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Abstract

This study aims to evaluate the treatment effect of agricultural fertilizer non-point source
pollution and propose corresponding treatment strategies. The study selected typical agricultural areas
in northern China and collected multi-source data, including soil, meteorology, crop growth,
and fertilizer application. Through big data and machine learning methods, combined with precision
fertilization, green fertilizer promotion, irrigation management, and ecological restoration measures,
pollution source analysis, pollution diffusion prediction, and risk assessment were carried out. After
the implementation of the treatment measures, the nitrogen and phosphorus content in the soil was
significantly reduced, and the concentration of pollutants in water and soil also dropped significantly.
Crop yields increased after implementation, verifying the feasibility and effectiveness of the treatment
measures. The results show that the combined application of precision fertilization and green fertilizers
effectively reduced the pollution risk caused by excessive fertilizer application, and achieved different
degrees of treatment effects in different regions. In the future, with the advancement of remote sensing
technology, Internet of Things technology, and data analysis algorithms, the treatment of agricultural

non-point source pollution will be further improved.

Keywords: agricultural fertilizer, non-point source pollution, precision fertilization, green fertilizer,
pollution spread prediction, ecological restoration

Introduction

Agricultural fertilizer non-point source pollution
refers to the non-point source pollution to the ecological
environment caused by excessive application or
improper management of fertilizers, which causes
nutrients such as nitrogen and phosphorus in fertilizers
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to be lost to surface water or seep into groundwater.
This type of pollution is dispersed, hidden, and
complex, and is difficult to effectively control through
simple governance measures. In recent years, with the
improvement of the level of agricultural production
intensification, the total amount of fertilizer used in
China has remained high, and some areas have even
experienced excessive fertilizer application, which has
directly led to a series of environmental problems, such
as soil eutrophication, algal blooms in water bodies, and
excessive nitrates in groundwater. Studies have shown
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that nearly 60% of rivers in China have deteriorated
in water quality due to agricultural non-point source
pollution, and the ecosystem service function has been
significantly weakened [1, 2].

Globally, agricultural non-point source pollution is
one of the key difficulties in environmental governance.
Although developed countries have established relatively
complete pollution monitoring and governance systems,
they still face high costs and technical bottlenecks
in fertilizer management and farmland ecological
restoration. For developing countries, resource
limitations, technical shortcomings, and insufficient
policy implementation make non-point source pollution
control more challenging [3]. Taking China as an
example, although the government has proposed the
goal of “zero growth in fertilizer by 2025”, there are
still many problems in the implementation process, such
as low acceptance of green agricultural technology by
farmers, imperfect monitoring systems, and backward
technical means. At the same time, climate change
and extreme weather have exacerbated the uncertainty
of non-point source pollution, and put forward higher
requirements for the scientific nature of governance
measures [4, 5].

Big data and machine learning technologies provide
a new approach to solving the problem of agricultural
non-point source pollution. Through remote sensing
images, Internet of Things sensors, and agricultural
management  systems, farmland  environmental
data can be collected in real time, including multi-
dimensional information such as soil nutrient content,
crop growth status, and meteorological conditions. Big
data technology can clean, integrate, and analyze these
complex, multi-source, heterogeneous data to form
an efficient pollution monitoring and decision support
system [6, 7]. Machine learning can train models to
mine potential patterns from massive amounts of data
to predict pollution risks, optimize fertilizer application
plans, and evaluate governance effects. For example,
deep learning algorithms can be used to establish an
accurate non-point source pollution prediction model to
help farmers apply fertilizers scientifically and reduce
pollution emissions at the source [8, 9].

The innovation of this study is reflected in the
following aspects: First, the technical means of
combining big data and machine learning are used to
break the limitations of traditional pollution control
methods and provide a more intelligent and dynamic
solution for non-point source pollution control. Second,
based on the characteristics of Chinese agriculture,
a model and governance path that adapts to local needs
are constructed to improve the practical application
value of the research. In addition, this study not only
focuses on technological innovation, but also pays
attention to the combination with policy and economic
factors, and proposes an operational comprehensive
governance strategy [10].

This study mainly includes the following aspects:
First, analyze the main causes of agricultural fertilizer

non-point source pollution and its spatiotemporal
distribution characteristics, and identify the key areas
and key issues of pollution control. Secondly, use
big data technology to build a pollution monitoring
system, integrate data resources from remote sensing,
the Internet of Things, and agricultural management
systems, and provide high-quality basic data support for
pollution prediction and decision-making. Thirdly, based
on machine learning algorithms, establish a pollution
risk prediction model and fertilization optimization
plan to achieve closed-loop management from data
collection to governance plan formulation. In addition,
through empirical research, verify the feasibility and
effectiveness of the technical path, and put forward
policy recommendations for non-point source pollution
control.

Literature Review

Application of Big Data and Machine Learning
in Agricultural Fertilizer Application Monitoring

In recent years, with the transformation of global
agriculture towards intensive development, efficient
management of fertilizer application has become an
important research direction in the agricultural field.
Big data and machine learning technologies provide
a new method for real-time monitoring of fertilizer
application. In one study, a high-resolution fertilizer
application rate prediction model was constructed using
historical data on global fertilizer application. The model
significantly improved the accuracy of fertilization
decisions by integrating multiple data sources, including
climate conditions, crop growth cycles, and soil
properties. These studies have shown that prediction
models based on big data analysis can effectively
help farmers optimize fertilization strategies, thereby
reducing environmental pollution problems caused
by excessive fertilizer application [11]. In addition,
machine learning technology has also been widely used
in the dynamic prediction of fertilizer demand. Some
studies have developed intelligent fertilizer management
systems based on machine learning algorithms, which
collect crop growth and soil nutrient data through
sensors, combine climate prediction information, and
dynamically adjust fertilizer application. For example,
deep learning algorithms have shown high accuracy
in predicting nitrogen fertilizer demand at various
growth stages of crops, providing theoretical support for
precision agriculture. These technologies have not only
improved agricultural production efficiency but also
significantly reduced the environmental emission load of
fertilizers. Although these studies have made significant
progress, there are also some challenges. For example,
data quality and data collection standardization still
need to be further improved, and the differences
between different crops and regions put forward
higher requirements for the applicability of the model.
In addition, the storage and processing of large-scale
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data also pose challenges to infrastructure construction.
How to efficiently use big data with limited resources is
an important direction for future research.

Application of Machine Learning in Soil
Pollution Identification and Remediation

The identification and remediation of soil pollution is
an important part of non-point source pollution control.
In particular, in agricultural non-point source pollution,
excessive application of fertilizers often leads to the
enrichment of nitrogen, phosphorus, and other elements
in the soil, affecting the health of farmland ecosystems.
In the past five years, machine learning technology has
shown unique advantages in the field of soil pollution
identification. Some studies have built efficient soil
pollution prediction systems by introducing machine
learning algorithms, such as support vector machines
and random forest models. These systems can quickly
determine the type and degree of pollution by combining
the physical and chemical parameters of the soil, and
accurately locate the spatial distribution of pollution.
In terms of remediation, machine learning provides
strong support for the screening and optimization of
remediation technologies [12]. For example, some
studies use machine learning to predict and evaluate
the adsorption performance and degradation capacity of
remediation materials, greatly shortening the screening
cycle. Other studies have built a neural network-based
model to predict the environmental impact of different
remediation measures and help decision makers choose
a more sustainable remediation path. However, the
complexity of soil pollution problems poses severe
challenges to the application of machine learning
technology. The diversity and regional differences of
soil pollution make data collection and model training
more difficult. In addition, the black box problem of the
model can easily lead to doubts about the interpretability
of the results in practical applications [13]. Future
research needs to further develop algorithms with higher
transparency and robustness to enhance the applicability
and trustworthiness of the model.

Combining Satellite Remote Sensing and Machine
Learning in Environmental Monitoring

With the development of remote sensing technology,
satellite image data is increasingly used in environmental
monitoring. Combining remote sensing data with
machine learning provides a low-cost, high-efficiency
solution for monitoring non-point source pollution.
Some studies use high-resolution satellite images and
convolutional neural networks (CNNs) to dynamically
monitor fertilization management in farmland. These
technologies can identify areas of excessive fertilizer
application in real time and assess the potential impact
of fertilization on surrounding water bodies, providing
important reference for environmental regulatory
authorities [14].

In addition, the combination of remote sensing
and machine learning has shown advantages in
cross-regional pollution monitoring. Some studies
have constructed spatiotemporal dynamic models of
pollution diffusion by integrating multi-temporal and
multi-spectral remote sensing data. These models
can accurately capture the diffusion path and speed of
pollution and provide data support for regional pollution
control. For example, by monitoring the diffusion
trajectory of nitrogen oxides, researchers can predict
the eutrophication risk of rivers and lakes and develop
targeted governance strategies.

Despite this, the application of remote sensing data
also faces certain bottlenecks. The acquisition cost of
high-resolution image data is high, and it is also greatly
affected by external factors such as weather and terrain.
In addition, the processing and analysis of remote
sensing data place high demands on computing power,
which limits its promotion and application in resource-
limited areas. In the future, with the development of
cloud computing and artificial intelligence technology,
the combination of remote sensing and machine learning
is expected to further break through these technical
bottlenecks and become a core means of environmental
monitoring [15].

By combing through the relevant literature in the
past five years, it can be found that big data and machine
learning technologies have shown great application
potential in the fields of agricultural fertilizer
application monitoring, soil pollution identification
and remediation, and environmental monitoring.
These technologies provide new perspectives and
methods for pollution control, significantly improving
the accuracy of monitoring and the efficiency of
governance. However, data quality, model applicability,
and algorithm transparency are still important issues
that limit the application of technology, and future
research needs to conduct in-depth exploration around
these issues. At the same time, interdisciplinary
collaboration will become an important driving force for
technological development, and it is expected to achieve
a win-win goal of agricultural production efficiency and
environmental protection.

To address the challenges of data quality and
standardization in big data applications, this study
integrates a multi-level data verification protocol
and adaptive sampling strategies. Specifically,
remote sensing data are cross-validated with in-situ
measurements, and sensor data are processed using
anomaly detection algorithms before model training.
Compared to previous studies that rely solely on single-
source or unprocessed data, this approach enhances
model robustness and minimizes bias in pollution
prediction outcomes. Moreover, our model performance
under different data quality scenarios is evaluated and
benchmarked, providing a comparative framework for
future studies.
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Materials and Methods

Agricultural Fertilizer Non-Point Source
Pollution Assessment Model

In the agricultural production process, excessive use
and unreasonable application of fertilizers are important
factors leading to non-point source pollution. In order
to effectively evaluate the extent and spatial distribution
of agricultural fertilizer non-point source pollution,
a scientific and reasonable pollution assessment
model must be constructed. This model can predict
the diffusion trend of non-point source pollution in
a data-driven manner, combining multi-source data
such as meteorological conditions, soil properties, and
crop growth information, and provide a basis for the
formulation of pollution control measures. This chapter
will introduce an agricultural fertilizer non-point source
pollution assessment model based on big data and
machine learning, including the model construction
principle, core algorithm, and key factors in the
assessment process [16, 17].

As shown in Fig. 1, in the agricultural sector,
excessive use of fertilizers is one of the main causes
of non-point source pollution. In order to effectively
address this problem, big data and machine learning
technologies provide new solutions. By integrating
multiple information sources such as meteorological
data, soil data, crop growth data, and fertilization data,

a comprehensive data platform can be built. These data
include not only traditional ground observation data,
but also remote sensing image data, thereby achieving
all-around monitoring of the farmland environment.
Based on these massive data, a nitrogen and phosphorus
loss model (L=f(F,R,S,C)) can be established, where
F represents the amount of fertilizer, R represents the
amount of rainfall, S is the soil type, and C is the crop
type. The model can predict the possibility and extent
of nitrogen and phosphorus migration from farmland to
water bodies under different conditions. In addition, the
specific location of the pollution source is determined by
spatial positioning technology, and dynamic analysis is
carried out in combination with the pollutant diffusion
simulation module, which helps to identify high-risk
areas and formulate targeted measures. On this basis,
machine learning algorithms are further used for risk
assessment and optimization planning. First, through
learning and training on historical data, the system
can automatically identify which factors are most
likely to cause serious pollution incidents; then, on this
basis, a set of scientific and reasonable fertilization
plans is generated to guide farmers to reasonably
adjust fertilization strategies to reduce environmental
pollution. In short, with the help of advanced information
technology, we are expected to find an effective path to
ensure agricultural production and protect the ecological
environment.
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Fig. 1. Model framework.
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Model Construction Principle

The core of the agricultural fertilizer non-point
source pollution assessment model is to establish
a pollution quantitative assessment formula by
comprehensively analyzing the multi-dimensional data
that affects agricultural non-point source pollution.
The construction of the model can be divided into the
following steps: data collection and preprocessing,
pollution  source analysis, pollution diffusion
simulation, pollution risk assessment, and optimization
of fertilization plans. Each part relies on complex
mathematical formulas and algorithm models to ensure
the accuracy and operability of the assessment [18, 19].

To better reflect the influence of climate
variability, the pollution diffusion model incorporates
meteorological anomalies such as extreme precipitation
events and prolonged droughts. Climate-adjusted
variables, including rainfall intensity deviation and
temperature anomalies, are included in the Gaussian
diffusion module. Additionally, the reinforcement
learning algorithm is trained with historical weather
extremes to improve its robustness under uncertain
climatic conditions.

Data Collection and Preprocessing

The model needs to collect data from multiple
sources, including meteorological data (such as
temperature, precipitation, wind speed, etc.), soil data
(such as nitrogen and phosphorus content, soil pH, soil
type, etc.), crop growth data (such as growth cycle,
nitrogen demand, etc.), and fertilizer application data.
These data are collected in real time using Internet of
Things technology, remote sensing technology, and
farmland management systems, and then data cleaning
and preprocessing are performed to ensure data quality
and consistency.

The data preprocessing step first uses interpolation
methods (such as linear interpolation, K nearest neighbor
interpolation, etc.) to fill in missing data. Then, in order
to improve the convergence speed of the algorithm, the
Z-Score standardization method of formula (1) is used to
standardize various indicators [20, 21].

o (M

X is the original data, u is the mean, o is the standard
deviation.

Finally, statistical methods (such as box plot analysis)
are used to identify and correct outliers.

Pollution Source Analysis

The main source of agricultural fertilizer non-
point pollution is the loss of nitrogen and phosphorus
during fertilization. The amount of fertilizer applied,
the method of fertilization, and the time of fertilization

directly affect the degree of pollution. Pollution source
analysis requires modeling from the following aspects:

1. Nitrogen and phosphorus loss model: Based on
the amount of fertilizer applied and the ratio of nitrogen
and phosphorus absorbed by crops, combined with the
soil’s fertilizer retention capacity and meteorological
conditions, a mathematical model of nitrogen and
phosphorus loss is established. Assuming that the
amount of nitrogen and phosphorus loss in the soil is
closely related to factors such as the amount of fertilizer
applied, precipitation, and soil type, the model in
formula (2) can be used for estimation [22].

L=f(O,R.T,S) o

L is the loss of nitrogen and phosphorus, QO is the
amount of fertilizer applied, R is the precipitation, 7
for soil type, S is the crop growth status. This function
determines the specific relationship between various
parameters through data regression analysis.

2. Pollution source location model: In order to
accurately identify key areas of agricultural non-point
source pollution, remote sensing technology can be
used to obtain spatial distribution data of farmland,
and combined with machine learning algorithms to
spatially locate pollution sources. Commonly used
algorithms include support vector machines (SVM),
random forests (RF), etc. These algorithms can process
high-dimensional data and perform classification and
regression analysis.

Pollution Diffusion Simulation

Pollution diffusion simulation is a key link in non-
point source pollution assessment, and is usually
simulated using diffusion equations. The diffusion of
nitrogen and phosphorus in farmland is affected by
many factors, including soil permeability, terrain slope,
meteorological conditions, etc. Common diffusion
models include the Gaussian diffusion model and
the convection diffusion model. Taking the Gaussian
diffusion model as an example, the diffusion of nitrogen
and phosphorus can be described by formula (3).

C(x,t)=2Lexp _Gmx)’ =n)’

2 2
7o .o, 20; 20, 3)

C(x,t) is the pollution concentration at a certain point
in time, Q is the pollution source intensity, o, and o,
is the standard deviation of pollution diffusion in the
horizontal and vertical directions, (x,, y,) The location of
the pollution source.

The key to this model is how to accurately determine
the location, intensity, and diffusion speed of the
pollution source. By combining remote sensing image
data with meteorological data, the pollution diffusion
model can be updated in real time.
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Pollution Risk Assessment and Fertilization
Optimization Plan

The purpose of pollution risk assessment is to
evaluate the impact of pollution on the environment
by calculating the concentration and diffusion range of
pollutants. This can be done using the pollution risk
assessment function of formula (4).

C Ci i Ai
R i
i=1 max max (4)

R is the pollution risk value, C, is the pollution
concentration in the area for the i, 4, is the area of the
region, C_is the maximum pollution concentration,
A, s the area of the maximum impact area. The higher
the risk value, the more serious the pollution level in the
area.

In order to reduce pollution, the model also
needs to provide an optimized fertilization plan. The
reinforcement learning algorithm in machine learning
can be used to optimize the fertilization plan. The
core of the reinforcement learning algorithm is to
continuously adjust the amount of fertilizer through a
reward mechanism to achieve the goal of minimizing
pollution. Formula (5) assumes that the adjustment
of each fertilizer amount is positively correlated with
the reduction of environmental pollution, and the
fertilization strategy is optimized through the reward
function.

Reward=-a-L+ S Y )

L is the amount of pollution, Y is crop yield, o and f
are the weight coefficient. Through repeated iterations,
the optimal fertilization strategy is found.

Implementation and Application of the Model

In practical applications, the implementation of
the agricultural fertilizer non-point source pollution
assessment model needs to rely on high-performance
computing platforms and big data processing
technology. By integrating remote sensing image data,
meteorological data, soil data, and crop growth data,
combined with machine learning algorithms for real-
time data processing and pollution assessment, it can
ultimately generate pollution assessment reports and
optimized fertilization recommendations for different
regions [23, 24].

In order to verify the effectiveness of the model,
several typical areas can be selected for field testing,
soil, meteorological, and water quality data can be
collected, and compared with the model’s prediction
results. By evaluating the accuracy and prediction ability
of the model, the model parameters can be continuously
optimized to improve the reliability of the model.

Case Analysis and Experimental Evaluation
Case Background

This study selected a typical agricultural area in
northern China for the experiment. The main crops
in the area are wheat and corn. It has long faced the
problems of excessive fertilizer application and water
eutrophication. The amount of fertilizer applied in the
area significantly exceeds the national recommended
standards, resulting in serious enrichment of
nitrogen and phosphorus in the soil, water pollution,
and a significant decline in ecosystem service functions.
In response to this phenomenon, this study aims to use
big data and machine learning technology to evaluate
agricultural fertilizer non-point source pollution and
provide effective governance strategies.

It is acknowledged that the current study focuses on
a representative agricultural region in northern China,
primarily involving wheat and corn production systems.
While this provides valuable insights into fertilizer-
related pollution dynamics in temperate climates, the
findings may not fully generalize to southern regions
characterized by different cropping systems, rainfall
patterns, and soil properties. Future studies should
expand the geographical scope to include subtropical and
tropical zones to enhance the regional representativeness
and applicability of the model.

Data Collection

In order to implement the pollution assessment, this
study collected multidimensional data from multiple
channels in the region. Meteorological data comes from
regional meteorological monitoring stations, including
temperature, precipitation, and wind speed. The data
period is nearly two years and is collected daily. Soil
data is analyzed through on-site sampling, covering
soil nitrogen, phosphorus content, pH value, and other
characteristics, focusing on the impact of different
soil types and fertilization methods on pollution.
Crop growth data is collected in real time through
the agricultural management system, covering the
growth cycle of crops and nitrogen demand. Fertilizer
application data comes from the farmland management
system, which records the amount of fertilizer applied,
fertilization time, and fertilization method of each
field. These data are collected in real time through IoT
sensors, remote sensing technology, and other means to
form a high-quality, multi-source data set.

While meteorological data spanning two years
provides a solid foundation for short-term trend analysis,
it may not fully capture inter-annual variability driven
by climate shifts. To address this limitation, additional
historical weather records (spanning the past 10 years)
were integrated into the model for calibration purposes.
This extended dataset enhances the model’s predictive
capacity under fluctuating weather conditions, thereby
improving reliability in long-term applications.
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Implementation Steps and Methods

This study adopted a technical path combining big
data and machine learning to conduct a comprehensive
pollution assessment. First, the data preprocessing link
ensured the consistency and reliability of the data,
and the accuracy of the data was ensured by means of
missing value filling, data standardization (Z-Score
standardization method), and outlier correction. Then,
the nitrogen and phosphorus loss model and pollution
source location model were used to analyze the sources
of pollution in the region, and it was found that excessive
fertilization and uneven fertilization were the main
problems, especially in seasons with high precipitation,
when the loss of nitrogen and phosphorus was more
serious. Through the Gaussian diffusion model,
combined with soil permeability and meteorological
data, the diffusion path and speed of pollutants were
simulated, and the trend of pollutants spreading to
water bodies was predicted. Finally, the pollution
risk of different regions was evaluated based on the
pollution risk assessment function, and it was found
that some areas had a higher pollution risk. In order
to reduce pollution, combined with the reinforcement
learning algorithm, an optimized fertilization scheme
for high-risk arcas was proposed, the effects of different
fertilization amounts on crop growth and pollution
reduction were simulated, and the optimal fertilization
strategy was finally determined to achieve a balance
between crop growth and environmental protection.

In order to further verify the applicability and
accuracy of the assessment model, this study selected
several typical areas for field testing. These areas were
selected based on different soil types, crop planting
patterns, and fertilization management methods to
ensure that they could cover diverse environmental and
agricultural production conditions. In these areas, the
research team collected detailed soil data, meteorological
data, and water quality data to improve the input data
of the model and enhance the representativeness of the
assessment results.

Specifically, soil data covers the content of major
elements such as nitrogen, phosphorus, and potassium,
as well as key parameters such as soil pH and organic
matter content. These data help understand the
sensitivity and carrying capacity of different soil types
to fertilizer loss. Meteorological data include factors
such as temperature, precipitation, humidity, and wind
speed, which directly affect the rate of fertilizer loss and
its diffusion pattern in the environment. Water quality
data focuses on indicators such as nitrogen, phosphorus
concentration, and dissolved oxygen in water bodies.
By monitoring the degree of pollution in water sources,
the impact of fertilizer application on water quality is
further evaluated.

By conducting field tests in multiple regions, the
study can more comprehensively reflect the impact of
different agricultural management practices, climate
conditions, and soil characteristics on pollution.

These data not only provide higher-quality support for
pollution assessment, but also help identify key pollution
sources and high-risk areas, providing a strong basis for
subsequent pollution control. Combined with these field
data, the recommendations for optimizing fertilization
strategies and management measures will be more
scientific and accurate, providing more effective support
for sustainable agricultural development in the region.

Results
Experimental Evaluation and Result Analysis

During the experimental evaluation phase, the
research team verified the accuracy and practicality of
the agricultural fertilizer non-point source pollution
assessment model by comparing model prediction
results and actual collected data.

Pollution source identification: Through the pollution
source location model, we successfully identified several
high-pollution risk areas. The common feature of these
areas is excessive and uneven fertilizer application. The
experiment subdivided different types of areas into four
categories: the plain area has a large amount of fertilizer,
abundant water resources, and is conducive to irrigation;
the mountainous area has relatively less fertilizer, but
the soil permeability is low, and pollutants are easy to
accumulate; the hilly area has a large terrain undulation,
strong rain erosion, and pollutants are easy to spread;
the coastal area is greatly affected by the sea breeze, the
amount of fertilizer is high, and the loss of nitrogen and
phosphorus is fast. The specific data are shown in Fig. 2.

Fig. 2 clearly shows the differences in fertilizer
application, nitrogen and phosphorus loss, precipitation,
and wind speed between different regional types. The
amount of fertilizer applied in the plain and coastal
areas is higher, and the corresponding nitrogen and
phosphorus loss is also higher. The precipitation in the
coastal and plain areas is relatively abundant, and the
wind speed in the coastal areas is the highest. These
data reflect the impact of environmental characteristics
and fertilization conditions in different regions on
nitrogen and phosphorus loss, and provide basic data
support for subsequent analysis of pollution spread and
risk assessment.

Pollution diffusion prediction: Using the Gaussian
diffusion model to simulate the diffusion path of
pollutants, the study found that there are differences
in the pollution diffusion patterns in different regions.
Pollutants diffuse faster in plains and coastal areas, and
slower in mountainous and hilly areas.

As can be seen from Table 1, the simulated pollution
concentration is close to the actual water quality
concentration, which verifies the reliability of the model.
Due to their special geographical and environmental
factors, the plains and coastal areas have abundant
water resources and the coastal areas are affected by
sea breeze, which makes the pollutants spread quickly
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Effect of Region Types on Fertilizer, Nutrient Loss, Precipitation, and Wind Speed
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Fig. 2. Data on factors related to fertilization and pollution in different regions.

and have a great impact on water pollution; while the
mountainous areas have poor soil permeability and the
hilly areas have rain erosion but the undulating terrain
limits the diffusion speed, so the pollutants diffuse
slowly and mainly accumulate in the mountainous areas,
while the hilly areas diffuse widely under rain erosion.

Pollution risk assessment: The pollution risk of
different regions was assessed using the pollution
risk assessment function. The results showed that
the pollution risk in coastal arcas and plains was
significantly higher than that in mountainous and hilly
areas, and high-risk areas were mostly concentrated in
areas with excessive fertilizer application. See Fig. 3 for
specific data.

Fig. 3 shows the relationship between the amount
of fertilizer applied, pollution risk value, and crop
yield. The amount of fertilizer applied in coastal areas
and plains is large, the pollution risk value is high,
but the crop yield is also relatively high. The amount
of fertilizer applied in mountainous and hilly areas is
relatively small, the pollution risk value is low, and the
crop yield is also slightly lower. This shows that the
amount of fertilizer applied affects the pollution risk and
crop yield to a certain extent, providing a basis for the
subsequent optimization of the fertilization plan.

Optimize fertilization plan: Based on the
reinforcement learning algorithm, optimize fertilization
plans for different regional types. Different regions
have different soil types, climate conditions, water
management, and other factors, so corresponding
adjustments need to be made in fertilization amount and
time.

Fig. 4 clearly shows the changes in fertilizer
application, pollution risk value, and crop yield before
and after optimization. After optimization, the amount
of fertilizer applied in each area was reduced, the
pollution risk value was significantly reduced, and
although the crop yield decreased slightly, it still
remained at a relatively high level. This shows that the
optimized fertilization scheme can better guarantee crop
yield while reducing pollution risks, and has practical
application value.

Discussion and conclusion

Pollution characteristics of different regions: After
analyzing different regional types, it was found that
the pollution diffusion speed in plains and coastal areas
was faster, while that in mountainous and hilly areas
was slower. This is closely related to factors such as

Table 1. Comparison of pollution diffusion prediction and actual water quality concentration in different regions.

Region Type Ciﬁ?iﬁ;ﬁf;tﬁt;{l) Actual wa;[re;;ir;centration Diffusion path description
Plains 1.2 1.3 Rapid spread, worsening water pollution
Mountain area 0.5 0.6 Pollutants accumulate and diffuse more slowly
Hilly Area 0.8 0.9 Rainwater washes away and spreads widely
Coastal Area 1.5 1.4 Sea breeze spreads faster and has a big impact
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Fig. 4. Effects of fertilization optimization on pollution risk and crop yield in different regions.

regional fertilizer application, soil permeability, and
precipitation. Specific data are shown in Table 2.

From Table 2, we can see that the pollution diffusion
speed is fast in plains and coastal areas due to the
large amount of fertilizer, abundant water resources,
and the influence of sea breeze in coastal areas; the
soil permeability in mountainous areas is poor, which
hinders the diffusion of pollutants, so the speed is the
slowest; the hilly areas are affected by rain erosion and
undulating terrain, and the diffusion speed is in the
middle. These characteristics provide direction for the
formulation of targeted pollution control measures.

Pollution risk assessment: The pollution risk
assessment model shows that the pollution risk is higher
in plain areas and coastal areas, especially in areas
with excessive fertilizer application. After optimizing
the fertilization plan, the pollution risk is effectively
reduced. See Fig. 5 for specific data.

Fig. 5 shows that the optimized fertilization scheme
has a significant effect on reducing pollution risks
in various regions. The risk values in the plains and
coastal areas were originally high, and the reduction
ratio was large after optimization; the risk values in
the mountainous and hilly areas were relatively low,

Table 2. Summary of pollution diffusion characteristics in different regions.

Region Type Fertilizer(i?/)llliac)ation rate Poli;lio(rrln(j(igl;jion Main influencing factors
Plains 230 35 Large amount of fertilizer and abundant water resources
Mountain area 150 10 Poor soil permeability
Hilly Area 180 20 Rainwater erosion and undulating terrain
Coastal Area 210 40 Sea breeze influence, abundant water resources
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Pollution Risk Value Distribution by Region and Optimization Status
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Fig. 5. Changes in pollution risk before and after fertilization optimization in different regions.

and they were also reduced to a certain extent after
optimization. This further proves the effectiveness of
the optimized fertilization scheme in reducing pollution
risks.

Although the immediate effects of ecological
restoration, such as improved soil quality and pollutant
reduction, have been observed, the study also initiates
a long-term monitoring plan to assess impacts on
biodiversity and ecosystem resilience. Indicators such
as species richness, vegetation cover diversity, and
microbial soil activity will be continuously monitored
over a five-year period. Preliminary analysis suggests
that areas undergoing vegetation restoration exhibit a
gradual increase in native plant diversity, indicating
potential for enhanced ecological stability.

Future studies may benefit from integrating big
data and machine learning technologies with biological
and ecological engineering techniques. For example,
the fusion of microbial fertilizers with real-time soil
nutrient monitoring systems can enhance nutrient
uptake efficiency while maintaining environmental
safety. Combining genomics-based crop optimization
with machine learning-based fertilization plans also
presents a promising path for resilient and low-emission
agriculture. These cross-disciplinary integrations can
expand the toolkit for non-point source pollution control
and support sustainable agricultural transitions.

Beyond environmental benefits, the implementation
of pollution control measures has generated positive
socioeconomic outcomes. The promotion of green
fertilizers and precision agriculture has stimulated local
employment through demand for technical services,
equipment maintenance, and training programs.
Furthermore, the reduction of excessive chemical inputs
has enhanced the market competitiveness of agricultural
products labeled as eco-friendly or low-residue, thereby
increasing profit margins. These benefits highlight the
multi-dimensional value of sustainable governance
strategies in rural revitalization.

Beyond short-term effectiveness, the study also
conducted a preliminary cost-benefit analysis of major
governance measures. The implementation of precision
fertilization and green fertilizers entails initial costs
for equipment, training, and material substitution.
However, over a five-year projection, net economic
gains are observed due to improved fertilizer use
efficiency, reduced input costs, and higher crop yields.
Furthermore, green-labeled produce commands higher
market prices. A break-even analysis shows that most
investment costs can be recovered within three years
under standard adoption rates, supporting the long-term
feasibility of the measures.

Governance Recommendations

According to the agricultural characteristics and
pollution risks in different regions, the following
personalized governance suggestions are proposed to
reduce agricultural fertilizer non-point source pollution
and improve soil quality:

First, for the plain area, where the soil fertility is high
and water resources are abundant, it is recommended to
use precision fertilization technology combined with
remote sensing and geographic information systems
to monitor soil fertility and crop growth in real time,
so as to achieve on-demand fertilization and avoid
excessive use of chemical fertilizers. Use water-saving
irrigation technologies such as drip irrigation and
sprinkler irrigation to reduce fertilizer loss caused by
water erosion. In addition, combine the use of organic
fertilizers with biological fertilizers to improve soil
structure, enhance soil fertility, and reduce pollution to
the environment.

In mountainous areas, since the soil is poor and
prone to soil erosion, it is recommended to promote
the use of organic fertilizers and biofertilizers to
enhance soil water retention and fertility. Small doses
and multiple fertilization methods should be adopted to
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avoid pollution caused by excessive fertilization. At the
same time, water resources in mountainous areas are
relatively scarce, and micro-irrigation technology needs
to be promoted to reduce water waste and improve
fertilizer utilization efficiency. In terms of ecological
restoration, soil erosion can be reduced by planting trees
and grass, and soil quality can be improved by restoring
vegetation.

In hilly areas, the soil is loose and the terrain is
undulating, which makes soil erosion more likely to
occur. Fertilization should be carried out in layers
according to the terrain with different slopes, and
water-saving irrigation technologies such as micro-
spraying and drip irrigation should be promoted
to reduce fertilizer loss with water. In addition, by
combining green fertilizers (such as organic fertilizers
and compound fertilizers), the soil’s water and fertilizer
retention capacity can be improved to reduce pollution
risks. In terms of ecological restoration, vegetation
restoration measures can be used to reduce soil erosion
and enhance soil quality.

For coastal areas, the management of fertilization and
irrigation is particularly important. It is recommended
to use an intelligent drip irrigation system to control
the irrigation volume and prevent excessive irrigation
and fertilizer loss. The use of green fertilizers should be
combined to reduce pollution of soil and water bodies.
In terms of ecological restoration, the stability of the
soil can be enhanced by planting salt-tolerant plants and
building ecological protection belts, and aquatic plants
can be used to purify polluted water bodies and restore
ecological functions.

The success of pollution control measures heavily
depends on the participation and acceptance of farmers.
To this end, the study recommends establishing
farmer training programs focused on the operation of
precision fertilization systems, interpretation of soil
sensor data, and eco-friendly fertilization practices.
A survey conducted in the target region reveals that
over 65% of farmers expressed willingness to adopt
new technologies if supported by adequate training and
subsidies. Thus, participatory governance and capacity
building are essential for technology diffusion and long-
term compliance.

In governance design, region-specific climate
resilience strategies are recommended, such as
enhancing soil buffering capacity in drought-prone areas
and improving drainage systems in flood-risk zones, to

Table 3. Comparison of soil quality changes.

reduce fertilizer runoff during weather extremes.

To enhance policy integration, it is recommended that
pollution control measures be embedded into existing
agricultural subsidy frameworks and rural development
programs. For instance, precision fertilization equipment
can be subsidized under government-supported smart
agriculture initiatives. Furthermore, compliance with
eco-fertilization guidelines can be linked to agricultural
insurance schemes and land-use permits to create
institutional incentives. Strengthening cooperation
between local agricultural bureaus and environmental
regulators is crucial for ensuring synchronized
implementation and monitoring.

Governance Effect Evaluation

After  implementing  precision  fertilization,
green fertilizer promotion, irrigation management
optimization, and ecological restoration measures, the
treatment effect was evaluated. The following three
tables compare key indicators such as soil quality,
pollutant concentration, and crop yield before and after
treatment, showing the actual results of the treatment
measures.

Table 3 shows the changes in soil quality indicators
before and after treatment. Before treatment, the soil
nitrogen content was 150 mg/kg, and the phosphorus
content was 80 mg/kg. After treatment, the nitrogen
and phosphorus contents decreased by 20% and 18.75%,
respectively. This is due to the implementation of
green fertilizers and precision fertilization technology,
which reduced the excessive accumulation of nitrogen
and phosphorus in the soil. The soil pH value dropped
from 7.2 to 6.8, and the acidity was properly adjusted,
which is more conducive to crop growth. At the same
time, the organic matter content increased from 2.5% to
3.2%, an increase of 28%, which is of great significance
to improving soil structure and improving soil water
and fertilizer retention capacity, providing a better soil
environment for crop growth.

Fig. 6 shows the changes in pollutant concentrations
before and after treatment. Before treatment, the
nitrogen concentration in the water was 12.5 mg/L,
the phosphorus concentration was 4.2 mg/L, the
nitrogen concentration in the soil was 150 mg/L, and
the phosphorus concentration was 80 mg/L. After
treatment, the nitrogen and phosphorus concentrations
in the water and soil decreased significantly, with the

Soil quality indicators Before governance After governance Range of change
Nitrogen content (mg/kg) 150 120 -20%
Phosphorus content (mg/kg) 80 65 -18.75%
pH 7.2 6.8 -5.56%
Organic matter content (%) 2.5 32 +28%
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Boxplot of Pollutant Concentrations Before and After Optimization
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Fig. 6. Comparison of pollutant concentration changes.
nitrogen concentration in the water decreasing by 33.6% Discussion

and the phosphorus concentration decreasing by
38.1%. The decrease in nitrogen and phosphorus
concentrations in the soil was consistent with the soil
quality change table. This clearly shows that through the
implementation of a series of treatment measures, the
diffusion of nitrogen and phosphorus pollutants in water
and soil has been effectively suppressed, agricultural
non-point source pollution has been reduced, and a
positive effect has been achieved on the improvement of
the ecological environment.

Table 4 compares the changes in crop yields before
and after treatment. Before treatment, wheat yield was
450 kg per mu, corn yield was 700 kg per mu, and the
overall yield was 1150 kg per mu. After treatment, wheat
yield increased to 500 kg per mu, an increase of 11.1%;
corn yield reached 750 kg per mu, an increase of 7.14%;
and the overall yield increased by 8.7% to 1250 kg
per mu. This is mainly attributed to the optimization
of fertilization strategies and irrigation management,
which optimized the crop growth environment and made
the nutrient and water supply more reasonable, thereby
promoting crop growth, increasing the yield of wheat
and corn, and thus improving the overall agricultural
productivity.

Table 4. Comparison of crop yields.

This study has achieved significant environmental
improvements and agricultural production benefits by
implementing a series of governance measures, such
as precision fertilization, green fertilizer promotion,
irrigation management optimization, and ecological
restoration in different regions. Comparison of data
before and after governance shows that the nitrogen and
phosphorus content in the soil has decreased significantly,
and the nitrogen and phosphorus concentrations in the
water body have also been effectively controlled, which
verifies the effectiveness of the governance of agricultural
fertilizer non-point source pollution. However, the
differences in governance effects are reflected in different
regions. The governance effects in plains and coastal
areas are relatively ideal, and the soil organic matter
content and crop yield have increased significantly. This
may be related to the relatively flat areas, good irrigation
conditions, and more adequate implementation of
governance technologies in these areas. On the contrary,
due to the complex terrain and severe soil erosion in
mountainous and hilly areas, the governance effect is
relatively weak. Although the concentration of pollutants
has decreased, the long-term effect of ecological
restoration still needs further observation.

Crop Type Before treatment (kg/mu) After treatment (kg/mu) Range of change
wheat 450 500 +11.1%
corn 700 750 +7.14%
Comprehensive output 1150 1250 +8.7%
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Through governance measures, especially the
application of precision fertilization and green fertilizers,
the environmental cost of agricultural production has
been greatly reduced, but it has also exposed some
challenges. For example, the promotion of green
fertilizers still faces obstacles such as farmers’ habits
and costs. In addition, although precision fertilization
can reduce the excessive use of chemical fertilizers, the
popularization of fertilization technology and farmers’
acceptance are still problems. In some remote areas,
technical training and the introduction of equipment still
face great difficulties.

In summary, this study provides strong empirical
support for the control of agricultural non-point source
pollution and proves the effectiveness of diversified
control strategies in improving environmental quality
and crop yields. However, in order to further improve
the control effect, it is necessary to increase efforts
in technology popularization, policy support, and
ecological restoration, especially for difficult areas such
as mountainous and hilly areas. In the future, more
refined measures can be adopted for comprehensive
control.

Conclusions

This study implemented a series of agricultural
non-point source pollution control measures in typical
agricultural areas in northern China and conducted a
detailed evaluation of their effects. The study showed
that control measures such as precision fertilization,
green fertilizer promotion, irrigation management
optimization, and ecological restoration have
achieved significant results in reducing soil and water
pollution and increasing crop yields. By comparing
model predictions with field data, the nitrogen and
phosphorus content in the soil decreased significantly
after treatment, the concentration of water pollutants
decreased significantly, and crop yields generally
increased, indicating that these measures can effectively
alleviate agricultural non-point source pollution and
improve agricultural productivity.

In terms of the implementation effects in different
regions, the plains and coastal areas benefited the most,
and the governance measures were able to achieve
significant ecological and economic benefits in a
relatively short period of time. However, the governance
effects in mountainous and hilly areas were relatively
weak, mainly due to factors such as complex terrain
and soil erosion. Nevertheless, through the adoption
of targeted ecological restoration and improvement
measures, the governance effects in mountainous and
hilly areas have still improved.

Although this study has achieved relatively ideal
governance results, it still faces several challenges in
the implementation process, especially in the promotion
of green fertilizers, the popularization of precision
fertilization technology, and the long-term effects of

ecological restoration. The high cost of green fertilizers
and farmers’ usage habits are still the main obstacles
to promotion. The popularity of precision fertilization
technology in some remote areas is low, and strong
technical support is needed during implementation.

Future research should focus more on the
popularization and  application of  governance
technologies, especially the optimization of governance
in complex terrain areas such as mountainous and
hilly areas. In addition, the government can promote
the popularization of green fertilizers and advanced
irrigation technologies through policy support and
subsidies, and improve farmers’ environmental
awareness and technology acceptance. With the support
of remote sensing, the Internet of Things, and big data
technologies, agricultural non-point source pollution
control is expected to be more widely used and more
accurately implemented in the future, thereby promoting
a win-win situation for agricultural production and
environmental protection.

The pollution assessment model developed in this
study exhibits strong adaptability and can be extended
to other agricultural settings beyond the test region.
With appropriate retraining, the model can be calibrated
to suit various cropping systems such as rice paddies, tea
plantations, or horticultural zones. The core structure
allows integration of region-specific variables, such as
crop types, soil features, and irrigation methods, making
it a versatile tool for broader non-point source pollution
management across diverse agroecological zones.
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