
Introduction

Agricultural fertilizer non-point source pollution 
refers to the non-point source pollution to the ecological 
environment caused by excessive application or 
improper management of fertilizers, which causes 
nutrients such as nitrogen and phosphorus in fertilizers 

to be lost to surface water or seep into groundwater. 
This type of pollution is dispersed, hidden, and 
complex, and is difficult to effectively control through 
simple governance measures. In recent years, with the 
improvement of the level of agricultural production 
intensification, the total amount of fertilizer used in 
China has remained high, and some areas have even 
experienced excessive fertilizer application, which has 
directly led to a series of environmental problems, such 
as soil eutrophication, algal blooms in water bodies, and 
excessive nitrates in groundwater. Studies have shown 
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Abstract

This study aims to evaluate the treatment effect of agricultural fertilizer non-point source 
pollution and propose corresponding treatment strategies. The study selected typical agricultural areas 
in northern China and collected multi-source data, including soil, meteorology, crop growth, 
and fertilizer application. Through big data and machine learning methods, combined with precision 
fertilization, green fertilizer promotion, irrigation management, and ecological restoration measures, 
pollution source analysis, pollution diffusion prediction, and risk assessment were carried out. After 
the implementation of the treatment measures, the nitrogen and phosphorus content in the soil was 
significantly reduced, and the concentration of pollutants in water and soil also dropped significantly. 
Crop yields increased after implementation, verifying the feasibility and effectiveness of the treatment 
measures. The results show that the combined application of precision fertilization and green fertilizers 
effectively reduced the pollution risk caused by excessive fertilizer application, and achieved different 
degrees of treatment effects in different regions. In the future, with the advancement of remote sensing 
technology, Internet of Things technology, and data analysis algorithms, the treatment of agricultural 
non-point source pollution will be further improved.
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that nearly 60% of rivers in China have deteriorated 
in water quality due to agricultural non-point source 
pollution, and the ecosystem service function has been 
significantly weakened [1, 2].

Globally, agricultural non-point source pollution is 
one of the key difficulties in environmental governance. 
Although developed countries have established relatively 
complete pollution monitoring and governance systems, 
they still face high costs and technical bottlenecks 
in fertilizer management and farmland ecological 
restoration. For developing countries, resource 
limitations, technical shortcomings, and insufficient 
policy implementation make non-point source pollution 
control more challenging [3]. Taking China as an 
example, although the government has proposed the 
goal of “zero growth in fertilizer by 2025”, there are 
still many problems in the implementation process, such 
as low acceptance of green agricultural technology by 
farmers, imperfect monitoring systems, and backward 
technical means. At the same time, climate change 
and extreme weather have exacerbated the uncertainty 
of non-point source pollution, and put forward higher 
requirements for the scientific nature of governance 
measures [4, 5].

Big data and machine learning technologies provide 
a new approach to solving the problem of agricultural 
non-point source pollution. Through remote sensing 
images, Internet of Things sensors, and agricultural 
management systems, farmland environmental 
data can be collected in real time, including multi-
dimensional information such as soil nutrient content, 
crop growth status, and meteorological conditions. Big 
data technology can clean, integrate, and analyze these 
complex, multi-source, heterogeneous data to form 
an efficient pollution monitoring and decision support 
system [6, 7]. Machine learning can train models to 
mine potential patterns from massive amounts of data 
to predict pollution risks, optimize fertilizer application 
plans, and evaluate governance effects. For example, 
deep learning algorithms can be used to establish an 
accurate non-point source pollution prediction model to 
help farmers apply fertilizers scientifically and reduce 
pollution emissions at the source [8, 9].

The innovation of this study is reflected in the 
following aspects: First, the technical means of 
combining big data and machine learning are used to 
break the limitations of traditional pollution control 
methods and provide a more intelligent and dynamic 
solution for non-point source pollution control. Second, 
based on the characteristics of Chinese agriculture,  
a model and governance path that adapts to local needs 
are constructed to improve the practical application 
value of the research. In addition, this study not only 
focuses on technological innovation, but also pays 
attention to the combination with policy and economic 
factors, and proposes an operational comprehensive 
governance strategy [10].

This study mainly includes the following aspects: 
First, analyze the main causes of agricultural fertilizer 

non-point source pollution and its spatiotemporal 
distribution characteristics, and identify the key areas 
and key issues of pollution control. Secondly, use 
big data technology to build a pollution monitoring 
system, integrate data resources from remote sensing, 
the Internet of Things, and agricultural management 
systems, and provide high-quality basic data support for 
pollution prediction and decision-making. Thirdly, based 
on machine learning algorithms, establish a pollution 
risk prediction model and fertilization optimization 
plan to achieve closed-loop management from data 
collection to governance plan formulation. In addition, 
through empirical research, verify the feasibility and 
effectiveness of the technical path, and put forward 
policy recommendations for non-point source pollution 
control.

Literature Review

Application of Big Data and Machine Learning  
in Agricultural Fertilizer Application Monitoring

In recent years, with the transformation of global 
agriculture towards intensive development, efficient 
management of fertilizer application has become an 
important research direction in the agricultural field. 
Big data and machine learning technologies provide 
a new method for real-time monitoring of fertilizer 
application. In one study, a high-resolution fertilizer 
application rate prediction model was constructed using 
historical data on global fertilizer application. The model 
significantly improved the accuracy of fertilization 
decisions by integrating multiple data sources, including 
climate conditions, crop growth cycles, and soil 
properties. These studies have shown that prediction 
models based on big data analysis can effectively 
help farmers optimize fertilization strategies, thereby 
reducing environmental pollution problems caused 
by excessive fertilizer application [11]. In addition, 
machine learning technology has also been widely used 
in the dynamic prediction of fertilizer demand. Some 
studies have developed intelligent fertilizer management 
systems based on machine learning algorithms, which 
collect crop growth and soil nutrient data through 
sensors, combine climate prediction information, and 
dynamically adjust fertilizer application. For example, 
deep learning algorithms have shown high accuracy 
in predicting nitrogen fertilizer demand at various 
growth stages of crops, providing theoretical support for 
precision agriculture. These technologies have not only 
improved agricultural production efficiency but also 
significantly reduced the environmental emission load of 
fertilizers. Although these studies have made significant 
progress, there are also some challenges. For example, 
data quality and data collection standardization still 
need to be further improved, and the differences 
between different crops and regions put forward 
higher requirements for the applicability of the model.  
In addition, the storage and processing of large-scale 
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data also pose challenges to infrastructure construction. 
How to efficiently use big data with limited resources is 
an important direction for future research.

Application of Machine Learning in Soil 
Pollution Identification and Remediation

The identification and remediation of soil pollution is 
an important part of non-point source pollution control. 
In particular, in agricultural non-point source pollution, 
excessive application of fertilizers often leads to the 
enrichment of nitrogen, phosphorus, and other elements 
in the soil, affecting the health of farmland ecosystems. 
In the past five years, machine learning technology has 
shown unique advantages in the field of soil pollution 
identification. Some studies have built efficient soil 
pollution prediction systems by introducing machine 
learning algorithms, such as support vector machines 
and random forest models. These systems can quickly 
determine the type and degree of pollution by combining 
the physical and chemical parameters of the soil, and 
accurately locate the spatial distribution of pollution. 
In terms of remediation, machine learning provides 
strong support for the screening and optimization of 
remediation technologies [12]. For example, some 
studies use machine learning to predict and evaluate 
the adsorption performance and degradation capacity of 
remediation materials, greatly shortening the screening 
cycle. Other studies have built a neural network-based 
model to predict the environmental impact of different 
remediation measures and help decision makers choose 
a more sustainable remediation path. However, the 
complexity of soil pollution problems poses severe 
challenges to the application of machine learning 
technology. The diversity and regional differences of 
soil pollution make data collection and model training 
more difficult. In addition, the black box problem of the 
model can easily lead to doubts about the interpretability 
of the results in practical applications [13]. Future 
research needs to further develop algorithms with higher 
transparency and robustness to enhance the applicability 
and trustworthiness of the model.

Combining Satellite Remote Sensing and Machine 
Learning in Environmental Monitoring

With the development of remote sensing technology, 
satellite image data is increasingly used in environmental 
monitoring. Combining remote sensing data with 
machine learning provides a low-cost, high-efficiency 
solution for monitoring non-point source pollution. 
Some studies use high-resolution satellite images and 
convolutional neural networks (CNNs) to dynamically 
monitor fertilization management in farmland. These 
technologies can identify areas of excessive fertilizer 
application in real time and assess the potential impact 
of fertilization on surrounding water bodies, providing 
important reference for environmental regulatory 
authorities [14].

In addition, the combination of remote sensing  
and machine learning has shown advantages in 
cross-regional pollution monitoring. Some studies 
have constructed spatiotemporal dynamic models of 
pollution diffusion by integrating multi-temporal and 
multi-spectral remote sensing data. These models 
can accurately capture the diffusion path and speed of 
pollution and provide data support for regional pollution 
control. For example, by monitoring the diffusion 
trajectory of nitrogen oxides, researchers can predict 
the eutrophication risk of rivers and lakes and develop 
targeted governance strategies.

Despite this, the application of remote sensing data 
also faces certain bottlenecks. The acquisition cost of 
high-resolution image data is high, and it is also greatly 
affected by external factors such as weather and terrain. 
In addition, the processing and analysis of remote 
sensing data place high demands on computing power, 
which limits its promotion and application in resource-
limited areas. In the future, with the development of 
cloud computing and artificial intelligence technology, 
the combination of remote sensing and machine learning 
is expected to further break through these technical 
bottlenecks and become a core means of environmental 
monitoring [15].

By combing through the relevant literature in the 
past five years, it can be found that big data and machine 
learning technologies have shown great application 
potential in the fields of agricultural fertilizer 
application monitoring, soil pollution identification 
and remediation, and environmental monitoring. 
These technologies provide new perspectives and 
methods for pollution control, significantly improving 
the accuracy of monitoring and the efficiency of 
governance. However, data quality, model applicability, 
and algorithm transparency are still important issues 
that limit the application of technology, and future 
research needs to conduct in-depth exploration around 
these issues. At the same time, interdisciplinary 
collaboration will become an important driving force for 
technological development, and it is expected to achieve 
a win-win goal of agricultural production efficiency and 
environmental protection.

To address the challenges of data quality and 
standardization in big data applications, this study 
integrates a multi-level data verification protocol 
and adaptive sampling strategies. Specifically, 
remote sensing data are cross-validated with in-situ 
measurements, and sensor data are processed using 
anomaly detection algorithms before model training. 
Compared to previous studies that rely solely on single-
source or unprocessed data, this approach enhances 
model robustness and minimizes bias in pollution 
prediction outcomes. Moreover, our model performance 
under different data quality scenarios is evaluated and 
benchmarked, providing a comparative framework for 
future studies.
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Materials and Methods

Agricultural Fertilizer Non-Point Source 
Pollution Assessment Model

In the agricultural production process, excessive use 
and unreasonable application of fertilizers are important 
factors leading to non-point source pollution. In order 
to effectively evaluate the extent and spatial distribution 
of agricultural fertilizer non-point source pollution, 
a scientific and reasonable pollution assessment 
model must be constructed. This model can predict 
the diffusion trend of non-point source pollution in 
a data-driven manner, combining multi-source data 
such as meteorological conditions, soil properties, and 
crop growth information, and provide a basis for the 
formulation of pollution control measures. This chapter 
will introduce an agricultural fertilizer non-point source 
pollution assessment model based on big data and 
machine learning, including the model construction 
principle, core algorithm, and key factors in the 
assessment process [16, 17].

As shown in Fig. 1, in the agricultural sector, 
excessive use of fertilizers is one of the main causes 
of non-point source pollution. In order to effectively 
address this problem, big data and machine learning 
technologies provide new solutions. By integrating 
multiple information sources such as meteorological 
data, soil data, crop growth data, and fertilization data, 

a comprehensive data platform can be built. These data 
include not only traditional ground observation data, 
but also remote sensing image data, thereby achieving 
all-around monitoring of the farmland environment. 
Based on these massive data, a nitrogen and phosphorus 
loss model (L=f(F,R,S,C)) can be established, where 
F represents the amount of fertilizer, R represents the 
amount of rainfall, S is the soil type, and C is the crop 
type. The model can predict the possibility and extent 
of nitrogen and phosphorus migration from farmland to 
water bodies under different conditions. In addition, the 
specific location of the pollution source is determined by 
spatial positioning technology, and dynamic analysis is 
carried out in combination with the pollutant diffusion 
simulation module, which helps to identify high-risk 
areas and formulate targeted measures. On this basis, 
machine learning algorithms are further used for risk 
assessment and optimization planning. First, through 
learning and training on historical data, the system 
can automatically identify which factors are most 
likely to cause serious pollution incidents; then, on this 
basis, a set of scientific and reasonable fertilization 
plans is generated to guide farmers to reasonably 
adjust fertilization strategies to reduce environmental 
pollution. In short, with the help of advanced information 
technology, we are expected to find an effective path to 
ensure agricultural production and protect the ecological 
environment.

Fig. 1. Model framework.
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directly affect the degree of pollution. Pollution source 
analysis requires modeling from the following aspects:

1. Nitrogen and phosphorus loss model: Based on 
the amount of fertilizer applied and the ratio of nitrogen 
and phosphorus absorbed by crops, combined with the 
soil’s fertilizer retention capacity and meteorological 
conditions, a mathematical model of nitrogen and 
phosphorus loss is established. Assuming that the 
amount of nitrogen and phosphorus loss in the soil is 
closely related to factors such as the amount of fertilizer 
applied, precipitation, and soil type, the model in 
formula (2) can be used for estimation [22].

	 ( , , , )L f Q R T S= 	 (2)

L is the loss of nitrogen and phosphorus, Q is the 
amount of fertilizer applied, R is the precipitation, T 
for soil type, S is the crop growth status. This function 
determines the specific relationship between various 
parameters through data regression analysis.

2. Pollution source location model: In order to 
accurately identify key areas of agricultural non-point 
source pollution, remote sensing technology can be 
used to obtain spatial distribution data of farmland, 
and combined with machine learning algorithms to 
spatially locate pollution sources. Commonly used 
algorithms include support vector machines (SVM), 
random forests (RF), etc. These algorithms can process 
high-dimensional data and perform classification and 
regression analysis.

Pollution Diffusion Simulation

Pollution diffusion simulation is a key link in non-
point source pollution assessment, and is usually 
simulated using diffusion equations. The diffusion of 
nitrogen and phosphorus in farmland is affected by 
many factors, including soil permeability, terrain slope, 
meteorological conditions, etc. Common diffusion 
models include the Gaussian diffusion model and 
the convection diffusion model. Taking the Gaussian 
diffusion model as an example, the diffusion of nitrogen 
and phosphorus can be described by formula (3).

	

2 2
0 0
2 2

( ) ( )( , ) exp
2 2 2x y x y

x x y yQC x t
πσ σ σ σ

 − −
= − −  

 	 (3)

C(x,t) is the pollution concentration at a certain point 
in time, Q is the pollution source intensity, σx and σy 
is the standard deviation of pollution diffusion in the 
horizontal and vertical directions, (x0, y0) The location of 
the pollution source.

The key to this model is how to accurately determine 
the location, intensity, and diffusion speed of the 
pollution source. By combining remote sensing image 
data with meteorological data, the pollution diffusion 
model can be updated in real time.

Model Construction Principle

The core of the agricultural fertilizer non-point 
source pollution assessment model is to establish 
a pollution quantitative assessment formula by 
comprehensively analyzing the multi-dimensional data 
that affects agricultural non-point source pollution. 
The construction of the model can be divided into the 
following steps: data collection and preprocessing, 
pollution source analysis, pollution diffusion 
simulation, pollution risk assessment, and optimization 
of fertilization plans. Each part relies on complex 
mathematical formulas and algorithm models to ensure 
the accuracy and operability of the assessment [18, 19].

To better reflect the influence of climate 
variability, the pollution diffusion model incorporates 
meteorological anomalies such as extreme precipitation 
events and prolonged droughts. Climate-adjusted 
variables, including rainfall intensity deviation and 
temperature anomalies, are included in the Gaussian 
diffusion module. Additionally, the reinforcement 
learning algorithm is trained with historical weather 
extremes to improve its robustness under uncertain 
climatic conditions.

Data Collection and Preprocessing

The model needs to collect data from multiple 
sources, including meteorological data (such as 
temperature, precipitation, wind speed, etc.), soil data 
(such as nitrogen and phosphorus content, soil pH, soil 
type, etc.), crop growth data (such as growth cycle, 
nitrogen demand, etc.), and fertilizer application data. 
These data are collected in real time using Internet of 
Things technology, remote sensing technology, and 
farmland management systems, and then data cleaning 
and preprocessing are performed to ensure data quality 
and consistency.

The data preprocessing step first uses interpolation 
methods (such as linear interpolation, K nearest neighbor 
interpolation, etc.) to fill in missing data. Then, in order 
to improve the convergence speed of the algorithm, the 
Z-Score standardization method of formula (1) is used to 
standardize various indicators [20, 21].

	

XZ µ
σ
−

=
	 (1)

X is the original data, μ is the mean, σ is the standard 
deviation.

Finally, statistical methods (such as box plot analysis) 
are used to identify and correct outliers.

Pollution Source Analysis

The main source of agricultural fertilizer non-
point pollution is the loss of nitrogen and phosphorus 
during fertilization. The amount of fertilizer applied, 
the method of fertilization, and the time of fertilization 
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Pollution Risk Assessment and Fertilization 
Optimization Plan

The purpose of pollution risk assessment is to 
evaluate the impact of pollution on the environment 
by calculating the concentration and diffusion range of 
pollutants. This can be done using the pollution risk 
assessment function of formula (4).

	 1 max max

n
i i

i

C AR
C A=

⋅
=

⋅∑
	 (4)

R is the pollution risk value, Ci is the pollution 
concentration in the area for the i, Ai is the area of the 
region, Cmax is the maximum pollution concentration, 
Amax is the area of the maximum impact area. The higher 
the risk value, the more serious the pollution level in the 
area.

In order to reduce pollution, the model also 
needs to provide an optimized fertilization plan. The 
reinforcement learning algorithm in machine learning 
can be used to optimize the fertilization plan. The 
core of the reinforcement learning algorithm is to 
continuously adjust the amount of fertilizer through a 
reward mechanism to achieve the goal of minimizing 
pollution. Formula (5) assumes that the adjustment 
of each fertilizer amount is positively correlated with 
the reduction of environmental pollution, and the 
fertilization strategy is optimized through the reward 
function.

	 Reward L Yα β= − ⋅ + ⋅ 	 (5)

L is the amount of pollution, Y is crop yield, α and β 
are the weight coefficient. Through repeated iterations, 
the optimal fertilization strategy is found.

Implementation and Application of the Model

In practical applications, the implementation of 
the agricultural fertilizer non-point source pollution 
assessment model needs to rely on high-performance 
computing platforms and big data processing 
technology. By integrating remote sensing image data, 
meteorological data, soil data, and crop growth data, 
combined with machine learning algorithms for real-
time data processing and pollution assessment, it can 
ultimately generate pollution assessment reports and 
optimized fertilization recommendations for different 
regions [23, 24].

In order to verify the effectiveness of the model, 
several typical areas can be selected for field testing, 
soil, meteorological, and water quality data can be 
collected, and compared with the model’s prediction 
results. By evaluating the accuracy and prediction ability 
of the model, the model parameters can be continuously 
optimized to improve the reliability of the model.

Case Analysis and Experimental Evaluation

Case Background

This study selected a typical agricultural area in 
northern China for the experiment. The main crops 
in the area are wheat and corn. It has long faced the 
problems of excessive fertilizer application and water 
eutrophication. The amount of fertilizer applied in the 
area significantly exceeds the national recommended 
standards, resulting in serious enrichment of 
nitrogen and phosphorus in the soil, water pollution,  
and a significant decline in ecosystem service functions. 
In response to this phenomenon, this study aims to use 
big data and machine learning technology to evaluate 
agricultural fertilizer non-point source pollution and 
provide effective governance strategies.

It is acknowledged that the current study focuses on 
a representative agricultural region in northern China, 
primarily involving wheat and corn production systems. 
While this provides valuable insights into fertilizer-
related pollution dynamics in temperate climates, the 
findings may not fully generalize to southern regions 
characterized by different cropping systems, rainfall 
patterns, and soil properties. Future studies should 
expand the geographical scope to include subtropical and 
tropical zones to enhance the regional representativeness 
and applicability of the model.

Data Collection

In order to implement the pollution assessment, this 
study collected multidimensional data from multiple 
channels in the region. Meteorological data comes from 
regional meteorological monitoring stations, including 
temperature, precipitation, and wind speed. The data 
period is nearly two years and is collected daily. Soil 
data is analyzed through on-site sampling, covering 
soil nitrogen, phosphorus content, pH value, and other 
characteristics, focusing on the impact of different 
soil types and fertilization methods on pollution. 
Crop growth data is collected in real time through 
the agricultural management system, covering the 
growth cycle of crops and nitrogen demand. Fertilizer 
application data comes from the farmland management 
system, which records the amount of fertilizer applied, 
fertilization time, and fertilization method of each 
field. These data are collected in real time through IoT 
sensors, remote sensing technology, and other means to 
form a high-quality, multi-source data set.

While meteorological data spanning two years 
provides a solid foundation for short-term trend analysis, 
it may not fully capture inter-annual variability driven 
by climate shifts. To address this limitation, additional 
historical weather records (spanning the past 10 years) 
were integrated into the model for calibration purposes. 
This extended dataset enhances the model’s predictive 
capacity under fluctuating weather conditions, thereby 
improving reliability in long-term applications.
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Implementation Steps and Methods

This study adopted a technical path combining big 
data and machine learning to conduct a comprehensive 
pollution assessment. First, the data preprocessing link 
ensured the consistency and reliability of the data, 
and the accuracy of the data was ensured by means of 
missing value filling, data standardization (Z-Score 
standardization method), and outlier correction. Then, 
the nitrogen and phosphorus loss model and pollution 
source location model were used to analyze the sources 
of pollution in the region, and it was found that excessive 
fertilization and uneven fertilization were the main 
problems, especially in seasons with high precipitation, 
when the loss of nitrogen and phosphorus was more 
serious. Through the Gaussian diffusion model, 
combined with soil permeability and meteorological 
data, the diffusion path and speed of pollutants were 
simulated, and the trend of pollutants spreading to 
water bodies was predicted. Finally, the pollution 
risk of different regions was evaluated based on the 
pollution risk assessment function, and it was found 
that some areas had a higher pollution risk. In order 
to reduce pollution, combined with the reinforcement 
learning algorithm, an optimized fertilization scheme 
for high-risk areas was proposed, the effects of different 
fertilization amounts on crop growth and pollution 
reduction were simulated, and the optimal fertilization 
strategy was finally determined to achieve a balance 
between crop growth and environmental protection.

In order to further verify the applicability and 
accuracy of the assessment model, this study selected 
several typical areas for field testing. These areas were 
selected based on different soil types, crop planting 
patterns, and fertilization management methods to 
ensure that they could cover diverse environmental and 
agricultural production conditions. In these areas, the 
research team collected detailed soil data, meteorological 
data, and water quality data to improve the input data 
of the model and enhance the representativeness of the 
assessment results.

Specifically, soil data covers the content of major 
elements such as nitrogen, phosphorus, and potassium, 
as well as key parameters such as soil pH and organic 
matter content. These data help understand the 
sensitivity and carrying capacity of different soil types 
to fertilizer loss. Meteorological data include factors 
such as temperature, precipitation, humidity, and wind 
speed, which directly affect the rate of fertilizer loss and 
its diffusion pattern in the environment. Water quality 
data focuses on indicators such as nitrogen, phosphorus 
concentration, and dissolved oxygen in water bodies. 
By monitoring the degree of pollution in water sources, 
the impact of fertilizer application on water quality is 
further evaluated.

By conducting field tests in multiple regions, the 
study can more comprehensively reflect the impact of 
different agricultural management practices, climate 
conditions, and soil characteristics on pollution. 

These data not only provide higher-quality support for 
pollution assessment, but also help identify key pollution 
sources and high-risk areas, providing a strong basis for 
subsequent pollution control. Combined with these field 
data, the recommendations for optimizing fertilization 
strategies and management measures will be more 
scientific and accurate, providing more effective support 
for sustainable agricultural development in the region.

Results

Experimental Evaluation and Result Analysis

During the experimental evaluation phase, the 
research team verified the accuracy and practicality of 
the agricultural fertilizer non-point source pollution 
assessment model by comparing model prediction 
results and actual collected data.

Pollution source identification: Through the pollution 
source location model, we successfully identified several 
high-pollution risk areas. The common feature of these 
areas is excessive and uneven fertilizer application. The 
experiment subdivided different types of areas into four 
categories: the plain area has a large amount of fertilizer, 
abundant water resources, and is conducive to irrigation; 
the mountainous area has relatively less fertilizer, but 
the soil permeability is low, and pollutants are easy to 
accumulate; the hilly area has a large terrain undulation, 
strong rain erosion, and pollutants are easy to spread; 
the coastal area is greatly affected by the sea breeze, the 
amount of fertilizer is high, and the loss of nitrogen and 
phosphorus is fast. The specific data are shown in Fig. 2.

Fig. 2 clearly shows the differences in fertilizer 
application, nitrogen and phosphorus loss, precipitation, 
and wind speed between different regional types. The 
amount of fertilizer applied in the plain and coastal 
areas is higher, and the corresponding nitrogen and 
phosphorus loss is also higher. The precipitation in the 
coastal and plain areas is relatively abundant, and the 
wind speed in the coastal areas is the highest. These 
data reflect the impact of environmental characteristics 
and fertilization conditions in different regions on 
nitrogen and phosphorus loss, and provide basic data 
support for subsequent analysis of pollution spread and 
risk assessment.

Pollution diffusion prediction: Using the Gaussian 
diffusion model to simulate the diffusion path of 
pollutants, the study found that there are differences 
in the pollution diffusion patterns in different regions. 
Pollutants diffuse faster in plains and coastal areas, and 
slower in mountainous and hilly areas.

As can be seen from Table 1, the simulated pollution 
concentration is close to the actual water quality 
concentration, which verifies the reliability of the model. 
Due to their special geographical and environmental 
factors, the plains and coastal areas have abundant 
water resources and the coastal areas are affected by 
sea breeze, which makes the pollutants spread quickly 
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and have a great impact on water pollution; while the 
mountainous areas have poor soil permeability and the 
hilly areas have rain erosion but the undulating terrain 
limits the diffusion speed, so the pollutants diffuse 
slowly and mainly accumulate in the mountainous areas, 
while the hilly areas diffuse widely under rain erosion.

Pollution risk assessment: The pollution risk of 
different regions was assessed using the pollution 
risk assessment function. The results showed that 
the pollution risk in coastal areas and plains was 
significantly higher than that in mountainous and hilly 
areas, and high-risk areas were mostly concentrated in 
areas with excessive fertilizer application. See Fig. 3 for 
specific data.

Fig. 3 shows the relationship between the amount 
of fertilizer applied, pollution risk value, and crop 
yield. The amount of fertilizer applied in coastal areas 
and plains is large, the pollution risk value is high, 
but the crop yield is also relatively high. The amount 
of fertilizer applied in mountainous and hilly areas is 
relatively small, the pollution risk value is low, and the 
crop yield is also slightly lower. This shows that the 
amount of fertilizer applied affects the pollution risk and 
crop yield to a certain extent, providing a basis for the 
subsequent optimization of the fertilization plan.

Optimize fertilization plan: Based on the 
reinforcement learning algorithm, optimize fertilization 
plans for different regional types. Different regions 
have different soil types, climate conditions, water 
management, and other factors, so corresponding 
adjustments need to be made in fertilization amount and 
time.

Fig. 4 clearly shows the changes in fertilizer 
application, pollution risk value, and crop yield before 
and after optimization. After optimization, the amount 
of fertilizer applied in each area was reduced, the 
pollution risk value was significantly reduced, and 
although the crop yield decreased slightly, it still 
remained at a relatively high level. This shows that the 
optimized fertilization scheme can better guarantee crop 
yield while reducing pollution risks, and has practical 
application value.

Discussion and conclusion

Pollution characteristics of different regions: After 
analyzing different regional types, it was found that 
the pollution diffusion speed in plains and coastal areas 
was faster, while that in mountainous and hilly areas 
was slower. This is closely related to factors such as 

Fig. 2. Data on factors related to fertilization and pollution in different regions.

Table 1. Comparison of pollution diffusion prediction and actual water quality concentration in different regions.

Region Type Simulated pollution 
concentration (mg/L)

Actual water concentration 
(mg/L) Diffusion path description

Plains 1.2 1.3 Rapid spread, worsening water pollution

Mountain area 0.5 0.6 Pollutants accumulate and diffuse more slowly

Hilly Area 0.8 0.9 Rainwater washes away and spreads widely

Coastal Area 1.5 1.4 Sea breeze spreads faster and has a big impact
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regional fertilizer application, soil permeability, and 
precipitation. Specific data are shown in Table 2.

From Table 2, we can see that the pollution diffusion 
speed is fast in plains and coastal areas due to the 
large amount of fertilizer, abundant water resources, 
and the influence of sea breeze in coastal areas; the 
soil permeability in mountainous areas is poor, which 
hinders the diffusion of pollutants, so the speed is the 
slowest; the hilly areas are affected by rain erosion and 
undulating terrain, and the diffusion speed is in the 
middle. These characteristics provide direction for the 
formulation of targeted pollution control measures.

Pollution risk assessment: The pollution risk 
assessment model shows that the pollution risk is higher 
in plain areas and coastal areas, especially in areas 
with excessive fertilizer application. After optimizing 
the fertilization plan, the pollution risk is effectively 
reduced. See Fig. 5 for specific data.

Fig. 5 shows that the optimized fertilization scheme 
has a significant effect on reducing pollution risks 
in various regions. The risk values in the plains and 
coastal areas were originally high, and the reduction 
ratio was large after optimization; the risk values in 
the mountainous and hilly areas were relatively low, 

Fig. 3. Pollution risk assessment results in different regions.

Fig. 4. Effects of fertilization optimization on pollution risk and crop yield in different regions.

Table 2. Summary of pollution diffusion characteristics in different regions.

Region Type Fertilizer application rate 
(kg/ha)

Pollution diffusion 
rate (m/day) Main influencing factors

Plains 230 35 Large amount of fertilizer and abundant water resources

Mountain area 150 10 Poor soil permeability

Hilly Area 180 20 Rainwater erosion and undulating terrain

Coastal Area 210 40 Sea breeze influence, abundant water resources
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and they were also reduced to a certain extent after 
optimization. This further proves the effectiveness of 
the optimized fertilization scheme in reducing pollution 
risks.

Although the immediate effects of ecological 
restoration, such as improved soil quality and pollutant 
reduction, have been observed, the study also initiates 
a long-term monitoring plan to assess impacts on 
biodiversity and ecosystem resilience. Indicators such 
as species richness, vegetation cover diversity, and 
microbial soil activity will be continuously monitored 
over a five-year period. Preliminary analysis suggests 
that areas undergoing vegetation restoration exhibit a 
gradual increase in native plant diversity, indicating 
potential for enhanced ecological stability.

Future studies may benefit from integrating big 
data and machine learning technologies with biological 
and ecological engineering techniques. For example, 
the fusion of microbial fertilizers with real-time soil 
nutrient monitoring systems can enhance nutrient 
uptake efficiency while maintaining environmental 
safety. Combining genomics-based crop optimization 
with machine learning-based fertilization plans also 
presents a promising path for resilient and low-emission 
agriculture. These cross-disciplinary integrations can 
expand the toolkit for non-point source pollution control 
and support sustainable agricultural transitions.

Beyond environmental benefits, the implementation 
of pollution control measures has generated positive 
socioeconomic outcomes. The promotion of green 
fertilizers and precision agriculture has stimulated local 
employment through demand for technical services, 
equipment maintenance, and training programs. 
Furthermore, the reduction of excessive chemical inputs 
has enhanced the market competitiveness of agricultural 
products labeled as eco-friendly or low-residue, thereby 
increasing profit margins. These benefits highlight the 
multi-dimensional value of sustainable governance 
strategies in rural revitalization.

Beyond short-term effectiveness, the study also 
conducted a preliminary cost-benefit analysis of major 
governance measures. The implementation of precision 
fertilization and green fertilizers entails initial costs 
for equipment, training, and material substitution. 
However, over a five-year projection, net economic 
gains are observed due to improved fertilizer use 
efficiency, reduced input costs, and higher crop yields. 
Furthermore, green-labeled produce commands higher 
market prices. A break-even analysis shows that most 
investment costs can be recovered within three years 
under standard adoption rates, supporting the long-term 
feasibility of the measures.

Governance Recommendations

According to the agricultural characteristics and 
pollution risks in different regions, the following 
personalized governance suggestions are proposed to 
reduce agricultural fertilizer non-point source pollution 
and improve soil quality:

First, for the plain area, where the soil fertility is high 
and water resources are abundant, it is recommended to 
use precision fertilization technology combined with 
remote sensing and geographic information systems 
to monitor soil fertility and crop growth in real time, 
so as to achieve on-demand fertilization and avoid 
excessive use of chemical fertilizers. Use water-saving 
irrigation technologies such as drip irrigation and 
sprinkler irrigation to reduce fertilizer loss caused by 
water erosion. In addition, combine the use of organic 
fertilizers with biological fertilizers to improve soil 
structure, enhance soil fertility, and reduce pollution to 
the environment.

In mountainous areas, since the soil is poor and 
prone to soil erosion, it is recommended to promote 
the use of organic fertilizers and biofertilizers to 
enhance soil water retention and fertility. Small doses 
and multiple fertilization methods should be adopted to 

Fig. 5. Changes in pollution risk before and after fertilization optimization in different regions.
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avoid pollution caused by excessive fertilization. At the 
same time, water resources in mountainous areas are 
relatively scarce, and micro-irrigation technology needs 
to be promoted to reduce water waste and improve 
fertilizer utilization efficiency. In terms of ecological 
restoration, soil erosion can be reduced by planting trees 
and grass, and soil quality can be improved by restoring 
vegetation.

In hilly areas, the soil is loose and the terrain is 
undulating, which makes soil erosion more likely to 
occur. Fertilization should be carried out in layers 
according to the terrain with different slopes, and 
water-saving irrigation technologies such as micro-
spraying and drip irrigation should be promoted 
to reduce fertilizer loss with water. In addition, by 
combining green fertilizers (such as organic fertilizers 
and compound fertilizers), the soil’s water and fertilizer 
retention capacity can be improved to reduce pollution 
risks. In terms of ecological restoration, vegetation 
restoration measures can be used to reduce soil erosion 
and enhance soil quality.

For coastal areas, the management of fertilization and 
irrigation is particularly important. It is recommended 
to use an intelligent drip irrigation system to control 
the irrigation volume and prevent excessive irrigation 
and fertilizer loss. The use of green fertilizers should be 
combined to reduce pollution of soil and water bodies. 
In terms of ecological restoration, the stability of the 
soil can be enhanced by planting salt-tolerant plants and 
building ecological protection belts, and aquatic plants 
can be used to purify polluted water bodies and restore 
ecological functions.

The success of pollution control measures heavily 
depends on the participation and acceptance of farmers. 
To this end, the study recommends establishing 
farmer training programs focused on the operation of 
precision fertilization systems, interpretation of soil 
sensor data, and eco-friendly fertilization practices.  
A survey conducted in the target region reveals that 
over 65% of farmers expressed willingness to adopt 
new technologies if supported by adequate training and 
subsidies. Thus, participatory governance and capacity 
building are essential for technology diffusion and long-
term compliance.

In governance design, region-specific climate 
resilience strategies are recommended, such as 
enhancing soil buffering capacity in drought-prone areas 
and improving drainage systems in flood-risk zones, to 

reduce fertilizer runoff during weather extremes.
To enhance policy integration, it is recommended that 

pollution control measures be embedded into existing 
agricultural subsidy frameworks and rural development 
programs. For instance, precision fertilization equipment 
can be subsidized under government-supported smart 
agriculture initiatives. Furthermore, compliance with 
eco-fertilization guidelines can be linked to agricultural 
insurance schemes and land-use permits to create 
institutional incentives. Strengthening cooperation 
between local agricultural bureaus and environmental 
regulators is crucial for ensuring synchronized 
implementation and monitoring.

Governance Effect Evaluation

After implementing precision fertilization, 
green fertilizer promotion, irrigation management 
optimization, and ecological restoration measures, the 
treatment effect was evaluated. The following three 
tables compare key indicators such as soil quality, 
pollutant concentration, and crop yield before and after 
treatment, showing the actual results of the treatment 
measures.

Table 3 shows the changes in soil quality indicators 
before and after treatment. Before treatment, the soil 
nitrogen content was 150 mg/kg, and the phosphorus 
content was 80 mg/kg. After treatment, the nitrogen 
and phosphorus contents decreased by 20% and 18.75%, 
respectively. This is due to the implementation of 
green fertilizers and precision fertilization technology, 
which reduced the excessive accumulation of nitrogen 
and phosphorus in the soil. The soil pH value dropped 
from 7.2 to 6.8, and the acidity was properly adjusted, 
which is more conducive to crop growth. At the same 
time, the organic matter content increased from 2.5% to 
3.2%, an increase of 28%, which is of great significance 
to improving soil structure and improving soil water 
and fertilizer retention capacity, providing a better soil 
environment for crop growth.

Fig. 6 shows the changes in pollutant concentrations 
before and after treatment. Before treatment, the 
nitrogen concentration in the water was 12.5 mg/L, 
the phosphorus concentration was 4.2 mg/L, the 
nitrogen concentration in the soil was 150 mg/L, and 
the phosphorus concentration was 80 mg/L. After 
treatment, the nitrogen and phosphorus concentrations 
in the water and soil decreased significantly, with the 

Table 3. Comparison of soil quality changes.

Soil quality indicators Before governance After governance Range of change

Nitrogen content (mg/kg) 150 120 -20%

Phosphorus content (mg/kg) 80 65 -18.75%

pH 7.2 6.8 -5.56%

Organic matter content (%) 2.5 3.2 +28%
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nitrogen concentration in the water decreasing by 33.6%  
and the phosphorus concentration decreasing by 
38.1%. The decrease in nitrogen and phosphorus 
concentrations in the soil was consistent with the soil 
quality change table. This clearly shows that through the 
implementation of a series of treatment measures, the 
diffusion of nitrogen and phosphorus pollutants in water 
and soil has been effectively suppressed, agricultural 
non-point source pollution has been reduced, and a 
positive effect has been achieved on the improvement of 
the ecological environment.

Table 4 compares the changes in crop yields before 
and after treatment. Before treatment, wheat yield was 
450 kg per mu, corn yield was 700 kg per mu, and the 
overall yield was 1150 kg per mu. After treatment, wheat 
yield increased to 500 kg per mu, an increase of 11.1%; 
corn yield reached 750 kg per mu, an increase of 7.14%; 
and the overall yield increased by 8.7% to 1250 kg 
per mu. This is mainly attributed to the optimization 
of fertilization strategies and irrigation management, 
which optimized the crop growth environment and made 
the nutrient and water supply more reasonable, thereby 
promoting crop growth, increasing the yield of wheat 
and corn, and thus improving the overall agricultural 
productivity.

Discussion

This study has achieved significant environmental 
improvements and agricultural production benefits by 
implementing a series of governance measures, such 
as precision fertilization, green fertilizer promotion, 
irrigation management optimization, and ecological 
restoration in different regions. Comparison of data 
before and after governance shows that the nitrogen and 
phosphorus content in the soil has decreased significantly, 
and the nitrogen and phosphorus concentrations in the 
water body have also been effectively controlled, which 
verifies the effectiveness of the governance of agricultural 
fertilizer non-point source pollution. However, the 
differences in governance effects are reflected in different 
regions. The governance effects in plains and coastal 
areas are relatively ideal, and the soil organic matter 
content and crop yield have increased significantly. This 
may be related to the relatively flat areas, good irrigation 
conditions, and more adequate implementation of 
governance technologies in these areas. On the contrary, 
due to the complex terrain and severe soil erosion in 
mountainous and hilly areas, the governance effect is 
relatively weak. Although the concentration of pollutants 
has decreased, the long-term effect of ecological 
restoration still needs further observation.

Fig. 6. Comparison of pollutant concentration changes.

Crop Type Before treatment (kg/mu) After treatment (kg/mu) Range of change

wheat 450 500 +11.1%

corn 700 750 +7.14%

Comprehensive output 1150 1250 +8.7%

Table 4. Comparison of crop yields.
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Through governance measures, especially the 
application of precision fertilization and green fertilizers, 
the environmental cost of agricultural production has 
been greatly reduced, but it has also exposed some 
challenges. For example, the promotion of green 
fertilizers still faces obstacles such as farmers’ habits 
and costs. In addition, although precision fertilization 
can reduce the excessive use of chemical fertilizers, the 
popularization of fertilization technology and farmers’ 
acceptance are still problems. In some remote areas, 
technical training and the introduction of equipment still 
face great difficulties.

In summary, this study provides strong empirical 
support for the control of agricultural non-point source 
pollution and proves the effectiveness of diversified 
control strategies in improving environmental quality 
and crop yields. However, in order to further improve 
the control effect, it is necessary to increase efforts 
in technology popularization, policy support, and 
ecological restoration, especially for difficult areas such 
as mountainous and hilly areas. In the future, more 
refined measures can be adopted for comprehensive 
control.

Conclusions

This study implemented a series of agricultural 
non-point source pollution control measures in typical 
agricultural areas in northern China and conducted a 
detailed evaluation of their effects. The study showed 
that control measures such as precision fertilization, 
green fertilizer promotion, irrigation management 
optimization, and ecological restoration have 
achieved significant results in reducing soil and water 
pollution and increasing crop yields. By comparing 
model predictions with field data, the nitrogen and 
phosphorus content in the soil decreased significantly 
after treatment, the concentration of water pollutants 
decreased significantly, and crop yields generally 
increased, indicating that these measures can effectively 
alleviate agricultural non-point source pollution and 
improve agricultural productivity.

In terms of the implementation effects in different 
regions, the plains and coastal areas benefited the most, 
and the governance measures were able to achieve 
significant ecological and economic benefits in a 
relatively short period of time. However, the governance 
effects in mountainous and hilly areas were relatively 
weak, mainly due to factors such as complex terrain 
and soil erosion. Nevertheless, through the adoption 
of targeted ecological restoration and improvement 
measures, the governance effects in mountainous and 
hilly areas have still improved.

Although this study has achieved relatively ideal 
governance results, it still faces several challenges in 
the implementation process, especially in the promotion 
of green fertilizers, the popularization of precision 
fertilization technology, and the long-term effects of 

ecological restoration. The high cost of green fertilizers 
and farmers’ usage habits are still the main obstacles 
to promotion. The popularity of precision fertilization 
technology in some remote areas is low, and strong 
technical support is needed during implementation.

Future research should focus more on the 
popularization and application of governance 
technologies, especially the optimization of governance 
in complex terrain areas such as mountainous and 
hilly areas. In addition, the government can promote 
the popularization of green fertilizers and advanced 
irrigation technologies through policy support and 
subsidies, and improve farmers’ environmental 
awareness and technology acceptance. With the support 
of remote sensing, the Internet of Things, and big data 
technologies, agricultural non-point source pollution 
control is expected to be more widely used and more 
accurately implemented in the future, thereby promoting 
a win-win situation for agricultural production and 
environmental protection.

The pollution assessment model developed in this 
study exhibits strong adaptability and can be extended 
to other agricultural settings beyond the test region. 
With appropriate retraining, the model can be calibrated 
to suit various cropping systems such as rice paddies, tea 
plantations, or horticultural zones. The core structure 
allows integration of region-specific variables, such as 
crop types, soil features, and irrigation methods, making 
it a versatile tool for broader non-point source pollution 
management across diverse agroecological zones.
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