain 

Table 9. Climate option prices.

Provinces  M1

Sichuan Province  2984.63

Hubei Province  1430.80

Anhui Province  1171.37

Yunnan Province  2282.17

Hunan Province  2179.37

Jiangsu Province  1254.54

Jiangxi Province  3357.18

Zhejiang Province  3841.65

Guizhou Province  1651.28

Shanghai City 2573.62

Chongqing City  1486.32

Note: All the digital units are in CNY. 



15Design and Valuation of Rainfall Derivatives...

uncertain. Furthermore, given the multifaceted and 
complex nature of meteorological drivers, the SARIMA 
model’s accuracy in predicting highly irregular or 
extreme rainfall fluctuations, particularly those driven 
by non-linear processes potentially intensified under 
climate change, is constrained. 

Future research should prioritize addressing these 
limitations and exploring specific avenues. Developing 
and validating more sophisticated modeling approaches 
is crucial; exploring non-parametric methods, machine 
learning algorithms, or hybrid models could enhance the 
capture of complex non-linear relationships and extreme 
events, leading to improved forecasting accuracy. 
Concurrently, investigating the design and pricing of 
multi-variable weather derivatives that trigger based on 
combinations of factors could offer more comprehensive 
risk mitigation against compound climate hazards.
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