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Abstract

Mine water poses serious threats to mine safety and the sustainable exploitation of resources.
Efficient identification of the water source of roof water inflow in coal seams is crucial. Hydrochemical
analysis is key for mine water source identification, yet it is challenged by large, complex datasets. Deep
learning offers an effective solution with its powerful data representation capabilities. This study develops
a water source identification model based on a deep neural network (DNN), using hydrochemical and
organic composition indicators including Na*, K*, Ca*", Mg*, SO+, HCOs’, CI', TDS, TOC, UV,_,,
and dissolved organic matter. Bayesian optimization is applied to tune key hyperparameters of the
DNN, such as learning rate, number of neurons in each layer, and training epochs, to achieve an
optimal network architecture. The model is validated using 197 water samples collected from three
representative coal mines located on the border between Inner Mongolia and Shaanxi Province, China.
The proposed model achieves an identification accuracy of 96.31%, outperforming traditional classifiers
such as support vector machines and random forests. The results indicate that this method has high
accuracy and reliability, and can provide new ideas for quickly and accurately identifying the water

source of coal seam roof water inflow.
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Introduction

As a fundamental energy source, coal holds an
irreplaceable position in ensuring energy supply,
making efficient coal extraction essential [1, 2]. High-
intensity coal mining is highly prone to causing mine
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water disasters, posing a threat to the safety of coal
mine production [3, 4]. Rapid and accurate identification
of the source of water gushing is the prerequisite
and key to the management of water disasters in
coal mines. The primary methods for water source
identification include water quality-level-temperature
(QLT) analysis [5], geostatistical approaches [6],
hydrochemical analysis [7, 8], and tracer simulation [9],
among which hydrochemical analysis is the most direct
and cost-effective approach.
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Currently, methods for discriminating the water
source of water inflow based on hydrochemical
characteristics primarily include multivariate statistics
[10], nonlinear analysis [11], and machine learning
algorithms [12-14]. Discrimination using hydrochemical
indicators generates multidimensional, nonlinear water
sample datasets. Conventional multivariate statistical
methods and nonlinear analytical approaches are
constrained by linear assumptions [15] and the curse
of dimensionality [16], making them inadequate for
fully capturing the intrinsic patterns within such
complex, high-dimensional data [17]. The performance
of methods such as Support Vector Machines (SVM),
Random Forests (RF), and single-layer neural networks
has improved compared to traditional approaches.
However, these are considered shallow learning
methods with limited capacity for data representation.
Additionally, most machine learning algorithms
require manual feature engineering, and the quality
of feature selection directly affects the discrimination
performance [18]. Deep learning, primarily based on
neural networks, autonomously learns and extracts
data features through its multi-layered structure,
offering stronger generalization capabilities [6, 19].
Yang C. et al. [20, 21] established Fisher and BP (Back
Propagation) neural network discrimination models
for the study area, and the results showed that the BP
neural network achieved higher accuracy. Jiang C.L. et
al. [22] developed a water inrush discrimination model
for mines based on a deep feedforward network, which
demonstrated high discrimination performance. Jiang
Q.L. et al. [23] developed a backpropagation neural
network (BPNN) discrimination model optimized
using factor analysis and particle swarm optimization
(PSO), which demonstrated higher classification
accuracy compared to clustering analysis. Fang B. [24]
employed an improved shuffled frog leaping algorithm
to optimize a convolutional neural network (CNN),
achieving superior performance over the support vector
machine (SVM)-based water source identification
model. Yan P.C.et al. [25] compared CNN and residual
neural networks (ResNets), and selected a ResNet-
based approach incorporating centroid variation and
PCA for water source identification. Machine learning
often faces the challenge of finding the global optimum,
and intelligent optimization algorithms are commonly
used to adjust model parameters for optimal structure.
Bayesian Optimization (BO) algorithms identify the
optimal solution by incorporating prior knowledge [26].
With a straightforward principle and high accuracy,
they are widely used for solving optimization problems
[27]. Casanova R.H. et al. [28] combined bidirectional
long short-term memory (LSTM) networks with the
BO algorithm, enhancing the prediction accuracy of
photovoltaic power. Wang M. et al. [29] improved
the CNN-LSTM network using BO algorithms and
accurately predicted the service life of artillery barrels.

Overall, machine learning algorithms, represented
by deep neural networks, offer more powerful analytical

capabilities and show potential advantages in the field of
coal seam roof water inflow source discrimination.

China has abundant coal reserves, with more than
70% of the country’s coal resources located in the
western mining areas [30, 31]. However, the high-
intensity coal mining in these areas has increased the
possibility of roof water inrush accidents, threatening
the safe production of the mines. [32, 33]. Integrating
advanced machine learning methods with various
hydrochemical indicators for water inrush source
identification is an important approach to ensuring the
safe mining of coal. However, there is little research
about the application of machine learning methods to
study water sources using inorganic and organic water
chemical indicators. This research aims to (1) analyze
the inorganic and organic hydrochemical characteristics
of groundwater in the mining areas of China based on
data from three typical mines using graphical methods
and parallel factor analysis (PARAFAC). (2) Construct a
source identification dataset by extracting features from
hydrochemical indicators using principal component
analysis (PCA). (3) Develop a deep learning model for
source identification, optimize its structure using the
BO algorithm, and train and validate the model using
the constructed dataset.

Materials and Methods
Study Area

The Mongolian-Shanxi border area is a key coal
production region in western China (Fig. 1). This paper
uses the region as a case study to test and validate the
approach for water source identification. Due to intense
mining, fractures often connect multiple overlying
aquifers, increasing the risk of roof water hazards. Three
representative mines along the northeast-southwest
trend in this area were selected for the study. The mines
are situated in the Maowusu Desert, within the northern
Shaanxi slope and Yishan anticline of the Ordos Basin.
The coal-bearing strata in the study area are of the
Yan’an Formation, with similar stratigraphic structures.
The main aquifers (or aquitards) from top to bottom are
(Fig. 2): Quaternary porous aquifer, Cretaceous Luohe
Formation porous-fracture aquifer, Anding Formation
relative aquitard, and ZhiLuo and Yan’an Formation
fracture aquifers [34]. The Quaternary sandstone
layer, being uniform and loose, facilitates atmospheric
precipitation infiltration, resulting in strong water
abundance. The Luohe Formation aquifer, with well-
developed pores and fractures, has good connectivity and
recharge capacity. The Zhiluo Formation, with higher
lithification and poor fracture development, exhibits
weaker water abundance. The Yan’an Formation, with
increased mud content and poor recharge conditions, has
the lowest water abundance. During the construction of
the mines in the study area, there is an issue of water-
rich coal seams and their immediate roof. In the future
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Fig. 2. Stratum histogram of the study area.
mining process, the fissure water in the roof sandstone
will directly serve as the water source.
Water Sampling and Analysis
Water Sampling

A total of 197 water samples were collected,
including 177 groundwater samples and 20 mine
water samples. The groundwater samples are from the
following formations: 38 from the Quaternary, 32 from

the Luohe Formation, 49 from the Zhiluo Formation,
and 58 from the Yan’an Formation. A total of 177
groundwater samples were used for model fitting and
validation in the water source model training process,
while 20 mine water samples were used for testing the
water source discrimination model.

Water samples were collected using 2.5 L
polyethylene sampling bottles, with strict adherence to
procedures for filling, sealing, and labeling. Analytical
methods were as follows. K*, Na*, Ca?', and Mg?" were
determined using an inductively coupled plasma optical
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emission spectrometer (ICP-OES, Optima 8300DV,
PerkinElmer). SO+*>* and ClI” were analyzed using an
ion chromatograph (ICS-600, Thermo Scientific, USA).
Bicarbonate (HCOs") concentrations were obtained via
acid-base titration. Total dissolved solids (TDS) were
measured using the gravimetric (dry weight) method.
Total organic carbon (TOC) was analyzed using
a multi N/C 2100 TOC/TN analyzer (Analytik Jena,
Germany) after filtration through a 0.45 pm membrane.
Ultraviolet absorbance at 254 nm (UV,,) was measured
with a UV-Vis spectrophotometer (Evolution 60,
Thermo Scientific) using a 1 cm quartz cuvette, with
corresponding  blanks measured simultaneously.
Three-dimensional excitation-emission matrix (EEM)
fluorescence spectra of dissolved organic matter (DOM)
were obtained using a fluorescence spectrophotometer
(F-7000, HITACHI) at a scanning speed of 1200 nm/min.
Excitation wavelengths ranged from 200 to 420 nm at
5 nm intervals, and emission wavelengths from 240 to
600 nm at 2 nm intervals. Ultrapure water was used as
the blank to correct for Raman scattering.

Parallel Factor Analysis

Water source discrimination was carried out using
10 indicators: K+Na®, Ca*, Mg*, CI, SO,*, HCO;,,
TDS, TOC, UV,, and DOM  three-dimensional
fluorescence spectra. Due to the difference in DOM
concentration and chemical composition, each water
sample has its unique fluorescence spectrum [35].
The reliability of water source identification using the
DOM three-dimensional fluorescence spectrum has also
been proved in the team’s previous research work [36,
37]. The three-dimensional fluorescence spectra (EEM)
of each sample are matrix data. To fully utilize the EEM
data, Parallel Factor Analysis (PARAFAC) was used to
quantify the fluorescence components in the EEM [38,
39]. PARAFAC decomposes the EEMs data into several
latent fluorescent components, and its mathematical
expression is given as [40]:

_ VN .
Xijk = Xn-1%in binCin + ey, i = 1,21

] = 1121...I ;K = 1I2I“'1K
J Ji )

Where Xijk is the fluorescence intensity for sample
i, at excitation wavelength j, and emission wavelength
k; a,, b, c, are the loading matrices representing the
contribution of component n to sample i, excitation
wavelength j, and emission wavelength £, respectively.
€ is the residual error, and N is the number of
components.

Principal Component Analysis

This paper utilized the quantified fluorescence
components as substitutes for DOM fluorescence
spectral data, combined with Na*+K", Ca*", Mg*, SO %,
HCO,, CI, TDS, TOC, and UV,,, as discriminant

indicators, to construct a dataset for water source
discrimination. Principal component analysis (PCA)
was employed to analyze the correlations among source
identification indicators and reduce redundancy by
linearly transforming the original data and extracting
the principal features. Its mathematical expression is
given as [41, 42]:

(Fl = allxl, + alzxz, + -+ aquq‘
FZ = alel, + azzxz, + -+ aquq,

Fy = apixy’ + apaxy’ + o+ apgxy’

()

Where x is the standardized value of the p-th
hydrochemical parameter for a given sample, F,, I,
..., I (m<q) are the transformed variables, mutually
uncorrelated. 7, is the linear combination of X, X, ...,
X, that captures the largest variance.

Construction of DNN Water Source
Discrimination Model

Since neural networks effectively handle the issue
of contribution distribution, neural network models are
primarily employed. Any neural network with more than
one layer can be considered a Deep Neural Network
(DNN) [43]. A DNN consists of at least two hidden
layers. Taking k inputs, m outputs, and two hidden layers
as an example, the basic structure of a DNN is shown in
Fig. 3. The left side of Fig. 3 represents the input layer,
which contains multiple input nodes x , x,, ..., x,. These
nodes represent the features of the input data, with each
feature serving as an input to the network. The input
layer is followed by multiple hidden layers, with two
layers (L, and L,) shown in Fig. 3. Each node (neuron) in
a hidden layer receives the output from all nodes in the
previous layer and performs a weighted sum with a set
of weights (connections) and biases, which is then passed
through an activation function to generate the output of
that layer. The right side of Fig. 3. represents the output

Fig. 3. Basic principle of a deep feedforward neural network.
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layer, denoted as y,, y,, ..., y,. The nodes in the output
layer take the output from the last hidden layer, apply
a weighted sum and activation function, and produce the
network’s final output, which typically corresponds to
the predicted results.

To enhance the accuracy of the DNN-based
classification model and accelerate its training process,
Bayesian Optimization (BO) is employed to optimize
key hyperparameters, including the learning rate (),
the number of neurons in each hidden layer (unmitsl,
units2, units3), and the number of training epochs
(epoch). In each iteration, BO first uses a surrogate
model to predict the performance of each candidate
point (1, unitsl, units2, units3, epoch). Then, based on
the acquisition function, it selects the most promising
point for evaluation and updates the surrogate model
using the observed data from this new candidate [44].
This process is repeated iteratively until the maximum
number of iterations specified by the BO is reached, as
shown in Fig. 4.

Fig. 5 depicts the structure and specific training
process of the DNN-based water source discrimination
model. The process begins with the DNN on the left,
where the first step involves data preparation, including
collection, cleaning, normalization, and principal
component extraction. Only after these preprocessing
steps are completed can the processed data be input
into the model for training. Upon completion of data
preparation, the model construction phase commences.
The network architecture consists of an input layer, three
hidden layers, and an output layer. Each hidden layer
is comprised of a fully connected layer, an activation
function layer, and a Dropout layer. The Dropout layer
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Fig. 5. Flow chart of the DNN water source discrimination model.
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is introduced to enhance the network’s generalization
ability.

The activation function layer employs the Leaky
ReLU function to address the vanishing gradient
problem in the neural network. The number of neurons
in each hidden layer (unitsl, units2, units3) and the
number of training epochs (epoch) are hyperparameters
to be optimized using the BO. An epoch represents one
complete pass of the entire training dataset through
both forward and backward propagation operations.
The output layer employs a softmax classifier. The
model’s loss function is the cross-entropy loss function.
The optimizer is set to Adam, with the learning rate
(n) being another hyperparameter to be optimized.
The evaluation metric for the model is the average
classification accuracy obtained from 5-fold cross-
validation. The model training phase consists of four
processes: forward propagation, loss calculation,
backpropagation, and parameter updates. The training
of the neural network stops once the set number of
epochs is reached. The final performance evaluation is
performed using 5-fold cross-validation.

The Bayesian model initially generates a random
set of hyperparameters (i, unitsl, units2, units3, epoch)
and passes them to the DNN. After training the DNN
for the specified number of epochs, the model returns
the performance (verify accuracy) of the current
hyperparameter set to the Bayesian model. Based on
this feedback, the Bayesian model generates the next set
of hyperparameters. This process is repeated iteratively,
with the Bayesian model intelligently adjusting the

Table 1. Test result statistics values.

hyperparameters based on all previous iterations, until
the predefined number of Bayesian iterations (iter) is
reached.

After determining the optimal hyperparameter
combination using the Bayesian Optimization (BO)
algorithm, the parameters (weights and biases) of the
neural network are fixed. The performance of the model
is then evaluated using the validation set, which is
partitioned through cross-validation. The accuracy of
the validation set (verify accuracy) serves as a direct
quantitative measure of the model’s generalization
ability. This process ensures the establishment of a DNN
model that is well-suited to the data while avoiding
overfitting.

Results and Discussion
Hydrochemical Characteristics

Table 1 presents the statistical values of the water
sample test results. A balance test for anions and cations
was conducted on the test results, and the relative error
E ranged from 0.0382% to 4.81%, which was less than
5% and thus can be used for subsequent research.

A Piper diagram was plotted using the measured
hydrochemical data, as shown in Fig. 6. In the
Quaternary aquifer samples, Ca?*" is the dominant
cation, while HCOs™ is the dominant anion. The water
type is HCOs-Ca, which is similar to that of atmospheric
precipitation. Water samples from the Luohe Formation

Statistical Index mass concentration/(mg-L™") uv

Source I 254

values | geiNgt | Ca? Mg Cr so> | HCO; TDS TOC fomL )

Minimum | 7.56 27.81 6.05 1.74 376 | 133.02 | 18428 | 028 0.001

Quaternary | Maximum | 19.56 88.43 1552 | 1247 | 5063 | 265.00 | 410.613 | 3.55 0.071

Average 13.52 51.50 10.77 590 | 1844 | 19645 | 30550 | 0.94 0.016

Minimum | 13.22 21.15 5.00 4.79 798 | 12370 | 18633 | 0.06 0.003

Luohe |y imum | 57.66 42.08 13.83 | 2035 | 44.03 | 30542 | 43935 | 1.95 0.044
Formation

Average | 32.83 32.54 8.39 11.14 | 2604 | 190.64 | 29078 | 0.86 0.007

Minimum | 267.54 | 10332 | 16.66 | 22.35 | 943.57 | 34.05 1499 0.11 0.001

Zhiluo oy imum | 157127 | 507.12 | 5923 | 48.00 |5001.84 | 174.96 | 776561 | 2.01 0.046
Formation

Average | 92022 | 40422 | 40.19 | 33.62 |2956.58 | 95.88 | 4458.08 | 0.81 0.009

Minimum | 56837 | 167.04 | 19.86 | 30.71 | 138642 | 68.00 | 115646 | 025 0.001

Ya'an | imum | 326033 | 477.00 | 10000 | 90123 | 5889.45 | 433.00 | 960222 | 6.01 0.748
Formation

Average | 1499.04 | 360.32 | 5229 | 155.62 | 361049 | 178.17 | 5823.84 | 1.68 0.05

Minimum | 552.47 | 18276 | 29.44 | 2832 | 195837 | 6126 | 1386.79 | 0.57 0.002

Mine water | Maximum | 1428.36 | 50623 | 81.83 | 184.38 |3875.92 | 20837 | 6094.85 | 4.33 0.112

Average | 99632 | 387.51 | 46.63 | 5235 |2989.67 | 104.65 | 453039 | 1.28 0.024
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are mainly of the HCOs-Ca-Na and HCOs-Na-Ca types,
and are relatively similar to those from the Quaternary.
Samples from the Zhiluo and Yan’an formations plot
in the upper right of the diamond field, and the main
hydrochemical types are SOs-Na and SOs-Na-Ca. The
mine water is also dominated by SOs-Na and SO4+-Na-Ca
types, showing strong similarity to the Zhiluozhen and
Yan’an formations.

Boxplots of TOC and UV,,, concentrations for each
water sample are shown in Fig. 7. The Quaternary
samples exhibited slightly higher organic matter content
than those from the Luohe and Zhiluo Formations, likely
due to direct recharge from surface water and greater
exposure to organic-rich sediments and anthropogenic
pollution. The lower TOC and UV,,, levels in the Luohe
and Zhiluo samples indicate minimal human impact.
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71— median
6L O average
EN .
an
E 4} ¢
-~
Q % .
=] ;
21 }
N .
y L i
L&:‘ = locs
=y = ¥ T
. *
Quaternary Luohe Zhiluo Yan'an mine water
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Samples from the Yan’an Formation showed higher TOC
and UV, concentrations, suggesting the dissolution of
organic matter from coal-bearing strata. TOC and UV,
levels in mine water samples fall between those of the
Zhiluo and Yan’an Formations, indicating the presence
of some dissolved organic matter as well.

PARAFAC identified three components, as shown
in Fig. 8. Based on the fluorescence region classification
[45], Component 1 (C1) consists of hydrophobic organic
acids and humic acid-like substances, Component 2 (C2)
includes tyrosine and tryptophan-containing proteins,
and Component 3 (C3) mainly consists of tryptophan
and tryptophan-containing proteins. Table 2 shows the
average fluorescence intensity of each component for
five types of water samples. In this way, the fluorescence
intensity of the three components identified by
PARAFAC replaces the experimentally measured EEM
data, providing a data foundation for the model training.

Analysis of hydrochemical characteristics among
different water sample types revealed indicator
differences, but these alone were insufficient to
accurately identify their sources. Besides, the obtained
hydrochemical data are numerous and complicated.
Therefore, it is necessary to develop a deep learning-
based model to learn the underlying relationships
among hydrochemical indicators and further identify the
sources of mine water inrush.

PCA Analysis of Data Set

K+Na*, Ca*, Mg*, CI, SO, HCO,, TDS, UV,_,
TOC, C1, C2, C3 were denoted as X, X,, X, X, X, X, X,
X, X, X,,X,,and X,,. A total of 177 groundwater samples
were selected as training samples, resulting in a dataset
X, with dimensions of 177x12. The results of the KMO
and Bartlett’s tests for dataset X, are presented in Table 3.

As shown, the KMO value, approximate chi-square,

b) UV254
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Fig. 7. Box diagram of TOC and UV, concentration in each water sample.



Junging Sun, et al.

a) Fluorescence spectrum-C1

600
Component 1
550

500

600

550

500

450 450

/nm

EM

400 2 400

A

350 350

300 300

250 250

b) Fluorescence spectrum-C2

Component 2

¢) Fluorescence spectrum-C3

Component 3

/mm

250

d) Fluorescence load-C1

e) Fluorescence load-C2

300 350 400
A nm
EX

f) Fluorescence load-C3

0.5 —
04 N 285 hex Aex
X === hau
_ Iy e 308 -y 8 0.4 :
13 ' &) " Gt
% z ] <
= 203 N ', g
202 i<l ' -
= X 3 225,50 | 1 802
2 N =0.2 ' 8
g \ 8 |} Q
o A @ ' 2
2 [N o ' =
5 g0 | E
E 0.0 Sea = N =00 ="' N ‘veeeeea
0.0 g B PSR W |
200 300 400 500 600 2002000500600 20N Ajoo S0 600
Anm AMnm nm

Fig. 8. Three-dimensional fluorescence spectra of DOM components.

Table 2. Average fluorescence intensity of each component.

Source C1 C2 C3
Quaternary 254.98 981.783 320.54
Luohe 250.80 306.34 242.33
Zhiluo 224.61 265.59 252.23
Yanan 321.54 350.46 331.27
Mine water 308.16 37532 383.92

degrees of freedom, and significance level are 0.729,
2477966, 66, and 0, respectively. Therefore, it is
concluded that there is sufficient correlation among the
variables in dataset X, making it suitable for principal
component analysis. The total variance explanation of
X, is shown in Table 4. As can be seen, the cumulative
contribution rate of the first six principal components (F,
to F,) exceeds 90%, encompassing the majority of the
information in X,. Therefore, six principal components

Table 3. KMO and Bartlett test results.

were selected, resulting in a dataset X, with dimensions
of 177x6. Dataset X, was then used to train the DNN
water source discrimination model.

DNN Water Source Discrimination Model
Model Training
The dimensionality-reduced dataset X, was
employed to train the DNN model for water source
discrimination. For the DNN model utilized in this
paper, the hyperparameters requiring optimization are
(n, unitsl, units2, units3, epoch). These parameters define
the domain space of the DNN model, and their respective
value ranges are presented in Table 5. The BO algorithm
was employed as the search algorithm, with the average
accuracy of 5-fold cross-validation during DNN model
training serving as the evaluation metric. Additionally,
the dropout rate and batch size were manually specified

as hyperparameters, set to 0.5 and 32, respectively. These
values are commonly adopted in practice and were not

Bartlett
KMO
Approximate chi-square Degree of freedom Significance
0.729 2477.966 66 0.000
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Table 4. Total variance interpretation.

Component Eigenvalue Variance percentage Cumulative contribution rate %
F, 5.091 42.424 42.424
F, 2.091 17.426 59.849
F, 1.553 12.938 72.787
F, 1.264 10.532 83.319
F 0.741 6.177 89.496
F, 0.504 4.202 93.698

Table 5. Hyperparametric domain space of DNN.

Hyperparameter Domain space
Learning rate (7) (0.001,0.1)
Number of neurons 1 (units1) (64,256)
Number of neurons 2 (units2) (32,64)
Number of neurons 3 (units3) (16,32)
Number of training rounds (epoch) (50,120)
Dropout rate (dropout) 0.5
Batch size (batch size) 32
Number of Bayesian iterations (iter) 50
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subjected to further adjustment. The number of iterations
for the Bayesian optimization algorithm was set to 50.
After 50 iterations, the Bayesian optimization
algorithm identified the optimal parameter combination
as (7, unitsl, units2, units3, epoch) = (0.0844, 142, 64,
19, 82). Under this parameter combination, the model
achieved an average accuracy of 96.31%, surpassing the
expected threshold of 95%. Therefore, it is concluded
that 50 iterations are sufficient to meet the training
requirements of the model. Fig. 9 illustrates the training
accuracy, validation accuracy, and training loss for
each fold of the 5-fold cross-validation under this
parameter combination, plotted as a function of epochs

for the DNN model.
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Fig. 9. Epochs trajectory of the deep neural network.

The trends observed in Fig. 9a) to Fig. 9¢) are similar.
Here, Fig. 9a), corresponding to the first fold, is taken as
an example for analysis.

The left half of Fig. 9a) depicts the changes in the
accuracy of the DNN model on the training set (red
line) and the validation set (blue line). Both accuracy
curves exhibited a sharp initial increase, followed by
a gradual slowdown in growth as training progressed,
eventually stabilizing at 93.05% for the training set
and 95.48% for the validation set. This trend indicates

0 10 20 30 40 50 60 70 80
epochs

strong generalization capabilities of the model. The right
half depicts the training loss over epochs, showing a
rapid initial decline followed by a gradual stabilization
around 0.000153. This low loss indicates near-optimal
performance on the training set.

By synthesizing the epoch trajectories in Figs. 9a)
to 9e), it is evident that the model exhibits strong
learning and generalization capabilities, with no signs of
overfitting.
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Table 6. 5-fold cross-validation performance.

Folds Accuracy Precision Recall fl_score
Fold 1 95.48% 95.02% 95.31% 95.34%
Fold 2 96.57% 96.24% 96.25% 96.19%
Fold 3 96.41% 96.12% 96.21% 95.98%
Fold 4 95.93% 95.87% 95.72% 95.82%
Fold 5 97.14% 97.47% 97.14% 97.08%
average 96.31% 96.14% 96.13% 96.08%

Table 6 presents the performance of the validation
set for each fold during cross-validation. As shown in
Table 6, the average values of accuracy, precision, recall,
and F-measure for the validation set across the 5-fold
cross-validation were 96.31%, 96.14%, 96.13%, and
96.08%, respectively. The model exhibited consistent
performance across all folds, demonstrating robust
stability. An accuracy of 96.31% indicates that the model
maintains highly accurate predictions across different
data subsets. The high precision, recall, and F-measure
values indicate the balanced performance of the model
across all categories. These results demonstrate the
model’s excellent performance during cross-validation,
suggesting its reliability for discriminating water
sources in coal seam roof water inflow.

Model Testing

To intuitively analyze the fitting performance of the
DNN water source discrimination model on the training
set, the model was applied to classify 177 water samples
used in training. Only one misclassification occurred,
indicating that the model has effectively learned the
features of the training data.

To verify the generalization ability of the DNN water
source discrimination model on new samples, the model

was used to classify the mine water from the 20 test
samples mentioned earlier (Table 7), with comparisons
made to SVM, LR, RF, and AFSA-RF models from
earlier work [34]. In Table 7, the mine water samples
numbered 1-5 were respectively taken from the water
exploration boreholes HF2-1, HF7-2, YS5-2, DQ2-1,
and DHI1-3 in Mine A, with the final borehole positions
located in the middle-lower section of the Zhiluo
Formation aquifer (ZL). Mine water samples numbered
15-20 were respectively taken from the water exploration
boreholes ZJ2, 7J3, 7ZJ6, ZJ8, and ZJ9 in Mine B. The
boreholes penetrated the No. 2 coal seam at a depth of
2-3 m, with the final borehole positions located in the
Yanan Formation aquifer (YA). Mine water samples
numbered 6-8 were collected from the drainage points in
the auxiliary vertical shaft tunnels of Mine B. Samples
numbered 9-10 were taken from the water inflow points
in the excavation tunnels of Mine B. Samples numbered
11-12 were collected from the water inflow points in the
excavation tunnels of Mine A. Samples numbered 13-14
were obtained from the drainage points in the auxiliary
vertical shaft tunnels of Mine A.

During the construction of the exploration and
drainage boreholes, casing pipes were installed to
ensure effective isolation between the borehole walls
and the surrounding aquifer, thereby guaranteeing

Yanan Luohe

Water sample source

Zhiluo

—-5VM
—@—LR

A RF

—¥— AFSA-RF
—9—DNN

Actual source

10

12 14 16 18 20

Number of test sample

Fig. 10. Discriminant results of mine water sample.
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the singularity of water samples at the terminal layer.
Mine B primarily mines the No. 2 coal seam. In the
previously mined areas, there is essentially no effective
aquitard between the roof of the No. 2 coal seam and
the Zhiluo Formation aquifer. The mining-induced
water-conducting fracture zone has developed and
vertically connected the aquifer, allowing water from
the Zhiluo Formation to flow into the tunnels through
the mining-induced fractures. During this process, a
small amount of water from the Yan’an Formation was
mixed in, but since the aquifer of the Yan’an Formation
has poor water yield, its influence can be neglected.
During the production process at Mine A, coal seam
mining induced roof fracture zones that directly connect
the fissure water-bearing layers from the 2 coal seam
roof to the 3-1 coal seam floor. This aquifer section
serves as the direct water source for Mine A. Based
on the previous hydrogeological exploration data, on-
site construction conditions, and the sampling point
locations, it is concluded that water samples 1-10 are
from the Zhiluo Formation aquifer, while samples 11-20
are from the Yan’an Formation aquifer.

The discrimination results are shown in Fig. 10.
The SVM, LR, RF, and AFSA-RF models misclassified

Table 7. Test results and sources of mine water samples (test set).

5,5, 4, and 2 samples, respectively, while the DNN water
source discrimination model’s predictions were fully
consistent with field observations. This demonstrates its
high reliability in practical applications.

To evaluate the overall performance of different
discrimination models, the cross-validation performance,
misclassifications in the 177-sample training set, and
mine water misclassifications of the five discrimination
models-DNN, AFSA-RF, RF, LR, and SVM are listed in
Table 8, ranked from highest to lowest accuracy.

As shown in Table 8, the DNN model outperformed
the others, with its average cross-validation accuracy,
precision, recall, and F1 score significantly higher
than those of the three shallow machine learning
discrimination models. Additionally, the DNN model
has no misclassifications in the mine water (testing
set). In comparison, the AFSA-RF, RF, LR, and SVM
models exhibit slightly lower accuracy and performance
metrics, with a notable number of misclassifications
observed in both the training and test sets. While
AFSA-RF enhanced the performance of RF to some
extent, its accuracy still requires further enhancement.
This demonstrates the robustness of DNN models,
providing a novel methodology for efficient and accurate

Index mass concentration/(mg-L™") uv Fluorescence intensity/(R.U.)
Number 23 Source
K*+Na"| Ca* | Mg*¥ | CI SO |HCO, | TDS | TOC | iemL ) Cl C2 C3
1 650.23 | 451.98 | 45.48 | 38.21 [2458.92| 87.86 |3832.45|0.873 | 0.003 |354.56 | 163.28 174.32 ZL
2 849.05 | 475.46 | 50.42 | 39.04 |2868.93 | 94.53 |4288.75|1.236| 0.005 6.74 | 264.35 213.43 ZL
3 790.82 | 506.23 | 29.56 | 38.43 |2813.24| 92.16 |4235.12|0.749 | 0.053 | 325.68 | 150.04 170.32 ZL
4 552.47 | 453.21 | 33.83 | 28.76 |2263.25| 61.26 [3397.47|0.975| 0.017 41.51 | 344.38 483.86 ZL
5 912.65 | 421.26 | 38.53 | 36.21 [3105.63| 93.26 |5021.42|0.583 | 0.002 |302.16 | 243.54 156.32 ZL
6 1033.45 | 457.86 | 42.35 | 30.68 |3387.65| 86.53 |5045.64|0.597 | 0.002 |308.12 | 251.27 156.74 ZL
7 1237.86 | 463.24 | 41.25 | 39.05 |3625.84| 82.36 |5489.43|0.816 | 0.002 | 111.24 | 492.31 576.27 ZL
8 1383.41 | 477.84 | 46.53 | 39.02 |3875.92| 142.64 | 5784.21|0.763 | 0.003 | 86.21 |283.47 274.32 ZL
9 1168.27 | 473.27 | 43.52 | 36.05 |3864.57| 106.87 | 5432.84 | 1.926 | 0.039 |904.27 | 186.52 206.43 ZL
10 1314.67 | 482.28 | 45.28 | 39.56 |3803.96 | 145.68 | 5765.76| 0.825 | 0.003 | 84.48 | 274.52 267.64 ZL
11 586.41 | 343.58 | 31.92 | 42.46 [2039.48 | 108.32 | 1386.79 | 1.542/| 0.004 | 70.25 | 412.58 230.46 YA
12 752.75 | 272.45 | 29.44 | 28.32 |2402.46| 65.21 [3603.12]0.568 | 0.009 | 367.47 | 662.15 580.84 YA
13 648.46 |316.58 | 31.87 | 76.12 | 1958.37| 115.89 |3166.59 | 0.762 | 0.012 | 134.56 | 165.32 112.78 YA
14 1171.19 [ 302.15 | 81.83 | 64.75 |3010.18 | 137.85 | 5541.27|2.382 | 0.053 | 923.12 | 768.46 1074.78 YA
15 1370.72 | 311.58 | 74.48 | 63.84 |3152.68 | 89.53 |5142.56|4.328 | 0.112 | 336.75 | 264.78 305.67 YA
16 1428.36 | 400.27 | 70.55 | 109.23 | 3800.36 | 129.87 | 6094.85| 0.632 | 0.012 | 75.67 | 257.48 351.29 YA
17 1214.57 | 182.76 | 48.95 | 184.38 | 2742.55| 208.37 | 4531.02 | 1.754 | 0.032 | 254.75 | 302.69 351.06 YA
18 791.84 |297.62 | 36.57 | 35.28 [2431.25| 73.18 |3623.86|0.608 | 0.013 | 376.46 | 673.49 594.82 YA
19 1259.41 | 368.34 | 75.68 | 44.47 |3711.23 | 98.58 |5593.48 | 1.842 | 0.054 | 734.58 | 664.32 796.73 YA
20 1259.41|368.34 | 75.68 | 44.47 |3711.23 | 98.58 [5593.48 | 1.842 | 0.054 | 734.58 | 664.32 796.73 YA
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Table 8. Performance comparison of the water source discrimination model.
Models Average Ave.ra.ge Average Average T.ra.ining set Mipe water
accuracy precision recall fl score misjudgment misjudgment
DNN 96.31 96.14 96.13 96.08 1 0
AFSA-RF 91.29 91.38 90.59 91.05 5 2
RF 85.06 88.47 86.31 85.74 9 4
LR 83.26 87.52 85.79 84.96 21 5
SVM 73.48 75.65 79.69 75.13 27 5

identification of water sources during coal seam roof
water outburst events.

Conclusions
Through comprehensive approaches including
geological data analysis, in-situ water sampling,
laboratory chemical experiments, and statistical

analysis, we analyzed the hydrochemical characteristics
of groundwater in the study area, constructed a dataset
of water source indicators, and developed a deep neural
network (DNN) model for source discrimination, which
was subsequently validated for reliability.

(I) The hydrochemical types of water samples from
the Quaternary and Luohe formations are HCO,-Ca‘(Na)
and HCO,-Na-Ca, while those from the Zhiluo, Yan’an
formations, and mine water are SO,-Na-(Ca). Three
fluorescent components were extracted and quantified
from the three-dimensional using parallel factor analysis
(PARAFAC). Significant differences are observed
among the water types in terms of UV, absorbance,
TOC concentrations, and fluorescent regions of dissolved
organic matter, with mine water exhibiting relatively
more complex organic compositions. The organic matter
content in the Yan’an Formation and mine water samples
is relatively high, which is related to the dissolution of
organic matter from the coal seams.

(2) The initial dataset constructed from 12 water
quality parameters (Na™+K*, Ca*, Mg*, SO*, HCO,,
CI, TDS, TOC, UV,,,, Cl, C2, C3) exhibited significant
information redundancy. Principal component analysis
(PCA) was subsequently employed for dimensionality
reduction, effectively compressing the dataset from 12
dimensions to 6 principal components. This optimized
dataset served as the fundamental input for establishing
the water source discrimination model.

(3) The Bayesian optimization algorithm was
employed to optimize the hyperparameters of the deep
neural network (DNN), yielding the optimal parameter
combination: (1, unitsl, units2, units3, epoch) = (0.0844,
142, 64, 19, 82). With this parameter set, the DNN
model achieved a cross-validation accuracy of 96.31%,
representing improvements of 4.92%, 10.95%, 12.95%,
and 22.73% over the SVM, LR, RF, and AFSA-RF
models from previous studies, respectively. And the

DNN model correctly identified all 20 test samples.
These results demonstrate that the DNN model can
provide a new approach for accurate discrimination of
mine water sources.

This paper developed a water source identification
model using deep learning, which effectively captured
the intrinsic patterns within complex, high-dimensional
hydrochemical data while minimizing the influence of
human bias. Unlike previous studies that relied mainly
on traditional inorganic indicators such as the six
major ions or solely on DOM fluorescence spectra, this
paper integrated both inorganic and organic indicators
for comprehensive analysis. The model was validated
using field water samples from three representative coal
mines in western China, demonstrating its robustness
and reliability. Although the validation was conducted
at the regional scale, the proposed approach shows good
generalizability. Future research will incorporate data
from diverse hydrogeological settings to further expand
the applicability of the model.

Acknowledgments

This research was financially supported by
the National Natural Science Foundation of China
(52204262, 52374255), the Shaanxi province innovation
ability support plan project (2024RS-CXTD-44), and
the Shaanxi Outstanding Youth Science Fund Project
(2025JC-JCQN-012). The authors would like to thank
the editors and anonymous reviewers for their comments
and suggestions, which greatly helped us to improve this
manuscript. The authors are grateful to the anonymous
reviewers for their helpful comments on the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. DONG S.N.,, ZHOU W.F, LIU Q.S., WANG H.,, JI Y.D.
Methods and Techniques for Preventing and Mitigating
Water Hazards in Mines. Springer International
Publishing: Cham, Switzerland, 2021.



14

Junging Sun, et al.

10.

11.

12.

13.

14.

15.

16.

17.

LI Y., PAN S.Q., NING S.Z., SHAO LY., JING ZH.,
WANG Z.S. Coal measure metallogeny: Metallogenic
system and implication for resource and environment.
Science China-Earth Sciences. 66 (7), 1211, 2022.

ZENG Y.F.,, PANG Z.Z., WU Q., LIAN H.Q., DU X. Roof
Water Disaster in Coal Mining in Ecologically Fragile
Mining Areas: Formation Mechanism and Prevention
and Control Measures. Springer International Publishing:
Cham, Switzerland, 2023.

DONG S.N,, WANG H.,, GUO X. ZHOU ZF.
Characteristics of Water Hazards in China’s Coal Mines:
A Review. Mine Water and the Environment. 40 (2), 325,
2021.

WU Q., MU W.P, XING Y. Source discrimination of
mine water inrush using multiple methods: A case study
from the Beiyangzhuang Mine[lnorthern China. Bulletin
of Engineering Geology and the Environment. 78 (1), 469,
2019.

DONG D.L., ZHANG J.L. Discrimination Methods of
Mine Inrush Water Source. Water. 15 (18), 3237, 2023.
JIY., YU L.J, WEI Z.L., DING J.,, DONG D.L. Research
Progress on Identification of Mine Water Inrush Sources:
A Visual Analysis Perspective. Mine Water and the
Environment. 44 (1), 3, 2025.

LI C, GUI H.R, CHEN JY.,, GUO Y., LI J, HAO Y.,
XU JY. Hydrogeochemical Characteristics of Limestone
Water in Taiyuan Formation of Hengyuan Coal Mine and
Its Response to High Pressure Grouting Project. Polish
Journal of Environmental Studies. 31 (6), 5095, 2022.
ZENG Y.F., MEI A.S., WU Q., HUA Z.L., ZHAO D., DU
X., WANG L., LV Y., PAN X. Source discrimination of
mine water inflow or inrush using hydrochemical field and
hydrodynamic field tracer simulation coupling. Journal of
China Coal Society. 47 (12), 4482, 2022.

BI Y.S., WU JW,, ZHAI X.R, WANG G.T., SHEN S.H.,
QING X.B. Discriminant analysis of mine water inrush
sources with multi-aquifer based on multivariate statistical
analysis. Environmental Earth Sciences. 80 (4), 144,
2021.

ZHENG Q.S., WANG C.F, YANG Y., LIU WT., ZHU
Y. Identification of mine water sources using a multi-
dimensional ion-causative nonlinear algorithmic model.
Scientific Reports. 14 (1), 3305, 2024.

WANG M., ZHANG J.G., WANG XY., ZHANG B,
YANG Z.W. Source Discrimination of Mine Water by
Applying the Multilayer Perceptron Neural Network
(MLP) Method — A Case Study in the Pingdingshan
Coalfield. Water. 15 (19), 3398, 2023.

WEI Z.L., DONG D.L., JI Y., DING J, YU L.J. Source
Discrimination of Mine Water Inrush Using Multiple
Combinations of an Improved Support Vector Machine
Model. Mine Water and the Environment. 41 (4), 1106,
2022.

LING J.R., FU Z.B., XUE K.L. Rapid identification model
of mine water inrush source using random forest optimized
by multi-strategy improved sparrow search algorithm.
Heliyon. 10 (15), e43523, 2024.

TAN P.N., STEINBACH M., KUMAR V. Introduction to
Data Mining. Addison Wesley, Pearson Education, Inc:
London, Britain, 2006.

GRUNE L. LARS G. Overcoming the curse of
dimensionality for approximating Lyapunov functions
with deep neural networks under a small-gain condition.
Ifac Papersonline. 54 (9), 317, 2021.

MAVAIE P, HOLDER L., SKINNER MICHAEL K.
Hybrid deep learning approach to improve classification

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

of low-volume high-dimensional data. Bmc Bionformatics.
24 (1), 419, 2023.

YASUHIKO S. Deep Learning from Scratch. O’Reilly
Japan, Inc.: Tokyo, Japan. 2016.

MA H., ZHAO W.J, LI FH, YAN HH., LIU Y.H.
Study on Remote Sensing Image Classification of Oasis
Area Based on ENVI Deep Learning. Polish Journal of
Environmental Studies. 32 (3), 2231, 2023.

YANG C., ZHU SY., YAO CW.,, XIAO S.J. Analysis
of hydrochemical evolution in main discharge aquifers
under mining disturbance and water source identification.
Environmental Science and Pollution Research. 28 (21),
26784, 2021.

CHEN Y., TANG L.S., ZHU S.Y. Comprehensive study on
identification of water inrush sources from deep mining
roadway. Environmental Science and Pollution Research.
29 (13), 19608, 2022.

JIANG C.L., ZHU S.J,, HU H., AN S.K., SU W., CHEN
X., LI C., ZHENG L.G. Deep learning model based on big
data for water source discrimination in an underground
multiaquifer coal mine. Bulletin of Engineering Geology
and the Environment. 81 (1), 26, 2021.

JIANG Q.L., LIU QM. LIU Y., CHAI H.C,, ZHU J.Z.
Groundwater chemical characteristic analysis and water
source identification model study in Gubei coal mine,
Northern Anhui Province, China. Heliyon. 10 (5), 26925,
2024.

FANG B. Method for Quickly Identifying Mine Water
Inrush Using Convolutional Neural Network in Coal Mine
Safety Mining. Wireless Personal Communications. 127
(2), 945, 2022.

YAN P.C., ZHAO YT, LI G.D.,, WANG JB., WANG
W.C. Water source identification in mines combining LIF
technology and ResNet. Journal of Mountain Science. 20
(11), 3392, 2023.

VIDNEROVA P, KALINA J. Multi-objective Bayesian
Optimization for Neural Architecture Search. 21%
International Conference on Artificial Intelligence and
Soft Computing (ICAISC): Zakopane, Poland, 2023.
SYLVAIN G., CELINE A., LAURENT B., MICHAEL
V.G., MICHAEL N., PASCAL M. To Estimate or to
Forecast? Lessons From a Comparative Analysis of Four
Bayesian Fitting Methods Based on Nonparametric
Models. Therapeutic Drug Monitoring. 43 (4), 461, 2021.
CASANOVA R.H., CONDE A., PEREZ C.S. Hour-Ahead
Photovoltaic Power Prediction Combining BiLSTM
and Bayesian Optimization Algorithm, with Bootstrap
Resampling for Interval Predictions Sensors (Basel,
Switzerland). 24 (3), 882, 2024.

WANG M., LU X K., ZHOU Y.D. Gun Life Prediction
Model Based on Bayesian Optimization CNN-LSTM.
Integrated Ferroelectrics. 228 (1), 107, 2022.

WANG Q.M., DONG S.N., WANG H., YANG J., HUANG
H., DONG X.L., YU B. Hydrogeochemical processes and
groundwater quality assessment for different aquifers in
the Caojiatan coal mine of Ordos Basin, northwestern
China. Environmental Earth Sciences. 79 (9), 199, 2020.
ZENG Y., PANG Z., WU Q., HUA Z., LV Y., WANG
L.,ZHANG Y., DU X., LIU S. Study of Water-Controlled
and Environmentally Friendly Coal Mining Models in an
Ecologically Fragile Area of Northwest China. Mine Water
and the Environment. 41 (3), 802, 2022.

XUE W.F,HOU EK., ZHAO X., YE Y., TSANGARATOS
P, ILIA 1., CHEN W. Discriminant Analysis of Water
Inrush Sources in the Weibei Coalfield, Shaanxi Province,
China. Water. 15 (3), 453, 2023.



Identification of Mine Water Inflow Source...

15

33.

34.

35.

36.

37.

38.

SHANG H.B., WANG H., WANG T.T., XUE J.K., ZHOU
Z.F. Infiltration Characteristics of Surface Water in
Coal Seam Mining Beneath Gullies and Corresponding
Preventive Measures. Polish Journal of Environmental
Studies. 34 (4), 3779, 2025.

WANG H., SUN J.Q., ZENG Y.F., SHANG H.B., WANG
T.T., QIAO W. An intelligent water source discrimination
method for water inrushes from coal seam roofs in the
Inner Mongolia-Shaanxi border region. Coal Geology &
Exploration. 52 (4), 76, 2024.

HAO CM. HE KK. LIU C, WANG YT, GUI
H.R. Contrasting Spectroscopic Characterization and
Environmental Behavior of Dissolved Organic Matter in
Shallow and Deep Mine Water of Shendong Mining Area,
China. Polish Journal of Environmental Studies. 32 (5),
4011, 2023.

YANG J, LIU J, JIN DW., WANG QM. Method
of determining mine water inrush source based on
combination of organic-inorganic water chemistry. Journal
of China Coal Society. 43 (10), 2886, 2018.

SUN 1.Q., WANG H., YANG J., SHANG H.B, WANG T.T,
QIAO W. Application of inorganic-organic comprehensive
index in identifying water inrush source of coal seam roof.
Safety in Coal Mines. 54 (12), 182, 2023.

CHEN X.D., GAO L.M., CHEN X.Q., PANG Z.D., GE
J., ZHANG H.Q., ZHANG Z., MU M., QIU Y.H., ZHAO
X.L. Spectral Characteristic Changes of Dissolved
Organic Matter in Aquatic Systems Under the Influences
of Agriculture and Coal Mining. Polish Journal of
Environmental Studies. 31 (3), 2549, 2022.

39.

40.

41.

42.

43.

44,

45.

MU M., GAO L.M., ZHANG H.Q., GE J., ZHANG Z.,
QIU Y.H., ZHAO X.L. Characterization of Dissolved
Organic Matter Components of Agricultural Waste
Sources in Water Bodies Based on EEMs. Polish Journal
of Environmental Studies. 32 (3), 2261, 2023.

STEDMON C.A, BRO R. Characterizing dissolved organic
matter fluorescence with parallel factor analysis: a tutorial.
Limnology and Oceanography: Methods. 6 (11), 572, 2008.
YANG ZW., LV H., WANG X.Y., YAN H.R., XU Z.F.
Classification of Water Source in Coal Mine Based on
PCA-GA-ET. Water. 15 (10), 1945, 2023.

YU J, CAO Y.T., SHI F, SHI J.G., HOU D.B., HUANG
PJ., ZHANG G.X.,, ZHANG H.J. Detection and
Identification of Organic Pollutants in Drinking Water
from Fluorescence Spectra Based on Deep Learning Using
Convolutional Autoencoder. Water. 13 (19), 2633, 2021.
QIU X.P. Neural Networks and Deep Learning. Beijing:
China Machine Press: Beijing, China, 2020.

LAI Y.C. Application and Effectiveness Evaluation of
Bayesian Optimization Algorithm in Hyperparameter
Tuning of Machine Learning Models: 2024 International
Conference on Power, Electrical Engineering, Electronics
and Control, Peeec: Athens, Greece, 2024.

CHEN W, WESTERHOFF P, LEENHEER JA.
BOOKSH K. Fluorescence excitation-emission matrix
regional integration to quantify spectrafor dissolved
organic matter. Environmental Science &Technology. 37
(24), 5701, 2003.



