
Introduction

As a fundamental energy source, coal holds an 
irreplaceable position in ensuring energy supply, 
making efficient coal extraction essential [1, 2]. High-
intensity coal mining is highly prone to causing mine 

water disasters, posing a threat to the safety of coal 
mine production [3, 4]. Rapid and accurate identification 
of the source of water gushing is the prerequisite  
and key to the management of water disasters in 
coal mines. The primary methods for water source 
identification include water quality-level-temperature 
(QLT) analysis [5], geostatistical approaches [6], 
hydrochemical analysis [7, 8], and tracer simulation [9], 
among which hydrochemical analysis is the most direct 
and cost-effective approach.
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Abstract

Mine water poses serious threats to mine safety and the sustainable exploitation of resources. 
Efficient identification of the water source of roof water inflow in coal seams is crucial. Hydrochemical 
analysis is key for mine water source identification, yet it is challenged by large, complex datasets. Deep 
learning offers an effective solution with its powerful data representation capabilities. This study develops 
a water source identification model based on a deep neural network (DNN), using hydrochemical and 
organic composition indicators including Na⁺, K⁺, Ca²⁺, Mg²⁺, SO₄²⁻, HCO₃⁻, Cl⁻, TDS, TOC, UV254, 
and dissolved organic matter. Bayesian optimization is applied to tune key hyperparameters of the 
DNN, such as learning rate, number of neurons in each layer, and training epochs, to achieve an 
optimal network architecture. The model is validated using 197 water samples collected from three 
representative coal mines located on the border between Inner Mongolia and Shaanxi Province, China. 
The proposed model achieves an identification accuracy of 96.31%, outperforming traditional classifiers 
such as support vector machines and random forests. The results indicate that this method has high 
accuracy and reliability, and can provide new ideas for quickly and accurately identifying the water 
source of coal seam roof water inflow.
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Currently, methods for discriminating the water 
source of water inflow based on hydrochemical 
characteristics primarily include multivariate statistics 
[10], nonlinear analysis [11], and machine learning 
algorithms [12-14]. Discrimination using hydrochemical 
indicators generates multidimensional, nonlinear water 
sample datasets. Conventional multivariate statistical 
methods and nonlinear analytical approaches are 
constrained by linear assumptions [15] and the curse 
of dimensionality [16], making them inadequate for 
fully capturing the intrinsic patterns within such 
complex, high-dimensional data [17]. The performance 
of methods such as Support Vector Machines (SVM), 
Random Forests (RF), and single-layer neural networks 
has improved compared to traditional approaches. 
However, these are considered shallow learning 
methods with limited capacity for data representation. 
Additionally, most machine learning algorithms 
require manual feature engineering, and the quality 
of feature selection directly affects the discrimination 
performance [18]. Deep learning, primarily based on 
neural networks, autonomously learns and extracts 
data features through its multi-layered structure, 
offering stronger generalization capabilities [6, 19]. 
Yang C. et al. [20, 21] established Fisher and BP (Back 
Propagation) neural network discrimination models 
for the study area, and the results showed that the BP 
neural network achieved higher accuracy. Jiang C.L. et 
al. [22] developed a water inrush discrimination model 
for mines based on a deep feedforward network, which 
demonstrated high discrimination performance. Jiang 
Q.L. et al. [23] developed a backpropagation neural 
network (BPNN) discrimination model optimized 
using factor analysis and particle swarm optimization 
(PSO), which demonstrated higher classification 
accuracy compared to clustering analysis. Fang B. [24] 
employed an improved shuffled frog leaping algorithm 
to optimize a convolutional neural network (CNN), 
achieving superior performance over the support vector 
machine (SVM)-based water source identification 
model. Yan P.C.et al. [25] compared CNN and residual 
neural networks (ResNets), and selected a ResNet-
based approach incorporating centroid variation and 
PCA for water source identification. Machine learning 
often faces the challenge of finding the global optimum, 
and intelligent optimization algorithms are commonly 
used to adjust model parameters for optimal structure. 
Bayesian Optimization (BO) algorithms identify the 
optimal solution by incorporating prior knowledge [26]. 
With a straightforward principle and high accuracy, 
they are widely used for solving optimization problems 
[27]. Casanova R.H. et al. [28] combined bidirectional 
long short-term memory (LSTM) networks with the 
BO algorithm, enhancing the prediction accuracy of 
photovoltaic power. Wang M. et al. [29] improved 
the CNN-LSTM network using BO algorithms and 
accurately predicted the service life of artillery barrels.

Overall, machine learning algorithms, represented 
by deep neural networks, offer more powerful analytical 

capabilities and show potential advantages in the field of 
coal seam roof water inflow source discrimination.

China has abundant coal reserves, with more than 
70% of the country’s coal resources located in the 
western mining areas [30, 31]. However, the high-
intensity coal mining in these areas has increased the 
possibility of roof water inrush accidents, threatening 
the safe production of the mines. [32, 33]. Integrating 
advanced machine learning methods with various 
hydrochemical indicators for water inrush source 
identification is an important approach to ensuring the 
safe mining of coal. However, there is little research 
about the application of machine learning methods to 
study water sources using inorganic and organic water 
chemical indicators. This research aims to (1) analyze 
the inorganic and organic hydrochemical characteristics 
of groundwater in the mining areas of China based on 
data from three typical mines using graphical methods 
and parallel factor analysis (PARAFAC). (2) Construct a 
source identification dataset by extracting features from 
hydrochemical indicators using principal component 
analysis (PCA). (3) Develop a deep learning model for 
source identification, optimize its structure using the 
BO algorithm, and train and validate the model using 
the constructed dataset.

Materials and Methods

Study Area

The Mongolian-Shanxi border area is a key coal 
production region in western China (Fig. 1). This paper 
uses the region as a case study to test and validate the 
approach for water source identification. Due to intense 
mining, fractures often connect multiple overlying 
aquifers, increasing the risk of roof water hazards. Three 
representative mines along the northeast-southwest 
trend in this area were selected for the study. The mines 
are situated in the Maowusu Desert, within the northern 
Shaanxi slope and Yishan anticline of the Ordos Basin. 
The coal-bearing strata in the study area are of the 
Yan’an Formation, with similar stratigraphic structures. 
The main aquifers (or aquitards) from top to bottom are 
(Fig. 2): Quaternary porous aquifer, Cretaceous Luohe 
Formation porous-fracture aquifer, Anding Formation 
relative aquitard, and ZhiLuo and Yan’an Formation 
fracture aquifers [34]. The Quaternary sandstone 
layer, being uniform and loose, facilitates atmospheric 
precipitation infiltration, resulting in strong water 
abundance. The Luohe Formation aquifer, with well-
developed pores and fractures, has good connectivity and 
recharge capacity. The Zhiluo Formation, with higher 
lithification and poor fracture development, exhibits 
weaker water abundance. The Yan’an Formation, with 
increased mud content and poor recharge conditions, has 
the lowest water abundance. During the construction of 
the mines in the study area, there is an issue of water-
rich coal seams and their immediate roof. In the future 
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mining process, the fissure water in the roof sandstone 
will directly serve as the water source.

Water Sampling and Analysis

Water Sampling

A total of 197 water samples were collected, 
including 177 groundwater samples and 20 mine 
water samples. The groundwater samples are from the 
following formations: 38 from the Quaternary, 32 from 

the Luohe Formation, 49 from the Zhiluo Formation, 
and 58 from the Yan’an Formation. A total of 177 
groundwater samples were used for model fitting and 
validation in the water source model training process, 
while 20 mine water samples were used for testing the 
water source discrimination model.

Water samples were collected using 2.5 L 
polyethylene sampling bottles, with strict adherence to 
procedures for filling, sealing, and labeling. Analytical 
methods were as follows. K⁺, Na⁺, Ca²⁺, and Mg²⁺ were 
determined using an inductively coupled plasma optical 

Fig. 1. Location of the study area.
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emission spectrometer (ICP-OES, Optima 8300DV, 
PerkinElmer). SO₄²⁻ and Cl⁻ were analyzed using an 
ion chromatograph (ICS-600, Thermo Scientific, USA). 
Bicarbonate (HCO₃⁻) concentrations were obtained via 
acid-base titration. Total dissolved solids (TDS) were 
measured using the gravimetric (dry weight) method. 
Total organic carbon (TOC) was analyzed using  
a multi N/C 2100 TOC/TN analyzer (Analytik Jena, 
Germany) after filtration through a 0.45 μm membrane. 
Ultraviolet absorbance at 254 nm (UV254) was measured 
with a UV–Vis spectrophotometer (Evolution 60, 
Thermo Scientific) using a 1 cm quartz cuvette, with 
corresponding blanks measured simultaneously. 
Three-dimensional excitation-emission matrix (EEM) 
fluorescence spectra of dissolved organic matter (DOM) 
were obtained using a fluorescence spectrophotometer 
(F-7000, HITACHI) at a scanning speed of 1200 nm/min. 
Excitation wavelengths ranged from 200 to 420 nm at 
5 nm intervals, and emission wavelengths from 240 to 
600 nm at 2 nm intervals. Ultrapure water was used as 
the blank to correct for Raman scattering.

Parallel Factor Analysis

Water source discrimination was carried out using 
10 indicators: K++Na+, Ca2+, Mg2+, Cl-, SO4

2-, HCO3
-, 

TDS, TOC, UV254 and DOM three-dimensional 
fluorescence spectra. Due to the difference in DOM 
concentration and chemical composition, each water 
sample has its unique fluorescence spectrum [35].  
The reliability of water source identification using the 
DOM three-dimensional fluorescence spectrum has also 
been proved in the team’s previous research work [36, 
37]. The three-dimensional fluorescence spectra (EEM) 
of each sample are matrix data. To fully utilize the EEM 
data, Parallel Factor Analysis (PARAFAC) was used to 
quantify the fluorescence components in the EEM [38, 
39]. PARAFAC decomposes the EEMs data into several 
latent fluorescent components, and its mathematical 
expression is given as [40]:
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Where Xijk is the fluorescence intensity for sample 
i, at excitation wavelength j, and emission wavelength 
k; ain，binckn are the loading matrices representing the 
contribution of component n to sample i, excitation 
wavelength j, and emission wavelength k, respectively. 
eijk is the residual error, and N is the number of 
components.

Principal Component Analysis

This paper utilized the quantified fluorescence 
components as substitutes for DOM fluorescence 
spectral data, combined with Na++K+, Ca2+, Mg2+, SO4

2-, 
HCO3

-, Cl-, TDS, TOC, and UV254 as discriminant 

indicators, to construct a dataset for water source 
discrimination. Principal component analysis (PCA) 
was employed to analyze the correlations among source 
identification indicators and reduce redundancy by 
linearly transforming the original data and extracting 
the principal features. Its mathematical expression is 
given as [41, 42]:
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Where xp’ is the standardized value of the p-th 
hydrochemical parameter for a given sample, F1, F2, 
…, Fm(m≤q) are the transformed variables, mutually 
uncorrelated. F1 is the linear combination of X1, X2, …, 
Xq that captures the largest variance.

Construction of DNN Water Source 
Discrimination Model

Since neural networks effectively handle the issue 
of contribution distribution, neural network models are 
primarily employed. Any neural network with more than 
one layer can be considered a Deep Neural Network 
(DNN) [43]. A DNN consists of at least two hidden 
layers. Taking k inputs, m outputs, and two hidden layers 
as an example, the basic structure of a DNN is shown in 
Fig. 3. The left side of Fig. 3 represents the input layer, 
which contains multiple input nodes x1, x2, …, xk. These 
nodes represent the features of the input data, with each 
feature serving as an input to the network. The input 
layer is followed by multiple hidden layers, with two 
layers (L1 and L2) shown in Fig. 3. Each node (neuron) in 
a hidden layer receives the output from all nodes in the 
previous layer and performs a weighted sum with a set 
of weights (connections) and biases, which is then passed 
through an activation function to generate the output of 
that layer. The right side of Fig. 3. represents the output 

Fig. 3. Basic principle of a deep feedforward neural network.
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To enhance the accuracy of the DNN-based 
classification model and accelerate its training process, 
Bayesian Optimization (BO) is employed to optimize 
key hyperparameters, including the learning rate (η), 
the number of neurons in each hidden layer (units1, 
units2, units3), and the number of training epochs 
(epoch). In each iteration, BO first uses a surrogate 
model to predict the performance of each candidate 
point (η，units1, units2, units3, epoch). Then, based on 
the acquisition function, it selects the most promising 
point for evaluation and updates the surrogate model 
using the observed data from this new candidate [44]. 
This process is repeated iteratively until the maximum 
number of iterations specified by the BO is reached, as 
shown in Fig. 4.

Fig. 5 depicts the structure and specific training 
process of the DNN-based water source discrimination 
model. The process begins with the DNN on the left, 
where the first step involves data preparation, including 
collection, cleaning, normalization, and principal 
component extraction. Only after these preprocessing 
steps are completed can the processed data be input 
into the model for training. Upon completion of data 
preparation, the model construction phase commences. 
The network architecture consists of an input layer, three 
hidden layers, and an output layer. Each hidden layer 
is comprised of a fully connected layer, an activation 
function layer, and a Dropout layer. The Dropout layer 

layer, denoted as y1, y2, …, ym. The nodes in the output 
layer take the output from the last hidden layer, apply  
a weighted sum and activation function, and produce the 
network’s final output, which typically corresponds to 
the predicted results.

Fig. 4. Bayesian optimization algorithm flow.
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Fig. 5. Flow chart of the DNN water source discrimination model.
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is introduced to enhance the network’s generalization 
ability.

The activation function layer employs the Leaky 
ReLU function to address the vanishing gradient 
problem in the neural network. The number of neurons 
in each hidden layer (units1, units2, units3) and the 
number of training epochs (epoch) are hyperparameters 
to be optimized using the BO. An epoch represents one 
complete pass of the entire training dataset through 
both forward and backward propagation operations.  
The output layer employs a softmax classifier. The 
model’s loss function is the cross-entropy loss function. 
The optimizer is set to Adam, with the learning rate 
(η) being another hyperparameter to be optimized. 
The evaluation metric for the model is the average 
classification accuracy obtained from 5-fold cross-
validation. The model training phase consists of four 
processes: forward propagation, loss calculation, 
backpropagation, and parameter updates. The training 
of the neural network stops once the set number of 
epochs is reached. The final performance evaluation is 
performed using 5-fold cross-validation.

The Bayesian model initially generates a random 
set of hyperparameters (η, units1, units2, units3, epoch) 
and passes them to the DNN. After training the DNN 
for the specified number of epochs, the model returns 
the performance (verify_accuracy) of the current 
hyperparameter set to the Bayesian model. Based on 
this feedback, the Bayesian model generates the next set 
of hyperparameters. This process is repeated iteratively, 
with the Bayesian model intelligently adjusting the 

hyperparameters based on all previous iterations, until 
the predefined number of Bayesian iterations (iter) is 
reached.

After determining the optimal hyperparameter 
combination using the Bayesian Optimization (BO) 
algorithm, the parameters (weights and biases) of the 
neural network are fixed. The performance of the model 
is then evaluated using the validation set, which is 
partitioned through cross-validation. The accuracy of 
the validation set (verify_accuracy) serves as a direct 
quantitative measure of the model’s generalization 
ability. This process ensures the establishment of a DNN 
model that is well-suited to the data while avoiding 
overfitting.

Results and Discussion

Hydrochemical Characteristics

Table 1 presents the statistical values of the water 
sample test results. A balance test for anions and cations 
was conducted on the test results, and the relative error 
E ranged from 0.0382% to 4.81%, which was less than 
5% and thus can be used for subsequent research.

A Piper diagram was plotted using the measured 
hydrochemical data, as shown in Fig. 6. In the 
Quaternary aquifer samples, Ca²⁺ is the dominant 
cation, while HCO₃⁻ is the dominant anion. The water 
type is HCO₃-Ca, which is similar to that of atmospheric 
precipitation. Water samples from the Luohe Formation 

Table 1. Test result statistics values.

Source Statistical 
values

Index mass concentration/(mg·L-1) UV254

/(cm·L
-1

)K++Na+ Ca2+ Mg2+ Cl- SO4
2- HCO3

- TDS TOC

Quaternary

Minimum 7.56 27.81 6.05 1.74 3.76 133.02 184.28 0.28 0.001

Maximum 19.56 88.43 15.52 12.47 50.63 265.00 410.613 3.55 0.071

Average 13.52 51.50 10.77 5.90 18.44 196.45 305.50 0.94 0.016

Luohe 
Formation

Minimum 13.22 21.15 5.00 4.79 7.98 123.70 186.33 0.06 0.003

Maximum 57.66 42.08 13.83 20.35 44.03 305.42 439.35 1.95 0.044

Average 32.83 32.54 8.39 11.14 26.04 190.64 290.78 0.86 0.007

Zhiluo 
Formation

Minimum 267.54 103.32 16.66 22.35 943.57 34.05 1499 0.11 0.001

Maximum 1571.27 507.12 59.23 48.00 5001.84 174.96 7765.61 2.01 0.046

Average 920.22 404.22 40.19 33.62 2956.58 95.88 4458.08 0.81 0.009

Yan’an 
Formation

Minimum 568.37 167.04 19.86 30.71 1386.42 68.00 1156.46 0.25 0.001

Maximum 3260.33 477.00 100.00 901.23 5889.45 433.00 9602.22 6.01 0.748

Average 1499.04 360.32 52.29 155.62 3610.49 178.17 5823.84 1.68 0.05

Mine water

Minimum 552.47 182.76 29.44 28.32 1958.37 61.26 1386.79 0.57 0.002

Maximum 1428.36 506.23 81.83 184.38 3875.92 208.37 6094.85 4.33 0.112

Average 996.32 387.51 46.63 52.35 2989.67 104.65 4530.39 1.28 0.024
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are mainly of the HCO₃-Ca·Na and HCO₃-Na·Ca types, 
and are relatively similar to those from the Quaternary. 
Samples from the Zhiluo and Yan’an formations plot 
in the upper right of the diamond field, and the main 
hydrochemical types are SO₄-Na and SO₄-Na·Ca. The 
mine water is also dominated by SO₄-Na and SO₄-Na·Ca 
types, showing strong similarity to the Zhiluozhen and 
Yan’an formations.

Boxplots of TOC and UV254 concentrations for each 
water sample are shown in Fig. 7. The Quaternary 
samples exhibited slightly higher organic matter content 
than those from the Luohe and Zhiluo Formations, likely 
due to direct recharge from surface water and greater 
exposure to organic-rich sediments and anthropogenic 
pollution. The lower TOC and UV254 levels in the Luohe 
and Zhiluo samples indicate minimal human impact. 

Samples from the Yan’an Formation showed higher TOC 
and UV254 concentrations, suggesting the dissolution of 
organic matter from coal-bearing strata. TOC and UV254 
levels in mine water samples fall between those of the 
Zhiluo and Yan’an Formations, indicating the presence 
of some dissolved organic matter as well.

PARAFAC identified three components, as shown 
in Fig. 8. Based on the fluorescence region classification 
[45], Component 1 (C1) consists of hydrophobic organic 
acids and humic acid-like substances, Component 2 (C2) 
includes tyrosine and tryptophan-containing proteins, 
and Component 3 (C3) mainly consists of tryptophan 
and tryptophan-containing proteins. Table 2 shows the 
average fluorescence intensity of each component for 
five types of water samples. In this way, the fluorescence 
intensity of the three components identified by 
PARAFAC replaces the experimentally measured EEM 
data, providing a data foundation for the model training.

Analysis of hydrochemical characteristics among 
different water sample types revealed indicator 
differences, but these alone were insufficient to 
accurately identify their sources. Besides, the obtained 
hydrochemical data are numerous and complicated. 
Therefore, it is necessary to develop a deep learning-
based model to learn the underlying relationships 
among hydrochemical indicators and further identify the 
sources of mine water inrush.

PCA Analysis of Data Set

K++Na+, Ca2+, Mg2+, Cl-, SO4
2-, HCO3

-, TDS, UV254, 
TOC, C1, C2, C3 were denoted as X1, X2, X3 ,X4, X5, X6, X7, 
X8, X9, X10, X11, and X12. A total of 177 groundwater samples 
were selected as training samples, resulting in a dataset 
X1 with dimensions of 177×12. The results of the KMO 
and Bartlett’s tests for dataset X1 are presented in Table 3. 
As shown, the KMO value, approximate chi-square, 

Fig. 6. Three-line diagram of water chemistry Piper.
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degrees of freedom, and significance level are 0.729, 
2477.966, 66, and 0, respectively. Therefore, it is 
concluded that there is sufficient correlation among the 
variables in dataset X1, making it suitable for principal 
component analysis. The total variance explanation of 
X1 is shown in Table 4. As can be seen, the cumulative 
contribution rate of the first six principal components (F1 
to F6) exceeds 90%, encompassing the majority of the 
information in X1. Therefore, six principal components 

were selected, resulting in a dataset X2 with dimensions 
of 177×6. Dataset X2 was then used to train the DNN 
water source discrimination model.

DNN Water Source Discrimination Model

Model Training

The dimensionality-reduced dataset X2 was 
employed to train the DNN model for water source 
discrimination. For the DNN model utilized in this 
paper, the hyperparameters requiring optimization are 
(η, units1, units2, units3, epoch). These parameters define 
the domain space of the DNN model, and their respective 
value ranges are presented in Table 5. The BO algorithm 
was employed as the search algorithm, with the average 
accuracy of 5-fold cross-validation during DNN model 
training serving as the evaluation metric. Additionally, 
the dropout rate and batch size were manually specified 
as hyperparameters, set to 0.5 and 32, respectively. These 
values are commonly adopted in practice and were not 

Fig. 8. Three-dimensional fluorescence spectra of DOM components.

Table 2. Average fluorescence intensity of each component.

Source C1 C2 C3

Quaternary 254.98 981.783 320.54

Luohe 250.80 306.34 242.33

Zhiluo 224.61 265.59 252.23

Yanan 321.54 350.46 331.27

Mine water 308.16 375.32 383.92

Table 3. KMO and Bartlett test results.

KMO
Bartlett

Approximate chi-square Degree of freedom Significance

0.729 2477.966 66 0.000
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subjected to further adjustment. The number of iterations 
for the Bayesian optimization algorithm was set to 50.

After 50 iterations, the Bayesian optimization 
algorithm identified the optimal parameter combination 
as (η, units1, units2, units3, epoch) = (0.0844, 142, 64, 
19, 82). Under this parameter combination, the model 
achieved an average accuracy of 96.31%, surpassing the 
expected threshold of 95%. Therefore, it is concluded 
that 50 iterations are sufficient to meet the training 
requirements of the model. Fig. 9 illustrates the training 
accuracy, validation accuracy, and training loss for 
each fold of the 5-fold cross-validation under this 
parameter combination, plotted as a function of epochs  
for the DNN model.

Table 5. Hyperparametric domain space of DNN.

Table 4. Total variance interpretation.

Component Eigenvalue Variance percentage Cumulative contribution rate %

F1 5.091 42.424 42.424

F2 2.091 17.426 59.849

F3 1.553 12.938 72.787

F4 1.264 10.532 83.319

F5 0.741 6.177 89.496

F6 0.504 4.202 93.698

Hyperparameter Domain space

Learning rate (η) (0.001,0.1)

Number of neurons 1 (units1) (64,256)

Number of neurons 2 (units2) (32,64)

Number of neurons 3 (units3) (16,32)

Number of training rounds (epoch) (50,120)

Dropout rate (dropout) 0.5

Batch size (batch size) 32

Number of Bayesian iterations (iter) 50
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The trends observed in Fig. 9a) to Fig. 9e) are similar. 
Here, Fig. 9a), corresponding to the first fold, is taken as 
an example for analysis.

The left half of Fig. 9a) depicts the changes in the 
accuracy of the DNN model on the training set (red 
line) and the validation set (blue line). Both accuracy 
curves exhibited a sharp initial increase, followed by 
a gradual slowdown in growth as training progressed, 
eventually stabilizing at 93.05% for the training set 
and 95.48% for the validation set. This trend indicates 

strong generalization capabilities of the model. The right 
half depicts the training loss over epochs, showing a 
rapid initial decline followed by a gradual stabilization 
around 0.000153. This low loss indicates near-optimal 
performance on the training set.

By synthesizing the epoch trajectories in Figs. 9a) 
to 9e), it is evident that the model exhibits strong 
learning and generalization capabilities, with no signs of 
overfitting.

Fig. 9. Epochs trajectory of the deep neural network.
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Table 6 presents the performance of the validation 
set for each fold during cross-validation. As shown in 
Table 6, the average values of accuracy, precision, recall, 
and F-measure for the validation set across the 5-fold 
cross-validation were 96.31%, 96.14%, 96.13%, and 
96.08%, respectively. The model exhibited consistent 
performance across all folds, demonstrating robust 
stability. An accuracy of 96.31% indicates that the model 
maintains highly accurate predictions across different 
data subsets. The high precision, recall, and F-measure 
values indicate the balanced performance of the model 
across all categories. These results demonstrate the 
model’s excellent performance during cross-validation, 
suggesting its reliability for discriminating water 
sources in coal seam roof water inflow.

Model Testing

To intuitively analyze the fitting performance of the 
DNN water source discrimination model on the training 
set, the model was applied to classify 177 water samples 
used in training. Only one misclassification occurred, 
indicating that the model has effectively learned the 
features of the training data.

To verify the generalization ability of the DNN water 
source discrimination model on new samples, the model 

was used to classify the mine water from the 20 test 
samples mentioned earlier (Table 7), with comparisons 
made to SVM, LR, RF, and AFSA-RF models from 
earlier work [34]. In Table 7, the mine water samples 
numbered 1-5 were respectively taken from the water 
exploration boreholes HF2-1, HF7-2, YS5-2, DQ2-1, 
and DH1-3 in Mine A, with the final borehole positions 
located in the middle-lower section of the Zhiluo 
Formation aquifer (ZL). Mine water samples numbered 
15-20 were respectively taken from the water exploration 
boreholes ZJ2, ZJ3, ZJ6, ZJ8, and ZJ9 in Mine B. The 
boreholes penetrated the No. 2 coal seam at a depth of 
2-3 m, with the final borehole positions located in the 
Yanan Formation aquifer (YA). Mine water samples 
numbered 6-8 were collected from the drainage points in 
the auxiliary vertical shaft tunnels of Mine B. Samples 
numbered 9-10 were taken from the water inflow points 
in the excavation tunnels of Mine B. Samples numbered 
11-12 were collected from the water inflow points in the 
excavation tunnels of Mine A. Samples numbered 13-14 
were obtained from the drainage points in the auxiliary 
vertical shaft tunnels of Mine A.

During the construction of the exploration and 
drainage boreholes, casing pipes were installed to 
ensure effective isolation between the borehole walls 
and the surrounding aquifer, thereby guaranteeing 

Table 6. 5-fold cross-validation performance.

Folds Accuracy Precision Recall f1_score

Fold 1 95.48% 95.02% 95.31% 95.34%

Fold 2 96.57% 96.24% 96.25% 96.19%

Fold 3 96.41% 96.12% 96.21% 95.98%

Fold 4 95.93% 95.87% 95.72% 95.82%

Fold 5 97.14% 97.47% 97.14% 97.08%

average 96.31% 96.14% 96.13% 96.08%

Fig. 10. Discriminant results of mine water sample.
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the singularity of water samples at the terminal layer. 
Mine B primarily mines the No. 2 coal seam. In the 
previously mined areas, there is essentially no effective 
aquitard between the roof of the No. 2 coal seam and 
the Zhiluo Formation aquifer. The mining-induced 
water-conducting fracture zone has developed and 
vertically connected the aquifer, allowing water from 
the Zhiluo Formation to flow into the tunnels through 
the mining-induced fractures. During this process, a 
small amount of water from the Yan’an Formation was 
mixed in, but since the aquifer of the Yan’an Formation 
has poor water yield, its influence can be neglected. 
During the production process at Mine A, coal seam 
mining induced roof fracture zones that directly connect 
the fissure water-bearing layers from the 2nd coal seam 
roof to the 3-1 coal seam floor. This aquifer section 
serves as the direct water source for Mine A. Based 
on the previous hydrogeological exploration data, on-
site construction conditions, and the sampling point 
locations, it is concluded that water samples 1-10 are 
from the Zhiluo Formation aquifer, while samples 11-20 
are from the Yan’an Formation aquifer.

The discrimination results are shown in Fig. 10.  
The SVM, LR, RF, and AFSA-RF models misclassified 

5, 5, 4, and 2 samples, respectively, while the DNN water 
source discrimination model’s predictions were fully 
consistent with field observations. This demonstrates its 
high reliability in practical applications.

To evaluate the overall performance of different 
discrimination models, the cross-validation performance, 
misclassifications in the 177-sample training set, and 
mine water misclassifications of the five discrimination 
models-DNN, AFSA-RF, RF, LR, and SVM are listed in 
Table 8, ranked from highest to lowest accuracy.

As shown in Table 8, the DNN model outperformed 
the others, with its average cross-validation accuracy, 
precision, recall, and F1 score significantly higher 
than those of the three shallow machine learning 
discrimination models. Additionally, the DNN model 
has no misclassifications in the mine water (testing 
set). In comparison, the AFSA-RF, RF, LR, and SVM 
models exhibit slightly lower accuracy and performance 
metrics, with a notable number of misclassifications 
observed in both the training and test sets. While 
AFSA-RF enhanced the performance of RF to some 
extent, its accuracy still requires further enhancement. 
This demonstrates the robustness of DNN models, 
providing a novel methodology for efficient and accurate 

Table 7. Test results and sources of mine water samples (test set).

Number
Index mass concentration/(mg·L-1) UV254

/(cm·L
-1

)

Fluorescence intensity/(R.U.)
Source

K++Na+ Ca2+ Mg2+ Cl- SO4
2- HCO3

- TDS TOC C1 C2 C3

1 650.23 451.98 45.48 38.21 2458.92 87.86 3832.45 0.873 0.003 354.56 163.28 174.32 ZL

2 849.05 475.46 50.42 39.04 2868.93 94.53 4288.75 1.236 0.005 6.74 264.35 213.43 ZL

3 790.82 506.23 29.56 38.43 2813.24 92.16 4235.12 0.749 0.053 325.68 150.04 170.32 ZL

4 552.47 453.21 33.83 28.76 2263.25 61.26 3397.47 0.975 0.017 41.51 344.38 483.86 ZL

5 912.65 421.26 38.53 36.21 3105.63 93.26 5021.42 0.583 0.002 302.16 243.54 156.32 ZL

6 1033.45 457.86 42.35 30.68 3387.65 86.53 5045.64 0.597 0.002 308.12 251.27 156.74 ZL

7 1237.86 463.24 41.25 39.05 3625.84 82.36 5489.43 0.816 0.002 111.24 492.31 576.27 ZL

8 1383.41 477.84 46.53 39.02 3875.92 142.64 5784.21 0.763 0.003 86.21 283.47 274.32 ZL

9 1168.27 473.27 43.52 36.05 3864.57 106.87 5432.84 1.926 0.039 904.27 186.52 206.43 ZL

10 1314.67 482.28 45.28 39.56 3803.96 145.68 5765.76 0.825 0.003 84.48 274.52 267.64 ZL

11 586.41 343.58 31.92 42.46 2039.48 108.32 1386.79 1.542 0.004 70.25 412.58 230.46 YA

12 752.75 272.45 29.44 28.32 2402.46 65.21 3603.12 0.568 0.009 367.47 662.15 580.84 YA

13 648.46 316.58 31.87 76.12 1958.37 115.89 3166.59 0.762 0.012 134.56 165.32 112.78 YA

14 1171.19 302.15 81.83 64.75 3010.18 137.85 5541.27 2.382 0.053 923.12 768.46 1074.78 YA

15 1370.72 311.58 74.48 63.84 3152.68 89.53 5142.56 4.328 0.112 336.75 264.78 305.67 YA

16 1428.36 400.27 70.55 109.23 3800.36 129.87 6094.85 0.632 0.012 75.67 257.48 351.29 YA

17 1214.57 182.76 48.95 184.38 2742.55 208.37 4531.02 1.754 0.032 254.75 302.69 351.06 YA

18 791.84 297.62 36.57 35.28 2431.25 73.18 3623.86 0.608 0.013 376.46 673.49 594.82 YA

19 1259.41 368.34 75.68 44.47 3711.23 98.58 5593.48 1.842 0.054 734.58 664.32 796.73 YA

20 1259.41 368.34 75.68 44.47 3711.23 98.58 5593.48 1.842 0.054 734.58 664.32 796.73 YA
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identification of water sources during coal seam roof 
water outburst events.

Conclusions

Through comprehensive approaches including 
geological data analysis, in-situ water sampling, 
laboratory chemical experiments, and statistical 
analysis, we analyzed the hydrochemical characteristics 
of groundwater in the study area, constructed a dataset 
of water source indicators, and developed a deep neural 
network (DNN) model for source discrimination, which 
was subsequently validated for reliability.

(1) The hydrochemical types of water samples from 
the Quaternary and Luohe formations are HCO3-Ca·(Na) 
and HCO3-Na·Ca, while those from the Zhiluo, Yan’an 
formations, and mine water are SO4-Na·(Ca). Three 
fluorescent components were extracted and quantified 
from the three-dimensional using parallel factor analysis 
(PARAFAC). Significant differences are observed 
among the water types in terms of UV254 absorbance, 
TOC concentrations, and fluorescent regions of dissolved 
organic matter, with mine water exhibiting relatively 
more complex organic compositions. The organic matter 
content in the Yan’an Formation and mine water samples 
is relatively high, which is related to the dissolution of 
organic matter from the coal seams.

(2) The initial dataset constructed from 12 water 
quality parameters (Na++K+, Ca2+, Mg2+, SO4

2-, HCO3
-, 

Cl-, TDS, TOC, UV254, C1, C2, C3) exhibited significant 
information redundancy. Principal component analysis 
(PCA) was subsequently employed for dimensionality 
reduction, effectively compressing the dataset from 12 
dimensions to 6 principal components. This optimized 
dataset served as the fundamental input for establishing 
the water source discrimination model. 

(3) The Bayesian optimization algorithm was 
employed to optimize the hyperparameters of the deep 
neural network (DNN), yielding the optimal parameter 
combination: (η, units1, units2, units3, epoch) = (0.0844, 
142, 64, 19, 82). With this parameter set, the DNN 
model achieved a cross-validation accuracy of 96.31%, 
representing improvements of 4.92%, 10.95%, 12.95%, 
and 22.73% over the SVM, LR, RF, and AFSA-RF 
models from previous studies, respectively. And the 

DNN model correctly identified all 20 test samples. 
These results demonstrate that the DNN model can 
provide a new approach for accurate discrimination of 
mine water sources.

This paper developed a water source identification 
model using deep learning, which effectively captured 
the intrinsic patterns within complex, high-dimensional 
hydrochemical data while minimizing the influence of 
human bias. Unlike previous studies that relied mainly 
on traditional inorganic indicators such as the six 
major ions or solely on DOM fluorescence spectra, this 
paper integrated both inorganic and organic indicators 
for comprehensive analysis. The model was validated 
using field water samples from three representative coal 
mines in western China, demonstrating its robustness 
and reliability. Although the validation was conducted 
at the regional scale, the proposed approach shows good 
generalizability. Future research will incorporate data 
from diverse hydrogeological settings to further expand 
the applicability of the model.
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