
Introduction

Wind erosion contributes to soil degradation by 
modifying soil texture and disrupting nutrient dynamics, 
particularly through the depletion of soil organic 

carbon and essential nutrients, ultimately reducing 
soil fertility and ecosystem productivity [1-7]. Wind 
erosion is governed by complex interactions among 
atmospheric conditions, surface characteristics, and 
soil properties [8-10]. Wind-driven particle dynamics 
have been described as a multi-stage process involving 
particle detachment, transport (via suspension, saltation,  
and surface creep), abrasion, sorting, and final deposition 
of soil materials [11, 12].
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Abstract

Purpose: Accurate estimation of the wind-erodible fraction (EF), defined as the proportion of soil 
particles smaller than 0.84 mm, is essential for wind erosion models such as WEQ, RWEQ, WEPS, 
EPIC, or APEX. Conventional rotary sieving is often impractical, which has led to the use of predictive 
equations. This study evaluated the equation [30] for Czech soils and developed a region-specific model.

Methods: Seventy-eight soil samples representing major soil units across the Czech Republic were 
analyzed for particle-size distribution, organic carbon, and carbonate content. EF was determined using 
the flat sieve dry-sieving method. Multiple regression analysis was applied to assess the equation [30] 
and construct an improved model.

Results: The equation [30] exhibited substantial bias under local conditions. The refined model 
identified key predictors, including sand (r = 0.58), silt (r = –0.50), clay (r = –0.43), and particularly 
the sand-to-clay ratio (r = 0.65), while organic carbon and calcium carbonate (CaCO₃) were insignificant. 
The model demonstrated high predictive performance (R² = 0.90; adjusted R² = 0.89).

Conclusion: The proposed equation provides a robust, region-specific alternative for EF estimation, 
significantly improving wind erosion risk assessment for Central European soils and underscoring 
the necessity of localized parameterization in wind erosion modeling.

Keywords: calculation, equation, erosion, regression, sieve, soil aggregate

Pol. J. Environ. Stud. Vol. XX, No. X (XXXX), 1-10



Petr Zalesak, et al.2

Wind erodibility refers to the propensity of soil to 
undergo detachment and subsequent displacement by 
aeolian forces, influenced by the complex interplay of 
soil properties and plant factors [13-15]. In conditions 
where protective elements such as plant residues, crop 
cover, surface roughness, or moisture are minimal, 
wind erodibility primarily depends on the intrinsic, 
non-structural properties of the soil surface, termed 
soil-inherent wind erodibility (also referred to as soil 
erodibility) [13]. This soil-inherent wind erodibility 
is fundamentally determined by two closely related 
factors: the distribution of soil aggregate sizes and the 
stability of these aggregates [13]. The aggregate size 
distribution is typically quantified using either the 
erodible fraction (EF) or the geometric mean diameter 
(GMD), as originally proposed by [13, 16, 17]. 

The EF of soil represents aggregates and particles 
susceptible to wind erosion, specifically those with a 
diameter not exceeding 0.84 mm. This threshold was 
established through wind tunnel experiments conducted 
by [18]. The proportion of EF serves as a key input 
parameter in widely used wind erosion prediction 
equations, including the Wind Erosion Equation (WEQ) 
[19], the Revised Wind Erosion Equation (RWEQ) [20], 
and process-based models such as the Wind Erosion 
Prediction System (WEPS) [21].

Given its critical role in wind erosion dynamics, 
EF also serves as a basis for classifying soil erodibility 
levels. Furthermore, soil can be classified based on 
its EF content to determine its susceptibility to wind 
erosion. A soil is considered highly erodible if its EF 
exceeds 50%, moderately erodible if EF ranges between 
40-50%, and slightly erodible if EF remains below 
40% [22]. This classification provides a fundamental 
framework for evaluating soil stability and the potential 
risk of degradation under aeolian processes.

The standard method for determining the EF content 
in soil involves dry sieving using a rotary sieve [23-26]. 
This approach assesses dry soil aggregates, providing 
a more accurate representation of field soil structure 
compared to primary aggregates analyzed using 
wet sieving. Dry sieving better reflects the physical 
disintegration of soil aggregates under natural field 
conditions, making it a widely accepted methodology 
for EF determination [26].

A previous study demonstrated a strong correlation 
(r = 0.939, p<0.001) between results obtained using a 
flat sieve and those from a rotary sieve, indicating that 
a flat sieve can serve as a suitable alternative for EF 
determination [27]. However, to ensure consistency 
and reproducibility of results, flat sieve measurements 
should be conducted using an electromagnetic shaker. 
This setup provides controlled and uniform sieving 
conditions, minimizing operator-induced variability 
and enhancing comparability across different studies. 
When using a flat sieve with an electromagnetic shaker, 
it is essential to account for sieving duration, sieving 
load, and motor shaker frequency, as these factors can 
influence the results [28, 29].

As an alternative to direct sieving, several 
predictive equations have been developed to estimate 
EF content based on soil physicochemical properties. 
The first widely recognized equation was introduced 
by [30] using multiple regression analysis. This model 
integrates key soil parameters, including sand, silt, 
clay, calcium carbonate (CaCO₃), and organic matter 
content. However, it was calibrated exclusively on  
a dataset of 3,000 soil samples from the USA, limiting its 
applicability in regions with distinct soil characteristics 
[30].

Multiple studies have identified significant 
limitations in the predictive accuracy of the [30] 
equation for estimating EF content in soils outside the 
United States. For instance, [27] reported considerable 
discrepancies in EF predictions for Argentine and 
Spanish soils, attributing these deviations primarily to 
variations in CaCO₃ content. Similarly, [31] found that 
the equation exhibited poor performance for Tunisian 
soils, particularly Aridisols, where EF values obtained 
via flat sieving showed a variability of R² = 0.649.

The correlation between EF predictions based on 
the [30] equation and values from rotary sieving was 
examined in a recent study [32]. Their findings revealed 
that the strength of the correlation varied across different 
land management practices, including tree windbreaks, 
conservation tillage farmland, and conventional tillage 
farmland, suggesting that vegetation cover and land use 
practices may influence the model’s predictive accuracy. 
The highest correlation (R² = 0.3201) was observed for 
grassland soils.

Recent studies on EF prediction models underscore 
the substantial influence of soil parameters on 
model accuracy. For instance, [31] demonstrated that 
incorporating soil texture and CaCO₃ content into 
regression models significantly enhanced predictive 
performance (R² = 0.723). Conversely, [33] challenged 
these findings, reporting no statistically significant effect 
of CaCO₃ content on EF values, thereby suggesting 
potential methodological or regional variability in EF 
estimation.

An analysis conducted by [34] using soil samples 
from Nebraska revealed that the EF equation developed 
by [30] exhibited better predictive accuracy while 
still underestimating EF content in 77% of the dataset  
(R² = 0.41), whereas the equation proposed by [27] 
showed a higher underestimation rate (83%) and 
a lower coefficient of determination (R² = 0.36), 
potentially influenced by the low CaCO₃ content (<7%) 
of the analyzed samples. Moreover, a newly developed 
equation, derived through stepwise regression analysis 
and incorporating silt content, clay content, organic 
matter concentration, and percent residue cover, did 
not outperform the [30] model, as it significantly 
underestimated EF content in 80% of the dataset, with 
an R² of 0.40 [34].

In a comprehensive review, [33] examined existing 
equations used for EF content prediction. Their study 
compiled a dataset integrating rotary and flat sieving 
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data from multiple sources, including [30, 31, 35-42]. 
The dataset encompasses measurements from various 
geographic regions, including the USA and Argentina 
(Americas), the Czech Republic (Europe), Tunisia and 
Nigeria (Africa), as well as Iran, Türkiye, and China 
(Asia) [33]. By leveraging a heterogeneous dataset 
from multiple studies, this analysis enables an objective 
and methodologically rigorous comparison of existing 
equations. Such an approach enhances the understanding 
of equation complexity and supports a robust evaluation 
of their empirical validity and practical applicability on 
a global scale.

According to [33], the equation proposed by [31]  
(R² = 0.067; RMSE = 51.174; MAPE = 0.167) 
demonstrated greater accuracy compared to that of 
[34] (R² = 0.331; RMSE = 48.805; MAPE = 0.277), 
which systematically overestimated EF content by more 
than 100% in most cases. However, both equations 
exhibited a general tendency to overestimate EF content. 
Similarly, the equation developed by [27] (R² = 0.346;  
RMSE = 5.798; MAPE = 0.096) overestimated EF 
content in multiple instances, sometimes exceeding 
a 100% deviation. Likewise, the equation by [35] 
significantly overestimated EF content.

The poorest predictive performance was observed 
for the equation developed by [40] (R² = 0.0001;  
RMSE = 156.632; MAPE = 0.742), which failed to 
provide reliable estimates. In many cases, the predicted 
EF content exceeded the plausible range by more than 
100%. In samples with low clay content, the equation 
even produced negative EF values, which are unrealistic 
outcomes. Conversely, the equation by [30] (R² = 0.203; 
RMSE = 3.080; MAPE = 0.007) demonstrated the 

highest predictive accuracy among the compared 
models. However, both this equation and the model 
by [35] (R² = 0.002; RMSE = 36.180; MAPE = 0.205) 
produced negative EF content values for some samples.

To overcome these limitations, [33] developed 
an innovative equation based on stepwise regression 
analysis (R² = 0.81; RMSE = 2.487; MAPE = 0.015). 
This model was calibrated on the compiled dataset 
and does not produce negative EF values or estimates 
exceeding 100%, thereby improving the reliability and 
applicability of EF predictions across diverse soil types 
and geographic regions.

Materials and Methods

To evaluate the applicability of the first published 
equation for determining EF content [30] and to develop 
a new approach for assessing EF in soil, a comprehensive 
dataset of soil samples was assembled, representing 
various soil types across the Czech Republic (48.5°N 
to 51.1°N; 12.1°E to 18.9°E; Fig. 1). The country covers 
an area of 78,866 km² with a median elevation of 430 
m above sea level (m a.s.l.), a mean annual temperature 
of 7.6ºC, and an average annual precipitation of 677 
mm (1921-2020) [43]. The average relative air humidity  
for the period 2021-2022 was 74.2% [44]. This study 
area was particularly suitable due to the availability of 
a highly detailed and continuously updated soil mapping 
system [45].

Soil survey methodologies in the Czech Republic 
adhere to high standards, with a long-standing 
tradition dating back to the 18th century, beginning  

Fig. 1 Geolocation of soil sample collection points based on a digital elevation model. Data source: DMR 5G (ČÚZK). 
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with the Josefian Cadastre and continuing to the 
present day [46]. One of the most sophisticated surveys, 
the Systematic Soil Survey of Agricultural Soils in 
Czechoslovakia (SSS), was conducted in the 1960s 
and 1970s [47, 48]. Within the Czech Republic alone, 
this survey encompassed over 500,000 soil profile 
observations, with a total of more than 2 million soil 
samples analyzed [47].

The SSS employed the Genetic-Agronomic Soil 
Classification System [49] to systematically categorize 
soils [47]. Building upon the findings of the SSS, 
the Evaluated Soil-Ecological Unit (ESEU) system 
was developed as a key tool for land assessment and 
management [46]. The ESEU classification continues 
to be updated regularly, with its characteristics and 
revision procedures formally outlined in [45].

Soil samples were primarily collected from the 
Main Soil Unit (MSU), a component of the ESEU 

[45]. The ESEU consists of a five-digit code that 
provides information about the climatic region, the 
MSU, inclination, exposure, and skeletal content [45]. 
The MSU is characterized by a targeted agronomic 
classification of genetic soil types and subtypes, taking 
into account soil-forming substrates, particle size 
distribution, soil depth, hydromorphic properties (type 
and degree), and the area’s relief. The Czech Republic 
contains 89 different types of MSUs, representing  
a highly diverse range of soils [45].

A single soil sample was collected from MSU  
01-78, while MSU 79-89 are newly established and have 
not been practically used so far. The GNSS system and 
GIS software were used for field navigation and location 
recording during soil sample collection. To select the 
most suitable sampling sites, publicly available datasets 
such as SoilGrids, WoSIS, and the LUCAS database 
were utilized. The soil types of the collected samples, 

Table 1. Classification of the collected soil samples according to the WRB.

ESEU WRB ESEU WRB ESEU WRB

0.01.00 Haplic luvisols 6.27.01 Cambisols 5.51.11 Stagnosols

3.02.00 Haplic luvisols 5.28.44 Cambisols 7.52.01 Albeluvisols

0.03.00 Chernozems 7.29.14 Cambisols 7.53.01 Stagnosols

2.04.01 Chernozems 7.30.14 Cambisols 3.54.11 Haplic luvisols

1.05.01 Chernozems 2.31.14 Haplic luvisols 3.55.00 Chernozems

0.06.00 Phaeozems 7.32.01 Cambisols 3.56.00 Fluvisols

2.06.10 Chernozems 2.33.01 Cambisols 3.57.00 Fluvisols

2.07.10 Vertisols 8.34.24 Cambisols 5.58.00 Fluvisols

3.08.10 Chernozems 8.35.04 Cambisols 0.59.00 Fluvisols

3.09.00 Greyic phaeozems 9.36.04 Entic podzols 2.61.00 Fluvisols

2.10.10 Haplic luvisols 5.37.16 Cambisols 3.62.00 Phaeozems

4.11.00 Gleysols 7.38.16 Cambisols 0.63.00 Phaeozems

5.12.00 Fluvisols 3.39.19 Haplic luvisols 3.64.01 Fluvisols

3.13.00 Haplic luvisols 5.40.78 Cambisols 8.65.01 Stagnosols

7.14.00 Albeluvisols 5.41.68 Leptosols 8.66.01 Gleyic stagnosols

7.15.12 Haplic luvisols 3.42.00 Haplic luvisols 4.67.01 Gleysols

3.16.02 Albeluvisols 5.43.00 Albeluvisols 7.68.11 Cambisols

4.18.11 Rendzic leptosols 3.44.00 Haplic luvisols 7.69.01 Gleysols

3.19.01 Cambisols 3.44.00 Haplic luvisols 2.70.01 Fluvisols

2.20.01 Leptosols 3.45.01 Haplic luvisols 7.71.01 Cambisols

3.21.10 Fluvisols 7.46.10 Haplic luvisols 8.72.01 Gleysols

3.22.10 Regosols/arenosols 7.47.10 Albeluvisols 7.73.11 Stagnosols

3.23.10 Regosols/arenosols 5.48.11 Albeluvisols 7.74.11 Cambisols

3.24.11 Cambisols 4.49.11 Cambisols 7.75.41 Cambisols

7.25.04 Cambisols 5.49.11 Cambisols 1.77.69 Leptosols

5.26.01 Cambisols 7.50.11 Cambisols 3.78.69 haplic Luvisols
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was analyzed using the hydrometer method in 
accordance with [57], following Casagrande’s approach.  
The hydrometer method is based on Stokes’ law [58], 
with principles detailed in [59]. The organic carbon 
content was determined using the [60] method, which 
relies on an oxidation-reduction titration. The carbonate 
content (CaCO₃) was quantified using the Scheibler 
method, a volumetric technique conducted in accordance 
with ISO 10693 [61, 62].

Data preparation for statistical analyses involved 
preprocessing in a conventional spreadsheet editor. 
Statistical analyses were conducted in Python using 
open-source libraries, including pandas, numpy, 
statsmodels, scikit-learn, seaborn, scipy, and matplotlib.

Results and Discussion

Characteristics of the Soil Sample Dataset

The dataset comprised a total of 78 soil samples 
(Fig. 2), each representing an individual MSU.  
The complexity and variability inherent in the diverse 
range of soil properties were characterized through 
statistical analysis, as presented in Table 2, which 
provides key descriptive statistics, including the median, 
mean, standard deviation, minimum, maximum, and 
coefficient of variation (CV) for the parameters EF sieve, 
sand, silt, clay, sand-to-clay (S/C) ratio, organic carbon, 
and CaCO₃ content.

The dataset compiled by [33], integrating samples 
from multiple studies and capturing a broader range 
of soil characteristics, serves as a comprehensive 

classified according to the World Reference Base for 
Soil Resources (WRB) based on [50], are summarized 
in Table 1. Additionally, the particle size distribution 
of the samples, as determined according to the USDA 
soil texture classification system, is illustrated in the 
soil texture triangle (Fig. 2). The collected samples 
were taken from various elevations across the Czech 
Republic, spanning locations from 48.72°N, 12.62°E to 
50.59°N, 17.99°E, with elevations ranging from 174 to 
794 m a.s.l., as illustrated in Fig. 1. 

Soil samples were collected during the spring season 
following primary tillage operations [27]. Sampling was 
conducted from the uppermost soil layer [51, 52], with a 
maximum depth of 25 mm [53, 54]. After collecting, the 
soil samples were air-dried and subsequently analyzed 
using the dry sieving technique [26-28, 55]. The EF 
content was determined using a flat sieve in combination 
with an electromagnetic vibration shaker (Retsch AS 
200) to ensure process consistency [29]. The amplitude 
and time settings of the electromagnetic vibration shaker 
were consistent for all soil samples. An amplitude of 0.1 
mm was applied for a duration of 5 min, following [27]. 
The sieve load, which is related to the varying weight 
of the soil, can significantly affect the results and cause 
distortions. Therefore, the constant weight of the sieved 
soil must be maintained during sieving [29]. According 
to [56], the optimal sieve loading should not exceed 
30% of its capacity. Based on this criterion, an optimal 
soil mass of 100-200 g was determined in this study, 
aligning with the values reported by [27].

According to the original EF equation [30], grain 
size distribution, organic carbon content, and carbonate 
content were determined. The grain size distribution 

Fig. 2 Distribution of the collected soil samples within the USDA soil texture triangle.
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reference for comparison. Additionally, the dataset from 
[34], consisting of 99 samples collected near Nebraska 
City, USA, provides further context for comparative 
analysis. To enable more robust comparisons in future 
studies, soil characteristics could also be derived from 
soil spectral libraries [63-66]. A systematic comparison 
with the dataset presented in Table 1 reveals significant 
variations across multiple soil parameters.

The most pronounced discrepancies are observed in 
sand content, which shows lower absolute variance but 
slightly higher relative variance in the present study 
compared to [33]. While the mean sand content is lower 
than that of [33], its relative variability is slightly greater. 
Furthermore, the relative variance of organic carbon 
content in the current dataset is approximately three 
times lower, while its mean value (2.32) is higher and 
comparable to the mean organic carbon content reported 
by [34] (3.1). Notably, the present dataset shows a wider 
range of organic carbon values, indicating greater 
variability than in the reference datasets.

In contrast, CaCO₃ content exhibits roughly  
a 0.5-fold increase in relative variance, while its mean 
value is less than half of that reported by [33], whose 
dataset spans a broader range (0.00-24.30). The dataset 
from [34], by comparison, reports a much narrower 
CaCO₃ range (0.5-6.9). Additionally, sand, silt, and clay 
contents in the present study display higher absolute 
variance but lower relative variance compared to [33]. 
The dataset from [34] shows greater absolute variance 
and higher mean values for EF, sand, clay, and the S/C 
ratio, whereas silt and CaCO₃ contents show lower 
absolute variance. Interestingly, the absolute variance 
of organic carbon content is nearly identical across 
datasets, although its mean value is higher in the present 
study. The mean silt content reported by [34] is lower, 
whereas the mean CaCO₃ content is nearly identical to 
that presented in Table 2.

Compared to [33], the current dataset has a lower 
mean sand content and a slightly narrower range but 
higher mean values for silt and clay contents. The 
proximity of mean and median values suggests a higher 
risk of soil erosion, particularly in areas with elevated EF 

content. The maximum silt content in the present dataset 
(62) exceeds that of [34] but remains slightly lower than 
the maximum reported by [33] (70.30). Similarly, while 
the maximum clay content in [33] is 46.00, [34] reports  
a higher maximum value (73.90), compared to the 
present study.

Assessment of the Predictive Performance 
of the [30] Equation for EF

The most comprehensive review of EF estimation 
equations to date was conducted by [33], who identified 
the [30] equation as the most accurate. Accordingly, this 
equation was selected for further validation using the 
dataset collected in this study.

Its predictive performance was evaluated through 
regression analysis, comparing EF obtained via the 
flat sieve method with those predicted by the equation  
(Fig. 3). The results revealed a positive linear trend; 
however, the coefficient of determination (R² = 0.1357) 
indicates a weak predictive capability, consistent with 
the findings of [27, 31, 34].

Although the equation does not systematically 
overestimate values exceeding 100%, as reported by 
[33], our study confirms that it does not yield negative 
EF values (Fig. 3). Nonetheless, its applicability to Czech 
soils remains limited. To improve predictive accuracy, 
the development of a new model tailored to regional soil 
properties is necessary.

Development of Prediction Equations  
for EF Calibrated Using the Czech Soils

A correlation analysis was conducted to illustrate 
the relationships among individual soil properties  
(Fig. 4). EF indicates a strong positive correlation with 
the calculated S/C ratio (r = 0.65) and sand content  
(r = 0.58), indicating that higher values of these 
parameters are associated with increased EF. In contrast, 
EF shows a strong negative correlation with silt content 
(r = -0.50), suggesting that lower silt content enhances 
EF. A moderate negative correlation is observed between 

Parameter Unit Median Mean Minimum Maximum Std. Deviation CV (%)

EF Sieve % 21.84 24.21 9.24 89.95 12.33 50.91

Sand % 35.80 39.74 13.21 87.53 18.00 45.29

Silt % 42.42 39.68 5.20 62.00 13.24 33.37

Clay % 19.49 20.57 7.27 41.12 8.89 43.20

S/C Ratio * - 1.76 2.60 0.18 12.03 2.33 89.76

Organic 
Carbon % 1.87 2.32 0.51 7.02 1.33 57.46

CaCO3 % 0.21 2.11 0.03 20.00 4.96 235.19

* calculated value

Table 2. Statistical evaluation of the analyzed soil parameters for the examined soil samples.
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EF and clay content (r = -0.43), while weak negative 
correlations are found with organic carbon (r = -0.013) 
and CaCO₃ content (r = -0.10). These relationships are 
illustrated in Fig. 4. The observed patterns align with the 
findings of [33], who also reported the weakest negative 
correlation between EF and both organic carbon and 
CaCO₃ content in their compiled dataset.

The new equation was derived using stepwise 
multiple regression with Ordinary Least Squares (OLS) 
estimation. Predictor selection was based on statistical 
significance (p-value) and multicollinearity assessment 
using the variance inflation factor (VIF). The initial 
model included the contents of sand, silt, clay, the S/C 
ratio, organic carbon, and CaCO₃. To optimize model 
performance, only the most statistically significant 
predictors, including the content of sand (%), silt (%), 
clay (%), and the S/C ratio (-), were retained in the 
final equation (1). The stepwise regression procedure 
correctly excluded organic carbon and CaCO₃ content, 
as they were not statistically significant, which was 

further supported by the correlation analysis (Fig. 4). 
The exclusion of CaCO₃ content aligns with previous 
findings reported by [27, 33, 34].
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Equation (1) yielded a coefficient of determination 
(R²) of 0.8995 (p<0.001) and an adjusted R² of 0.8940 
(p<0.001), demonstrating strong explanatory power. 
To validate the model’s performance, the normality 
of residuals was assessed using graphical methods, 
including a histogram, a Q-Q plot, and a residual 
scatter plot. Furthermore, the Shapiro-Wilk and Jarque-
Bera tests were conducted at a significance level of 
p<0.05, both confirming the normality of residuals. 
Homoscedasticity was tested using the Breusch-Pagan 
test, which indicated significant heteroskedasticity 
(p<0.05). 

Fig. 4 Correlation (Pearson) coefficients of physical and chemical soil surface properties (0-2.5 cm depth) and wind-erodible fraction 
obtained with the flat sieve. 

Fig. 3 Relationship between the measured wind-erodible fraction (flat sieve) and the predicted values for the soil surface (0-2.5 cm depth) 
based on the equation by Fryrear et al. (1994) for USA soils. 
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Conclusions

This study evaluated the predictive accuracy and 
applicability of the [30] equation for Czech soils and 
aimed to improve the modeling of the wind-erodible 
soil fraction by developing a more robust empirical 
framework. The findings indicate that the [30] equation 
exhibits significant prediction errors when applied to 
Czech soils, thereby limiting its applicability across 
diverse pedological conditions.

To address this limitation, Equation (1) was 
developed, demonstrating strong predictive performance 
(R² = 0.8995; p<0.001; adjusted R² = 0.8940; p<0.001). 
The model was calibrated using a comprehensive dataset 
of Czech soil properties, and the analysis identified sand 
(r = 0.58), silt (r = -0.50), and clay (r = -0.43) contents, 
along with the sand-to-clay (S/C) ratio (r = 0.65),  
as the primary predictors of EF, whereas organic 
carbon (r = -0.013) and CaCO₃ (r = -0.10) exhibited no 
significant impact.

The substantial variability within this dataset, 
compared to those used in studies from other regions, 
suggests that Equation (1) demonstrates strong 
predictive capabilities and may be applicable to soils 
in different geographical contexts. However, further 
validation across diverse environmental conditions is 
necessary to confirm its broader applicability and ensure 
its generalizability.

This study advances wind-erodible soil fraction 
modeling for Central European soils by introducing a 
region-specific alternative and emphasizing the need for 
localized calibrations.
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