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Abstract

Exploring the impact of population flow on carbon emissions in urban agglomerations against the 
background of urban innovation is of great significance for promoting regional low-carbon coordinated 
development and responding to climate change. Taking China’s three major urban agglomerations 
as the research object, this study introduces spatial factors to analyze the impact and mechanisms of 
heterogeneous population mobility on carbon emissions in the context of innovation. The findings 
reveal the following: (1) Carbon emissions in China’s three major urban agglomerations exhibit 
spatial correlation, and the spatial effects of different types of labor mobility on carbon emissions are 
complex. High-skilled labor flow helps reduce carbon emissions and mitigates the adverse impact of 
urban innovation on carbon emissions; low-skilled labor flow increases carbon emissions but is difficult 
to integrate with urban innovation, and the impact of urban innovation on carbon emissions does not 
change with the influence of low-skilled labor mobility. (2) There are significant differences in the spatial 
spillover effects of heterogeneous population flows on carbon emissions among China’s three major 
urban agglomerations. Due to the stronger administrative characteristics of the Beijing-Tianjin-Hebei 
urban agglomeration compared to other urban agglomerations, the spatial spillover effects of carbon 
emissions from heterogeneous population flows are not significant. In contrast, the Yangtze River Delta 
and Pearl River Delta urban agglomerations have relatively higher levels of integration, resulting in 
significant spatial spillover effects of carbon emissions from heterogeneous population flows. The article 
concludes by suggesting that institutional barriers hindering population mobility should be continuously 
removed, the positive interaction among cities should be activated, and the low-carbon development of 
urban agglomerations should be promoted.
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Introduction

China is actively fulfilling its carbon emission 
reduction commitments, striving to achieve carbon 
peaking by 2030 and carbon neutrality by 2060. As 
the mainstay of China’s new urbanization, urban 
agglomerations bear the heavy responsibility of 
achieving carbon peaking first. They are the focus and 
key to achieving carbon peaking at the regional level, 
as well as a powerful engine for implementing the 
innovation-driven development strategy. Currently, 
except for a few megacities, China’s cities are gradually 
relaxing their household registration restrictions. Over 
the next few decades, China will continue to face large-
scale population mobility, and urban agglomerations 
are the target locations for population mobility [1]. How 
population mobility affects the realization of the “dual 
carbon” goals in urban agglomerations and how to 
coordinate with innovation to achieve China’s green and 
low-carbon development are all issues that urgently need 
to be addressed. Therefore, taking urban agglomerations 
as the research object, exploring the correlation 
mechanism and spatio-temporal evolution trend among 
population flow, urban innovation, and carbon emissions 
is of great significance for promoting regional low-
carbon coordinated development and facilitating the 
realization of China’s modernization goals.

Current research mainly focuses on three areas: 
population flow and innovation, innovation and carbon 
emissions, and population flow and carbon emissions. 
Firstly, the connection between innovation and carbon 
emissions remains ambiguous. Most studies indicate 
that innovation enhances carbon emission efficiency 
and facilitates emission reduction [2, 3]. However, if a 
large amount of capital investment is needed to support 
innovation, technological progress will neither promote 
an increase in production efficiency nor reduce carbon 
emissions [4, 5]. Wang et al. (2019) [6] highlighted that, 
when accounting for the deviations in technological 
progress, advancements within the industrial sector do 
not necessarily lead to a reduction in carbon emissions. 
Rather, the expansion of production capacity results in a 
rebound effect on carbon emissions. Secondly, there is 
also no unanimous agreement regarding the influence of 
population flow on regional innovation. Some scholars 
believe that population mobility, especially the flow of 
high-quality talents, has led to knowledge spillover, 
promoting technological innovation in the inflow 
areas. Moreover, population mobility is conducive to 
alleviating the mismatch between regional resource 
supply and demand and promoting regional innovation 
[7-10]. However, some other scholars believe that due 
to the unbalanced regional development in China, 
population mobility has exacerbated the misallocation of 
resources, which is not conducive to regional innovation 
[11]. Moreover, restrictions inherent in China’s current 
household registration system can lead to mismatches in 
labor supply for some industries, potentially hindering 
regional innovation [12, 13]. The labor force’s migration, 

as a production factor, influences resource reallocation 
within regions and significantly impacts regional 
innovation. Thirdly, the correlation between population 
movement and carbon emissions has garnered 
increasing attention in recent years, with a focus on the 
impact of population flow on carbon emissions using 
the STIRPAT model in numerous studies. Pan et al. 
(2021) [14] examined the influence of shifts in China’s 
population composition on carbon emissions between 
1995 and 2018 by constructing a multiple regression 
model. The research highlighted that population size 
is the primary factor influencing carbon emissions 
in China. Bu et al. (2022) [15], drawing on panel data 
from provincial-level regions in China spanning from 
2000 to 2019 and employing the spatial Durbin model in 
their research, demonstrated that population migration 
has a considerable detrimental impact on provinces 
experiencing net outward migration. Wu et al. (2021) 
[16] utilized panel regression and fixed-effects modeling 
to observe that the alleviation of regional population 
aging and the improvement of knowledge structures 
resulting from population mobility contribute to the 
decrease in carbon emissions. He et al. (2022) [17] 
constructed a theoretical model of carbon emissions 
for two regions and three industries under the general 
equilibrium analysis framework and found that the 
mobility of skilled labor can effectively reduce carbon 
emissions. Gao et al. (2021) [18] started from a spatial 
perspective and inferred that China’s large-scale 
population mobility is related to greater trade carbon 
emissions by constructing a carbon transfer network.

There are several issues worth further exploration 
in the research on the relationship between population 
flow, urban innovation, and carbon emissions. Firstly, 
most existing literature overlooks the typical fact of 
heterogeneity among migrant populations. China has 
now entered a new phase of high-quality economic 
development, and the impact of heterogeneous 
population mobility on urban innovation varies. High-
skilled and low-skilled labor should also have different 
effects on promoting urban innovation and carbon 
emissions [19]. Considering labor heterogeneity helps 
to comprehensively and objectively clarify the impact of 
population flow on carbon emissions. Secondly, existing 
research lacks exploration of the relationship between 
population flow, urban innovation, and carbon emissions, 
and the role of urban innovation in population mobility 
and carbon emissions is often overlooked. Most existing 
studies have demonstrated the pairwise relationships 
among the three variables, but the impact of population 
mobility on carbon emissions, while influencing urban 
innovation, has not been fully elucidated. By placing 
heterogeneous population mobility, urban innovation, 
and carbon emissions within the same research 
framework and revealing the role of urban innovation 
between population mobility and carbon emissions, it 
is possible to grasp the correlation among these three 
variables. Thirdly, due to the limitation of heterogeneous 
mobile population data, current empirical studies are 
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confined to provincial or specific cities, overlooking 
investigations into urban agglomerations. However, 
urban agglomerations, as the main bodies for mitigating 
climate change and achieving the goals of carbon 
peaking and carbon neutrality, are not only important 
units for energy conservation and emission reduction, 
but also the main carriers of urban innovation. Focusing 
research efforts on urban agglomerations allows for 
an exploration of the intricate relationship among 
heterogeneous population flow, urban innovation, and 
carbon emissions, facilitating a deeper understanding 
of the spatial impact of carbon emissions in urban 
agglomerations, promoting harmonized regional eco-
friendly progress, and meeting national carbon emission 
reduction objectives.

Based on this, this paper will explore the underlying 
mechanisms linking heterogeneous population flow, 
urban innovation, and carbon emissions in urban 
agglomerations from both theoretical and empirical 
perspectives. The possible marginal contributions 
are outlined below: Firstly, population flow, urban 
innovation, and carbon emissions are integrated into 
a unified analytical framework to elucidate the impact 
of heterogeneous population flow and urban innovation 
on carbon emissions. Secondly, employing spatial 
econometric analysis models to match micro data 
with macro data, this study quantitatively analyzes 
the impact of heterogeneous population mobility on 
carbon emissions within China’s three major urban 
agglomerations – the Beijing-Tianjin-Hebei, Yangtze 
River Delta, and Pearl River Delta regions – and the 
spatial effects associated with such impacts. Finally, 
it is important to highlight that the Beijing-Tianjin-
Hebei, Yangtze River Delta, and Pearl River Delta 
urban agglomerations were selected as the research 
subjects because they are China’s most promising 
urban agglomerations and have all been elevated to 
national strategic status. Building these three urban 
agglomerations into world-class urban agglomerations is 
a key driver for China’s future low-carbon development 
and holds significant implications for the development of 
other urban agglomerations.

Materials and Methods

Mechanism Analysis and Research Hypothesis 

Impact of Heterogeneous Population 
Flow on Carbon Emissions

Population flow reshapes the age and skill 
composition of the workforce across regions, serving 
as a vital driver of social and economic advancement 
and influencing regional carbon emissions. The 
essence of population mobility is the flow of human 
capital. Compared with production resources such as 
physical capital, human capital is regarded as the most 
sustainable production resource for promoting social 

and economic development. Human capital often flows 
from regions with low production efficiency to those 
with high production efficiency, thereby maximizing 
utility. Therefore, population mobility facilitates 
efficient human capital allocation, enhances resource 
utilization efficacy, boosts production efficiency, and 
diminishes carbon emissions [16, 17]. Population flow 
enhances energy and production efficiency, which can 
lead to a reduction in carbon emissions. Nevertheless, 
improvements in energy use efficiency and production 
efficiency will lower product costs, expand consumption 
demand, and inevitably increase carbon emissions. 
The resource allocation effect of population flow 
varies based on skill diversity, consequently affecting 
carbon emissions differently. Specifically, highly 
skilled populations migrate to areas with high demand 
for skilled labor under the guidance of labor market 
signals, thereby improving regional energy efficiency 
and productivity, which helps reduce carbon emissions. 
Conversely, the low-skilled population only has ordinary 
knowledge and skills, and the flow scale is usually large, 
resulting in a scale effect of carbon emissions greater 
than the energy-boosting effect, leading to an increase 
rather than a decrease in carbon emissions. Based on 
this, hypothesis 1 is proposed.

Hypothesis 1: Population flow alters resource 
allocation, and this effect varies by skill level, leading to 
differential impacts on carbon emissions.

Hypothesis 1.1: High-skilled population flow is 
conducive to reducing carbon emissions. 

Hypothesis 1.2: Low-skilled population flow will 
lead to an increase in carbon emissions.

Impact of Urban Innovation on Carbon Emissions

The core driver of rapid economic development in 
a country or region is innovation, which determines 
the level of productivity in that country or region [20, 
21]. Innovation typically encompasses the creation 
of new technologies as well as the enhancement and 
refinement of existing ones. The neoclassical school of 
thought, represented by Solow, incorporates innovation 
into economic growth models, viewing innovation 
as an endogenous variable of economic growth and 
technological innovation as a decisive economic growth 
factor or influencing factor [22, 23]. Studies utilizing 
the Stochastic Impacts by Regression on Population, 
Affluence, and Technology (STIRPAT) have shown 
that innovation plays a positive role in reducing carbon 
emissions [5, 6]. It is undeniable that technological 
innovation has changed the original optimal allocation 
state of labor, capital, and land, improved energy 
utilization efficiency and production efficiency, and is 
conducive to reducing carbon emissions. However, while 
technological innovation enhances efficiency, it also 
reduces costs and expands energy consumption demand, 
resulting in an increase in carbon emissions instead of a 
decrease [24]. Based on this, hypothesis 2 is proposed.
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Hypothesis 2: Urban innovation changes the state 
of allocation of labor, capital, and land and is one of 
the most important factors affecting regional carbon 
emissions, but the impact varies across regions.

The Moderating Effect of Heterogeneous Population 
Flow between Urban Innovation and Carbon Emissions

Population mobility is the result of the automatic 
adjustment of the allocation of urban production factors, 
exerting a significant influence on regional innovation 
[9, 10], moderating the impact of regional innovation 
on carbon emissions. Specifically, the influence of 
urban innovation on carbon emissions fluctuates based 
on the mobility of individuals with diverse skill sets: 
the high-skilled floating population typically boasts 
advanced knowledge and skills, strong learning and 
knowledge absorption capabilities, making them adept 
at mastering cutting-edge technologies that are market 
leaders and not easily replicable, thus enabling seamless 
integration with urban innovations. Conversely, the low-
skilled floating population, comprising the majority of 
mobile individuals, often relies on interactions with 
peers and high-skilled workers to enhance knowledge 
and job skills, exhibiting lower levels of integration 
into urban innovation compared to their high-skilled 
counterparts. As previously stated, since the migration 
of highly skilled workers helps reduce carbon emissions, 
while the migration of low-skilled workers increases 
carbon emissions, heterogeneous population migration 
plays a certain moderating role in the impact of 
urban innovation on carbon emissions. Based on this, 
hypothesis 3 is proposed.

Hypothesis 3: The impact of urban innovation 
on carbon emissions will vary with heterogeneous 
population flow.

The mechanism path diagram of this article is shown 
in Fig. 1.

Research Methodology

Research Model Design

Drawing on the analytical framework of the 
Environmental Kuznets Curve(EKC) and the Stochastic 
IPAT equation, heterogeneous population flow and urban 
innovation factors are added to the analysis model. 
Considering the interaction between heterogeneous 
population flow and urban innovation, the interaction 
term between the two is introduced into the model. The 
following basic econometric model is constructed:

	 	 (1)

Among them, yi represents carbon emissions; 
pgdpi  represents per capita GDP; pgdpi

2 represents 
the square of per capita GDP; flowi represents the 
scale of heterogeneous population flow. Based on the 
heterogeneity of labor skill level, population mobility 
is divided into high-skilled population flow (flow-h) 
and low-skilled population mobility (flow-l); innoi 
represents urban innovation; αi represents the constant 
term; zi represents the control variable; and εi represents 
the random error term.

Spatial Correlation Test 

Previous studies have pointed out that carbon 
emissions have spatial correlation [17]. If spatial factors 
are ignored, biased estimates are likely to occur. 
Therefore, the Global Moran’s Index is used to test the 
spatial correlation. The calculation formula is as follows:

Fig. 1. Mechanism path diagram.
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	 	 (2)

	 	 (3)

Among them, the S2 in formula (2) is represented by 
formula (3); xi represents the per capita carbon emissions 
of city i; n represents the number of samples; and wij 
is the spatial weight matrix. Research generally uses 
geographic distance weighting matrices and adjacency 
weighting matrices, while this study uses geographic 
distance weighting matrices. The global Moran index 
typically ranges from (-1) to (1). A higher index indicates 
stronger positive spatial correlation in carbon emissions 
among cities, suggesting a high degree of similarity in 
carbon emissions between cities; a lower index indicates 
stronger negative spatial correlation in carbon emissions 
among regions, suggesting significant differences 
in carbon emissions between regions; an index of 0 
indicates no correlation in carbon emissions between 
regions, with no discernible patterns in their variation.

Spatial Econometric Model Setting

Since carbon emissions exhibit obvious spatial 
correlation characteristics, the basic econometric model 
(1) is spatially expanded to construct the following 
spatial econometric model:

	 	 (4)

	 	 (5)

	 	 (6)

Among them, formula (4) is the Spatial Lag Model 
(SLM), which introduces the spatial variable of carbon 
emission based on formula (1) and is represented by 
Wyi, where W is the spatial weight matrix, and ρ is the 
spatial autoregressive coefficient. If ρ > 0 and passes 
the significance test, it indicates that carbon emissions 
have positive spatial spillover effects; if ρ < 0 and passes 
the significance test, it indicates that carbon emissions 
have negative spatial spillover effects. Formula (5) is the 
Spatial Error Model (SEM), which introduces a spatial 
variable of error based on formula (1), represented by 
Wεi.

Effect Decomposition

Since spatial econometric models differ from 
traditional econometric models, their model fitting 
results not only include the effects of heterogeneous 

population mobility and urban innovation on local carbon 
emissions, but also the spillover effects of heterogeneous 
population mobility and urban innovation. Therefore, in 
the analysis process, heterogeneous population mobility, 
urban innovation, and the interaction terms between 
the two are decomposed into direct effects and indirect 
effects. For convenience of representation, formula (4) is 
generalized to formula (7):

	 	 (7)

According to formula (7), it can be obtained:

	 	 (8)

	 	 (9)

	 	 (10)

	 	 (11)

Formula (11) can be expanded as:

	 	
(12)

In formula (12), the main diagonal element of 
the coefficient matrix of Xnk is the influence of the 
explanatory variable X on the carbon emissions of city i, 
representing the direct effect; the non-principal diagonal 
element of the coefficient matrix of Xnk is the explanatory 
variable X of other cities on the impact of urban j carbon 
emissions, representing the indirect effect; the sum of all 
elements of the coefficient matrix of Xnk, representing 
the total effect.

Variable Settings

The explained variable is carbon emissions (CO2). 
Referring to the studies of Xu (2022) [25] and Wang 
(2024) [26], urban carbon emissions are categorized 
into three ranges of carbon emissions. They are 
respectively: (1) all direct carbon emissions within the 
urban jurisdiction (mainly including carbon emissions 
generated from transportation and construction, 
industrial production processes, agriculture, forestry and 
land use changes, as well as waste treatment activities); 
(2) indirect carbon emissions related to energy that 
occur outside the urban area (mainly including carbon 
emissions generated from purchased electricity, 
heating, and cooling to meet urban consumption needs); 
(3) carbon emissions caused by urban activities but 
generated outside the urban area (mainly including 
carbon emissions generated in the production, 
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transportation, use and waste disposal processes when 
purchasing goods outside the urban jurisdiction).

The key explanatory variable is the heterogeneous 
population flow. Based on China’s unique household 
registration policy, to avoid including temporary 
residents, the mobile population is defined as those who 
do not reside in their household registration location, 
have resided in another location for one month or 
longer, and are of working age, over 15 years old. Since 

the existing statistical data in China cannot obtain the 
annual population mobility data, based on the definition 
of population mobility, the availability of data and the 
needs of research, drawing on the research of Ye et 
al. (2018) [27], the difference between the permanent 
resident population and the registered population is 
used to measure the scale of population mobility, with 
a larger value indicating a larger scale of population 
mobility. Considering the heterogeneous characteristics 

Beijing-Tianjin-Hebei

Variable Mean Std Min Max

CO2 10002.65 15865.30 2533.00 68026.80

flow-h 15.56 55.33 -45.91 305.80

flow-l 51.90 165.51 -226.16 636.66

inno 1940.91 6830.80 4.00 46847.00

market 0.43 0.11 0.11 0.68

density 544.30 226.60 91.36 876.90

pgdp 41535.80 29772.20 9947.00 176659.00

stru 0.47 0.09 0.19 0.60

N 182

Yangtze River Delta

Variable Mean Std Min Max

CO2 6032.00 15039.00 1516.00 96882.50

flow-h 9.99 37.47 -29.60 323.31

flow-l 61.80 147.60 -142.30 805.59

inno 1585.70 3031.70 1.00 21233.00

market 0.53 0.13 0.05 0.86

density 683.45 377.00 188.95 2305.80

pgdp 64508.00 36437.00 7500.00 174628.00

stru 0.51 0.08 0.30 0.75

N 364

Pearl River Delta

Variable Mean Std Min Max

CO2 3752.90 727.73 2604.50 5793.50

flow-h 30.13 44.86 -21.71 214.40

flow-l 234.58 231.75 -412.40 679.70

inno 2234.60 4110.30 6.00 21248.00

market 0.54 0.13 0.27 0.82

density 761.88 409.80 266.70 2278.40

pgdp 78309.00 42653.00 12315.00 189568.00

stru 0.50 0.09 0.25 0.66

N 126

Table 1. Descriptive statistics of the main variables.
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of population mobility, population mobility is divided 
into high-skilled and low-skilled population mobility. 
Using the educational attainment classification from the 
China Migrants Dynamic Survey (CMDS) as a reference 
standard, population mobility among those with junior 
college, bachelor’s, and graduate degrees is defined as 
high-skilled population mobility, while mobility among 
those with other educational attainments is defined as 
low-skilled population mobility. Then, based on the 
proportion of different educational qualifications and the 
scale of population mobility, the scales of high-skilled 
and low-skilled population mobility are calculated.

The mechanism variable is urban innovation (inno). 
Urban innovation refers to the use of innovative elements 
such as technology, knowledge, human resources, and 
culture to drive urban development. The number of 
patents granted per 10,000 people in a city is used to 
measure urban innovation.

The control variables contain industrial structure, 
marketization level, population density, and economic 
growth. Among them, industrial structure (stru) is 
measured using the share of industrial value added in 
GDP; drawing on the studies of Luo et al. (2019) [28] 
and Xu et al. (2019) [29], marketization level (market) 
is expressed as the proportion of urban private and 
self-employed workers to overall urban employment; 
population density (density) is obtained by dividing 
the number of permanent residents in the region by the 
local administrative area; economic growth (pgdp) is 
measured using GDP per capita.

Data Sources

The relevant data are mainly derived from the China 
Urban Statistical Yearbook. Data on the flows of high-
skilled and low-skilled people were calculated based 
on data from the China Migrants Dynamic Survey 
(CMDS) and relevant data from the Urban Statistical 
Yearbook. It should be noted in particular that the data 
from the CMDS are only published until 2018, so this 
paper defines the study period as 2005-2018. Descriptive 
statistics of the main variables are shown in Table 1.

Results and Discussion

Dynamic Evolution of Heterogeneous Population 
Flow, Urban Innovation, and Carbon Emissions 

in Three Major Urban Agglomerations

Dynamic Evolution of Heterogeneous Population Flow

Fig. 2 illustrates the kernel density distribution of 
heterogeneous population flow scale in the three major 
urban agglomerations, showcasing the dynamic evolution 
of this population movement. Regarding the curve’s 
distribution position, the low-skilled population mobility 
curve in the Beijing-Tianjin-Hebei urban agglomeration 
has shifted significantly to the right, indicating that the 

scale of low-skilled population mobility in the Beijing-
Tianjin-Hebei urban agglomeration generally showed 
an upward trend during the period from 2005 to 2018. 
The curves representing the low-skilled population flow 
in the Yangtze River Delta and Pearl River Delta urban 
agglomerations notably shifted to the right between 2005 
and 2012. However, the rightward shift of the low-skilled 
population flow curve in the Yangtze River Delta urban 
agglomeration was less pronounced from 2012 to 2018, 
suggesting a lack of significant growth in the low-skilled 
population flow scale during this period. Conversely, the 
curve depicting the low-skilled population flow in the 
Pearl River Delta urban agglomeration shifted to the left 
from 2012 to 2018, indicating a decreasing trend in the 
scale of low-skilled population flow. From 2005 to 2018, 
the curves representing the high-skilled population flow 
in the three major urban agglomerations consistently 
shifted to the right, suggesting an overall increasing 
trend in the scale of high-skilled population flow within 
these regions. Regarding the curve’s shifted position, the 
upward trend of the low-skill population flow curve in the 
Yangtze River Delta Urban Agglomeration suggests an 
increase in the concentration of the low-skill population 
flow scale. Conversely, the curves representing low-
skill population flow in the Beijing-Tianjin-Hebei and 
Pearl River Delta urban agglomerations decreased, 
indicating a reduction in the concentration of the low-
skill population flow scale distribution. The movement 
of the high-skilled population mobility curves in the 
Beijing-Tianjin-Hebei region and the Pearl River Delta 
urban agglomeration is exactly opposite, indicating 
that the distribution concentration of the high-skilled 
population mobility scale in the Beijing-Tianjin-Hebei 
region and the Pearl River Delta urban agglomeration 
has increased. Regarding the curve’s shape, the curves 
in both the Beijing-Tianjin-Hebei and Pearl River 
Delta urban agglomerations have transitioned from 
single peaks to multiple peaks, indicating a growing 
polarization in the scale of low-skilled and high-skilled 
population flow between cities in these areas. Regarding 
the curve’s width, the curves for the three major urban 
agglomerations narrow, suggesting a reduction in the 
gap between the scales of high-skilled and low-skilled 
population flow among cities, demonstrating dynamic 
convergence characteristics.

Dynamic Evolution of Urban Innovation

Fig. 3 displays the kernel density distribution 
of urban innovations in the three major urban 
agglomerations, illustrating the dynamic evolution of 
urban innovation. Regarding the curve’s distribution 
position, the urban innovation curves have all shifted to 
the right, indicating that the scale of urban innovation 
in the three major urban agglomerations is generally 
on the rise. Regarding the curve’s shifted position, the 
upward shift of urban innovation curves in the Yangtze 
River Delta and Pearl River Delta urban agglomerations 
indicates an increased concentration of urban innovation 
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scale among cities. Conversely, the downward shift of 
the urban innovation curve in the Beijing-Tianjin-Hebei 
urban agglomeration signifies a reduced concentration 
of urban innovation scale distribution among cities. 
Regarding the curve’s width, the widening of urban 
innovation curves in the Beijing-Tianjin-Hebei and 
Pearl River Delta urban agglomerations suggests an 
increase in the gap between cities regarding the scale 
of urban innovation, demonstrating dynamic discrete 
characteristics. Conversely, the narrowing of the urban 
innovation curve in the Yangtze River Delta urban 
agglomeration signifies a reduction in the gap between 
cities in terms of urban innovation scale, displaying 
dynamic convergence characteristics.

Dynamic Evolution of Carbon Emissions

Fig. 4 displays the kernel density distribution 
of carbon emissions in the three major urban 
agglomerations, illustrating the dynamic evolution of 
carbon emissions. Regarding the curve’s distribution 
position, the carbon emission curves of the three major 
urban agglomerations have all shifted to the right, 
indicating a general upward trend in carbon emissions. 
Regarding the curve’s shifted position, the upward shift 
of the carbon emission curve in the Beijing-Tianjin-
Hebei urban agglomeration indicates an increased 

concentration in the distribution of carbon emissions. 
Conversely, the downward shift of the carbon emission 
curves in the Yangtze River Delta and Pearl River 
Delta urban agglomerations suggests a reduction in 
the concentration of carbon emissions distribution. 
Regarding the curve’s width, the carbon emission 
curves of the three major urban agglomerations are 
all widening, suggesting an increasing gap in carbon 
emissions between cities and demonstrating dynamic 
discrete features.

The Impact of Heterogeneous Population Flow 
and Urban Innovation on Carbon Emissions

Spatial Correlation Test

According to formula (2), the spatial correlation of 
carbon emissions was tested, and the results are shown 
in Table 2. The global Moran index of carbon emissions 
from the three major urban agglomerations has passed 
the significance test, indicating that carbon emissions in 
the three major urban agglomerations are not randomly 
distributed in space, but rather exhibit a significant 
spatial correlation. Therefore, traditional OLS models 
cannot be used for regression analysis, and spatial 
econometric models must be used for further research.

Fig. 2. Kernel density distribution of the scale of heterogeneous population flow in the three major urban agglomerations, 2005-2018.
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Model Applicability Test

A model applicability test was conducted to select 
the correct spatial regression model, and the results are 
shown in Table 3. As shown in Table 3, both the LM-
ERR and LM-LAG tests are significant at the 1% level, 
and the Spatial Error Model and the Spatial Lag Model 
are significant at the 1% level, indicating that the Spatial 
Error Model is superior to the Spatial Lag Model. Based 
on the above, the model further passed the Wald test and 
LR test, and combined with the results of the Hausman 
test, the Spatial Durbin Fixed Effects Model was finally 
selected as the analytical model.

Analysis of Spatial Regression Results

The results of the regression analysis in Table 4 
present the exploration of the moderating influence 
of diverse population flows on the relationship 
between urban innovation and carbon emissions. 
The results indicate that both high-skilled and low-
skilled population mobility significantly impact carbon 
emissions in the three major urban agglomerations. 
Specifically, the regression coefficient for high-skilled 
population flow is significantly negative, suggesting that 
high-skilled population mobility contributes to reducing 

carbon emissions. Conversely, the regression coefficient 
for low-skilled population flow is significantly positive, 
indicating that low-skilled population mobility increases 
carbon emissions. The regression results of the three 
major urban agglomerations are relatively consistent, 
indicating that the analysis results have a certain 
degree of robustness. Hypotheses 1, 1.1, and 1.2 have 
been verified. The spatial regression coefficients are 
significantly negative, which contrasts with the sign 
of the global Moran Index. This is primarily due 
to the inclusion of additional explanatory variables 
in the spatial regression analysis. The findings also 
indicate that as China places greater emphasis on 
energy conservation and emission reduction, cities 
have implemented policies to lower carbon emissions. 
However, due to the absence of overarching design 
and effective planning, these measures often fail to 
achieve synergistic effects, resulting in a spatial negative 
correlation.

Decomposition of Effect

The estimated coefficients of the Spatial Durbin 
Model may exhibit bias and inadequately capture 
the influence of independent variables on dependent 
variables. Therefore, this study employs partial 

Fig. 3. Distribution of kernel densities of urban innovation in the three major urban agglomerations, 2005-2018.

Fig. 4. Kernel density distribution of carbon emissions in the three major urban agglomerations, 2005-2018.
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differentiation to dissect the impact of relevant 
independent variables on carbon emissions into direct 
and indirect effects. The direct effect signifies the 
influence of heterogeneous population flow, urban 
innovation, and their integration on local carbon 
emissions. Meanwhile, the indirect effect indicates the 
impact on carbon emissions in surrounding cities. The 
total effect is the combination of the direct and indirect 
effects. This framework assesses the breakdown of the 
impact of heterogeneous population flow on carbon 
emissions within the three major urban agglomerations 
and the role of urban innovation.

The effect decomposition results are presented 
in Table 5. Firstly, the direct and indirect effects of 
high-skilled population flow on carbon emissions in 
the Yangtze River Delta and Pearl River Delta urban 
agglomerations are both significantly negative, while 
the interaction term between highly skilled population 
mobility and urban innovation is significantly positive. 
This indicates that an increase in the scale of highly 
skilled population mobility helps reduce carbon 
emissions in local and surrounding cities, while 
mitigating the adverse effects of urban innovation on 
carbon emissions. However, the interaction between 
these factors masks the impact of urban innovation on 
carbon emissions. Secondly, both the direct and indirect 
impacts of low-skilled population flow on carbon 

emissions in the Pearl River Delta urban agglomeration 
are significantly positive, indicating that an increase in 
the scale of low-skilled labor mobility leads to higher 
carbon emissions in both local and surrounding cities. 
Thirdly, the direct and indirect effects of the interaction 
term between the high-skilled population flow and urban 
innovation are in the Yangtze River Delta and Pearl 
River Delta urban agglomerations are both significantly 
positive, but the indirect effect of this interaction in 
the Beijing-Tianjin-Hebei urban agglomeration is not 
significant. This suggests that the integration of high-
skilled population mobility and urban innovation in 
the Yangtze River Delta and Pearl River Delta urban 
agglomerations masks the independent effect of urban 
innovation on carbon emissions. Lastly, the indirect 
effects of high-skilled population mobility on carbon 
emissions vary significantly across the three urban 
agglomerations, indicating differing spatial spillover 
effects. Specifically, the spatial spillover effect of 
increased high-skilled population mobility on carbon 
emissions is not significant in the Beijing-Tianjin-Hebei 
urban agglomeration. In contrast, increased high-skilled 
population mobility in the Yangtze River Delta and 
Pearl River Delta urban agglomerations mitigates the 
adverse impact of urban innovation on carbon emissions 
in surrounding cities, with a clear spatial spillover effect. 
Hypotheses 2 and 3 were verified.

Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta

Year Moran’I P-value Moran’I P-value Moran’I P-value

2005 0.221* 0.078 0.024*** 0.001 0.084*** 0.004

2010 0.227* 0.074 0.015*** 0.002 0.098*** 0.002

2015 0.253* 0.054 0.027*** 0.000 0.016*** 0.005

2018 0.240* 0.057 0.015*** 0.002 0.070*** 0.006

​Note: *, **, and *** respectively indicate significance at the 10%, 5%, and 1% levels.

Table 2. Trends in the global Moran Index of carbon emissions in the three major urban agglomerations.

Urban Agglomerations Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta

LM-Lag 235.870(0.000) 20.851(0.000) 9.154(0.002)

RLM-Lag 109.848(0.000) 108.343(0.000) 1.753(0.085)

LM-Error 153.159(0.000) 263.784(0.000) 11.907(0.001)

RLM-Error 27.180(0.000) 176.292(0.000) 3.239(0.072)

Wald-Lag 27.840(0.000) 48.880(0.000) 75.980(0.000)

LR-Lag 24.300(0.000) 49.900(0.000) 61.900(0.000)

Wald-Error 20.190(0.005) 56.760(0.000) 56.760(0.000)

LR-Error 35.700(0.000) 57.600(0.000) 63.560(0.000)

Hausman test 150.790(0.000) 414.760(0.0000) 509.660(0.000)

​Note: The numbers in parentheses represent p-values.

Table 3. Model applicability test.
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Overall, heterogeneous population mobility and 
urban innovation within the Beijing-Tianjin-Hebei 
urban agglomeration, as well as the integration of 
these two factors, have a significant impact on local 
carbon emissions, but do not affect carbon emissions 
in surrounding cities. In contrast, the spatial effects 
of heterogeneous population mobility and urban 
innovation on carbon emissions in the Yangtze River 
Delta and Pearl River Delta urban agglomerations are 
significantly higher than those in the Beijing-Tianjin-
Hebei urban agglomeration. The differences in the 
impact of heterogeneous population mobility and urban 
innovation on carbon emissions across the three urban 
agglomerations primarily stem from their distinct 
regional locations and developmental characteristics. 
Specifically, the Beijing-Tianjin-Hebei urban 
agglomeration is a capital-centric urban agglomeration 
with a stronger administrative character than other 
urban agglomerations, resulting in less pronounced 
spatial spillover effects. The Yangtze River Delta urban 
agglomeration, although spanning multiple provinces, 
has a higher degree of integration. The Pearl River Delta 
urban agglomeration is confined within Guangdong 

Province, making coordination easier. Therefore, the 
spatial spillover effects of the Yangtze River Delta 
and Pearl River Delta urban agglomerations are more 
pronounced.

Robustness Analysis

In order to further verify the reliability of the 
analysis results, referring to most of the existing studies, 
two methods of replacing the estimated model with 
lagged key explanatory variables are used to further 
conduct robustness analyses, and the test results are 
shown in Table 6. Firstly, ordinary least squares (OLS) 
regression is used, and columns (1), (3), and (5) in the 
table show the re-estimation results using the OLS 
model. The results show that the sign and significance 
of the coefficients of the main explanatory variables 
remain largely consistent with the results of the previous 
analyses, indicating that the model setting did not affect 
the reliability of the core findings. Second, potential 
robustness issues are mitigated by introducing lagged 
one-period values of the core explanatory variables. 
Considering the possible lagged effects of population 

Variable Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta

flow-h -0.001***

(-5.540)
-0.010***

(-3.130)
-0.005***

(-3.580)

flow-l 0.004***

(8.770)
0.004***

(14.810)
0.001***

(4.220)

inno 0.325***

(7.820)
-0.017

(-0.760)
0.010

(0.520)

flow-h*inno 0.004***

(4.640)
0.006***

(4.670)
0.001***

(3.590)

flow-l*inno 0.001
(0.410)

-0.001***

(-4.690)
0.001**

(2.440)

W-flow-h -0.012
(-0.090)

-0.044
(-1.360)

0.001
(0.240)

W-flow-l -0.003
(-0.660)

-0.003
(-1.200)

0.004***

(3.220)

W-inno 0.273
(1.450)

-0.064
(-0.350)

0.019
(0.440)

W-flow-h*inno -0.001
(-0.040)

0.033***

(2.680)
-0.001
(0.390)

W-flow-l*inno 0.004**

(2.230)
-0.006***

(-3.750)
-0.001*

(-1.880)

Rho -0.450**

(-2.020)
-0.413*

(-1.660)
-0.352**

(-2.280)

Control Variable YES YES YES

Time Effect YES YES YES

R2 0.948 0.747 0.747

Obs 182 364 126

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively; t-statistics are in parentheses. This convention 
applies to subsequent tables unless otherwise noted.

Table 4. Results of Spatial Measurement of Three Major Urban Agglomerations.
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mobility and urban innovation on carbon emissions, 
the lagged one-period values of the core explanatory 
variables (L-flow-h, L-flow-l, L-inno, and lagged 
interaction terms) are introduced for the regression, 
and the results are shown in columns (2), (4), and (6) of 
the table. The results of the lagged variable regressions 
are almost identical to the previous regression findings, 
further validating the robustness of the core findings.

Endogeneity Analysis

When examining the relationship between 
heterogeneous population flow and carbon emissions, 
endogeneity issues such as bidirectional causality and 
estimation bias may arise. To address this concern, 
this study employs the instrumental variable approach, 
specifically the two-stage least squares (2SLS) method, 
to mitigate endogeneity. Drawing on Tian et al.’s (2025) 
study [30], this paper selects the “urban unemployment 
insurance coverage rate” as an instrumental variable for 
the mobility of the highly skilled population. From the 
perspective of relevance, high-skilled individuals tend 
to prioritize long-term benefits such as employment 
stability and risk protection when selecting a destination. 
A well-developed unemployment insurance system 
can therefore enhance a city’s appeal to high-skilled 
migrants. In terms of exogeneity, the unemployment 
insurance system is not directly influenced by urban 
carbon emission levels, nor is it directly linked to the 
mechanisms driving carbon emissions. It is important 
to note that the chosen instrumental variable is more 
suitable for high-skilled population flow than for low-
skilled flow. This is because high-skilled individuals 
typically face higher job transition costs, while low-
skilled migrants exhibit greater employment mobility, are 
less sensitive to unemployment insurance, and base their 
mobility decisions more on immediate job availability. 
Furthermore, high-skilled migrants are more likely 
to consider public services and social security offered 
by the city, whereas low-skilled migrants focus more 
on short-term income and employment opportunities. 

Therefore, this study focuses on high-skilled population 
flow as the endogenous variable.

Table 7 presents the results of the 2SLS estimation. 
The results of the first stage regression show that the 
coefficient of the instrumental variable on the mobility 
of the highly skilled population is significantly positive, 
verifying the correlation between the instrumental 
variable and the endogenous variable. The F-value of 
the first stage is greater than the critical value of 10, 
indicating no weak instrument variable problem, and 
the Kleibergen-Paap LM test results are significant, 
rejecting the original hypothesis of “instrumental 
variables are not identifiable”. The results of the 
second stage regression show that after controlling 
for endogeneity, the coefficient of the effect of the 
mobility of highly skilled people on carbon emissions 
is significantly negative. This indicates that after 
eliminating the interference of two-way causality and 
omitted variables, the mobility of high-skilled people 
still significantly suppresses carbon emissions, which is 
consistent with the conclusion of the baseline regression. 
Meanwhile, the Durbin-Wu-Hausman test results are 
significant, rejecting the original hypothesis of “no 
endogeneity”, indicating the necessity of the application 
of the instrumental variables method and the reliability 
of the processed results.

Conclusions

This paper takes China’s three major urban 
agglomerations as its research object, matching China 
Migrants Dynamic Survey (CMDS) data with macro 
urban data, fully considering the heterogeneity of 
population skills and spatial factors, to explore the impact 
of changes in the scale of population mobility on carbon 
emissions in the context of urban innovation. Based 
on the research results, we propose recommendations 
from the perspectives of talent optimization, urban 
innovation, and regional coordinated development 
to provide a reference for promoting low-carbon 
development in different urban agglomerations:

Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta

Variables Direct Indirect Total Direct Indirect Total Direct Indirect Total

flow-h -0.010***

(-5.560)
-0.004

(-0.450)
-0.017*

(-1.660)
-0.013***

(-2.940)
-0.028

(-1.190)
-0.038

(-1.500)
-0.005***

(-3.470)
-0.010**

(-2.470)
-0.015***

(-2.980)

flow-l 0.004***

(9.670)
-0.003

(-1.380)
0.001

(0.300)
0.005***

(15.330)
-0.004*

(-1.900)
0.001

(0.060)
0.001***

(5.580)
0.001***

(2.790)
0.002***

(3.480)

inno 0.325***

(8.760)
0.116

(0.770)
0.441***

(2.610)
-0.013

(-0.650)
-0.028

(-0.190)
-0.043

(-0.280)
0.019

(0.860)
0.112

(1.080)
0.132

(1.120)
flow-

h*inno
0.004***

(4.800)
-0.002

(-0.470)
0.002

(0.550)
0.006***

(4.030)
0.022**

(2.300)
0.003***

(2.730)
0.002***

(3.280)
0.004**

(2.450)
0.006***

(2.810)
flow-
l*inno

-0.001
(-0.013)

0.003**

(2.090)
0.003*

(1.920)
-0.001***

(-4.140)
-0.004***

(-2.870)
-0.005***

(-3.190)
0.006

(1.440)
0.001

(0.460)
0.001

(0.700)

Table 5. Decomposition of Spatial Effects of Carbon Emissions.
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(1) Optimize Policies for Heterogeneous Population 
Mobility to Align with Low-Carbon Goals

Given the significant differences in the impact of 
high-skilled and low-skilled labor mobility on carbon 
emissions, targeted policies should be developed to 
guide the rational flow of labor and enhance its synergy 
with low-carbon development. First, attract and retain 

high-skilled talent. High-skilled labor mobility can 
significantly reduce carbon emissions and mitigate the 
adverse effects of urban innovation on carbon emissions. 
Policies should focus on removing institutional 
barriers that hinder high-skilled labor mobility, such 
as cumbersome household registration restrictions 
and unequal access to public services (e.g., education, 

Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta

Variables (1) (2) (3) (4) (5) (6)

flow-h -0.003*
(-3.980)

-0.013***
(-2.630)

-0.007***
(-2.970)

flow-l 0.011*
(7.510)

0.009***
(12.880)

0.003***
(3.320)

inno 0.401***
(7.230)

-0.025
(-1.040)

0.009*
(1.23)

flow-h*inno 0.009***
(5.100)

0.011***
(5.670)

0.005***
(3.990)

flow-l*inno -0.003
(-0.770)

-0.003***
(-5.090)

0.004***
(3.060)

L-flow-h -0.001***
(-3.120)

-0.009***
(-2.990)

-0.004***
(-2.32)

L-flow-l 0.003***
(6.990)

0.002***
(10.320)

0.001*
(2.980)

L-inno 0.339***
(7.090)

0.011
(-0.780)

0.007
(0.450)

L-(flow-h*inno) 0.002***
(3.880)

0.005***
(3.980)

0.001*
(3.020)

L-(flow-l*inno) 0.005
(0.930)

-0.002***
(-3.210)

0.001*
(2.120)

Control Variable YES YES YES YES YES YES

Time Effect YES YES YES YES YES YES

R2 0.894 0.769 0.715 0.698 0.715 0.696

Obs 182 156 364 312 126 108

Table 6. Robustness test results.

Variables
flow-h CO2

First-stage regression Second-stage regression

flow-h -0.022**
(0.013)

IV 0.015***
(0.008)

First-stage F-statistic 19.550(p=0.000)

Cragg-Donald Wald F test 63.838(>10% critical value)

Kleibergen-Paap LM test 65.841(p=0.000)

Durbin-Wu-Hausman test 8.808(p=0.003)

Obs 672

​Note: Standard errors are in parentheses.

Table 7. IV-2SLS regression results.
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healthcare, social security). Urban agglomeration 
governments can establish incentive mechanisms, 
including tax breaks for high-skilled talent, funding 
for innovative research projects, and housing subsidies, 
to attract and retain talent. Additionally, creating 
international talent hubs and fostering cross-city 
collaboration platforms (such as joint research institutes 
and innovation zones) can promote the aggregation of 
high-skilled labor, thereby amplifying its emissions 
reduction effects. Second, improve the human capital 
of low-skilled migrant workers. The migration of low-
skilled workers increases carbon emissions and has a 
low degree of integration with urban innovation. In 
response, policies should prioritize improving the skills 
of low-skilled migrant workers through vocational 
training programs and lifelong learning plans. These 
programs can be tailored to the needs of low-carbon 
industries (such as renewable energy and energy-
efficient manufacturing) to enhance their adaptability 
to green production. Additionally, promoting inclusive 
education and skill certification systems can help low-
skilled migrant workers better absorb the technological 
spillovers generated by urban innovation, thereby 
reducing the carbon intensity of their economic 
activities.

(2) Guide Urban Innovation toward a Low-Carbon 
Trajectory

While urban innovation may exacerbate carbon 
emissions, it can be used to reduce emissions 
when combined with the mobility of highly skilled 
populations. Policies should guide urban innovation 
toward low-carbon development and strengthen the 
synergistic effects of innovation and heterogeneous 
labor. First, prioritize support for low-carbon technology 
research and development. Governments should 
increase funding for low-carbon technology research 
and development (such as renewable energy and 
energy-efficient infrastructure) and establish innovation 
incentive mechanisms (such as patent protection 
and subsidies) to encourage enterprises and research 
institutions to focus on emission reduction technologies. 
This will help mitigate the potential increase in carbon 
emissions driven by capital-intensive or energy-
consuming sectors. Second, promote the integration of 
highly skilled labor with innovation entities. To fully 
leverage the regulatory role of highly skilled migrant 
populations in offsetting the carbon emissions associated 
with innovation, collaborative platforms should be 
established between highly skilled talent, businesses, 
and academic institutions. For example, inter-city talent 
exchange programs within urban clusters can enhance 
knowledge spillovers, ensuring that highly skilled labor 
effectively participates in and shapes the low-carbon 
innovation process.

(3) Strengthen Regional Coordination to Amplify the 
Spatial Spillover Effects of Talent and Innovation

The three major urban agglomerations in China 
exhibit significant differences in terms of spatial 
spillover effects, necessitating the formulation of 

targeted regional coordination strategies. First, 
administrative barriers within the Beijing-Tianjin-Hebei 
urban agglomeration should be reduced. The Beijing-
Tianjin-Hebei urban agglomeration exhibits relatively 
weak spatial spillover effects, partly due to strong 
administrative intervention. Therefore, efforts should 
be made to break down administrative barriers between 
regions. A unified coordination mechanism could be 
established to harmonize emissions reduction policies, 
standardize emissions monitoring systems, and promote 
resource sharing (e.g., energy, transportation). This 
would foster more integrated labor and innovation factor 
markets, enabling the spillover effects of skilled labor 
mobility and low-carbon innovation to permeate across 
cities. Second, deepen the integration of the Yangtze 
River Delta and Pearl River Delta urban agglomerations. 
Given the strong spatial spillover effects of the Yangtze 
River Delta and Pearl River Delta urban agglomerations, 
regional integration should be further deepened 
to amplify low-carbon synergies. This includes 
coordinating carbon pricing mechanisms, establishing 
cross-city carbon trading markets, and coordinating 
industrial relocation. For example, joint investment 
in cross-city green infrastructure construction can 
promote the flow of highly skilled labor and low-carbon 
technologies, enhancing the positive spillover effects of 
talent inflow and innovation on emissions reduction.

Nevertheless, there are still some deficiencies in the 
text, and it is expected that they can be further improved 
in future research. On the one hand, the measurement 
of heterogeneous population mobility indicators needs 
to be further precise. The measurement of the scale of 
population mobility at the urban level in China lacks 
annual statistical data. The indirect measurement 
method adopted in this paper is bound to have certain 
errors. Future research is expected to build relevant 
empirical models based on more accurate annual 
statistical data and calculation methods, accurately 
analyze the impact of heterogeneous population mobility 
on carbon emissions in urban agglomerations against the 
background of urban innovation, and put forward more 
targeted suggestions for giving full play to the mutual 
spatial role among urban agglomerations to promote 
low-carbon development. On the other hand, this paper 
only explores the relationship between population 
mobility, urban innovation, and carbon emissions. 
However, there are still other mechanisms and factors 
that play important roles in this process beyond urban 
innovation. Future research needs to incorporate more 
factors for analysis and capture multi-dimensional paths 
to reduce carbon emissions in urban agglomerations 
while improving the existing theoretical framework.
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