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Abstract

Purpose: Accurate estimation of the wind-erodible fraction (EF), defined as the proportion of soil
particles smaller than 0.84 mm, is essential for wind erosion models such as WEQ, RWEQ, WEPS,
EPIC, or APEX. Conventional rotary sieving is often impractical, which has led to the use of predictive
equations. This study evaluated the equation [30] for Czech soils and developed a region-specific model.

Methods: Seventy-eight soil samples representing major soil units across the Czech Republic were
analyzed for particle-size distribution, organic carbon, and carbonate content. EF was determined using
the flat sieve dry-sieving method. Multiple regression analysis was applied to assess the equation [30]
and construct an improved model.

Results: The equation [30] exhibited substantial bias under local conditions. The refined model
identified key predictors, including sand (r = 0.58), silt (r = —0.50), clay (r = —0.43), and particularly
the sand-to-clay ratio (r = 0.65), while organic carbon and calcium carbonate (CaCOs) were insignificant.
The model demonstrated high predictive performance (R? = 0.90; adjusted R? = 0.89).

Conclusion: The proposed equation provides a robust, region-specific alternative for EF estimation,
significantly improving wind erosion risk assessment for Central European soils and underscoring

the necessity of localized parameterization in wind erosion modeling.

Keywords: calculation, equation, erosion, regression, sieve, soil aggregate

Introduction

Wind erosion contributes to soil degradation by
modifying soil texture and disrupting nutrient dynamics,
particularly through the depletion of soil organic
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carbon and essential nutrients, ultimately reducing
soil fertility and ecosystem productivity [1-7]. Wind
erosion is governed by complex interactions among
atmospheric conditions, surface characteristics, and
soil properties [8-10]. Wind-driven particle dynamics
have been described as a multi-stage process involving
particle detachment, transport (via suspension, saltation,
and surface creep), abrasion, sorting, and final deposition
of soil materials [11, 12].
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Wind erodibility refers to the propensity of soil to
undergo detachment and subsequent displacement by
aeolian forces, influenced by the complex interplay of
soil properties and plant factors [13-15]. In conditions
where protective elements such as plant residues, crop
cover, surface roughness, or moisture are minimal,
wind erodibility primarily depends on the intrinsic,
non-structural properties of the soil surface, termed
soil-inherent wind erodibility (also referred to as soil
erodibility) [13]. This soil-inherent wind erodibility
is fundamentally determined by two closely related
factors: the distribution of soil aggregate sizes and the
stability of these aggregates [13]. The aggregate size
distribution is typically quantified using either the
erodible fraction (EF) or the geometric mean diameter
(GMD), as originally proposed by [13, 16, 17].

The EF of soil represents aggregates and particles
susceptible to wind erosion, specifically those with a
diameter not exceeding 0.84 mm. This threshold was
established through wind tunnel experiments conducted
by [18]. The proportion of EF serves as a key input
parameter in widely used wind erosion prediction
equations, including the Wind Erosion Equation (WEQ)
[19], the Revised Wind Erosion Equation (RWEQ) [20],
and process-based models such as the Wind Erosion
Prediction System (WEPS) [21].

Given its critical role in wind erosion dynamics,
EF also serves as a basis for classifying soil erodibility
levels. Furthermore, soil can be classified based on
its EF content to determine its susceptibility to wind
erosion. A soil is considered highly erodible if its EF
exceeds 50%, moderately erodible if EF ranges between
40-50%, and slightly erodible if EF remains below
40% [22]. This classification provides a fundamental
framework for evaluating soil stability and the potential
risk of degradation under aeolian processes.

The standard method for determining the EF content
in soil involves dry sieving using a rotary sieve [23-26].
This approach assesses dry soil aggregates, providing
a more accurate representation of field soil structure
compared to primary aggregates analyzed using
wet sieving. Dry sieving better reflects the physical
disintegration of soil aggregates under natural field
conditions, making it a widely accepted methodology
for EF determination [26].

A previous study demonstrated a strong correlation
(r = 0.939, p<0.001) between results obtained using a
flat sieve and those from a rotary sieve, indicating that
a flat sieve can serve as a suitable alternative for EF
determination [27]. However, to ensure consistency
and reproducibility of results, flat sieve measurements
should be conducted using an electromagnetic shaker.
This setup provides controlled and uniform sieving
conditions, minimizing operator-induced variability
and enhancing comparability across different studies.
When using a flat sieve with an electromagnetic shaker,
it is essential to account for sieving duration, sieving
load, and motor shaker frequency, as these factors can
influence the results [28, 29].

As an alternative to direct sieving, several
predictive equations have been developed to estimate
EF content based on soil physicochemical properties.
The first widely recognized equation was introduced
by [30] using multiple regression analysis. This model
integrates key soil parameters, including sand, silt,
clay, calcium carbonate (CaCOs), and organic matter
content. However, it was calibrated exclusively on
a dataset of 3,000 soil samples from the USA, limiting its
applicability in regions with distinct soil characteristics
[30].

Multiple  studies have identified significant
limitations in the predictive accuracy of the [30]
equation for estimating EF content in soils outside the
United States. For instance, [27] reported considerable
discrepancies in EF predictions for Argentine and
Spanish soils, attributing these deviations primarily to
variations in CaCOs content. Similarly, [31] found that
the equation exhibited poor performance for Tunisian
soils, particularly Aridisols, where EF values obtained
via flat sieving showed a variability of R? = 0.649.

The correlation between EF predictions based on
the [30] equation and values from rotary sieving was
examined in a recent study [32]. Their findings revealed
that the strength of the correlation varied across different
land management practices, including tree windbreaks,
conservation tillage farmland, and conventional tillage
farmland, suggesting that vegetation cover and land use
practices may influence the model’s predictive accuracy.
The highest correlation (R? = 0.3201) was observed for
grassland soils.

Recent studies on EF prediction models underscore
the substantial influence of soil parameters on
model accuracy. For instance, [31] demonstrated that
incorporating soil texture and CaCOs content into
regression models significantly enhanced predictive
performance (R? = 0.723). Conversely, [33] challenged
these findings, reporting no statistically significant effect
of CaCOs content on EF values, thereby suggesting
potential methodological or regional variability in EF
estimation.

An analysis conducted by [34] using soil samples
from Nebraska revealed that the EF equation developed
by [30] exhibited better predictive accuracy while
still underestimating EF content in 77% of the dataset
(R = 0.41), whereas the equation proposed by [27]
showed a higher underestimation rate (83%) and
a lower coefficient of determination (R*> = 0.36),
potentially influenced by the low CaCOs content (<7%)
of the analyzed samples. Moreover, a newly developed
equation, derived through stepwise regression analysis
and incorporating silt content, clay content, organic
matter concentration, and percent residue cover, did
not outperform the [30] model, as it significantly
underestimated EF content in 80% of the dataset, with
an R? of 0.40 [34].

In a comprehensive review, [33] examined existing
equations used for EF content prediction. Their study
compiled a dataset integrating rotary and flat sieving
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data from multiple sources, including [30, 31, 35-42].
The dataset encompasses measurements from various
geographic regions, including the USA and Argentina
(Americas), the Czech Republic (Europe), Tunisia and
Nigeria (Africa), as well as Iran, Tiirkiye, and China
(Asia) [33]. By leveraging a heterogeneous dataset
from multiple studies, this analysis enables an objective
and methodologically rigorous comparison of existing
equations. Such an approach enhances the understanding
of equation complexity and supports a robust evaluation
of their empirical validity and practical applicability on
a global scale.

According to [33], the equation proposed by [31]
(R* = 0.067;, RMSE = 51.174; MAPE = 0.167)
demonstrated greater accuracy compared to that of
[34] (R* = 0.331; RMSE = 48.805; MAPE = 0.277),
which systematically overestimated EF content by more
than 100% in most cases. However, both equations
exhibited a general tendency to overestimate EF content.
Similarly, the equation developed by [27] (R* = 0.346;
RMSE = 5798, MAPE = 0.096) overestimated EF
content in multiple instances, sometimes exceeding
a 100% deviation. Likewise, the equation by [35]
significantly overestimated EF content.

The poorest predictive performance was observed
for the equation developed by [40] (R* = 0.0001;
RMSE = 156.632; MAPE = 0.742), which failed to

provide reliable estimates. In many cases, the predicted
EF content exceeded the plausible range by more than
100%. In samples with low clay content, the equation
even produced negative EF values, which are unrealistic
outcomes. Conversely, the equation by [30] (R? = 0.203;
0.007) demonstrated the

RMSE = 3.080; MAPE =

highest predictive accuracy among the compared
models. However, both this equation and the model
by [35] (R? = 0.002; RMSE = 36.180; MAPE = 0.205)
produced negative EF content values for some samples.

To overcome these limitations, [33] developed
an innovative equation based on stepwise regression
analysis (R* = 0.81; RMSE = 2.487; MAPE = 0.015).
This model was calibrated on the compiled dataset
and does not produce negative EF values or estimates
exceeding 100%, thereby improving the reliability and
applicability of EF predictions across diverse soil types
and geographic regions.

Materials and Methods

To evaluate the applicability of the first published
equation for determining EF content [30] and to develop
a new approach for assessing EF in soil, a comprehensive
dataset of soil samples was assembled, representing
various soil types across the Czech Republic (48.5°N
to 51.1°N; 12.1°E to 18.9°E; Fig. 1). The country covers
an area of 78,866 km? with a median elevation of 430
m above sea level (m a.s.l.), a mean annual temperature
of 7.6°C, and an average annual precipitation of 677
mm (1921-2020) [43]. The average relative air humidity
for the period 2021-2022 was 74.2% [44]. This study
area was particularly suitable due to the availability of
a highly detailed and continuously updated soil mapping
system [45].

Soil survey methodologies in the Czech Republic
adhere to high standards, with a long-standing
tradition dating back to the 18" century, beginning
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Fig. 1 Geolocation of soil sample collection points based on a digital elevation model. Data source: DMR 5G (CUZK).
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with the Josefian Cadastre and continuing to the
present day [46]. One of the most sophisticated surveys,
the Systematic Soil Survey of Agricultural Soils in
Czechoslovakia (SSS), was conducted in the 1960s
and 1970s [47, 48]. Within the Czech Republic alone,
this survey encompassed over 500,000 soil profile
observations, with a total of more than 2 million soil
samples analyzed [47].

The SSS employed the Genetic-Agronomic Soil
Classification System [49] to systematically categorize
soils [47]. Building upon the findings of the SSS,
the Evaluated Soil-Ecological Unit (ESEU) system
was developed as a key tool for land assessment and
management [46]. The ESEU classification continues
to be updated regularly, with its characteristics and
revision procedures formally outlined in [45].

Soil samples were primarily collected from the
Main Soil Unit (MSU), a component of the ESEU

[45]. The ESEU consists of a five-digit code that
provides information about the climatic region, the
MSU, inclination, exposure, and skeletal content [45].
The MSU is characterized by a targeted agronomic
classification of genetic soil types and subtypes, taking
into account soil-forming substrates, particle size
distribution, soil depth, hydromorphic properties (type
and degree), and the area’s relief. The Czech Republic
contains 89 different types of MSUs, representing
a highly diverse range of soils [45].

A single soil sample was collected from MSU
01-78, while MSU 79-89 are newly established and have
not been practically used so far. The GNSS system and
GIS software were used for field navigation and location
recording during soil sample collection. To select the
most suitable sampling sites, publicly available datasets
such as SoilGrids, WoSIS, and the LUCAS database
were utilized. The soil types of the collected samples,

Table 1. Classification of the collected soil samples according to the WRB.

ESEU WRB ESEU WRB ESEU WRB
0.01.00 Haplic luvisols 6.27.01 Cambisols 5.51.11 Stagnosols
3.02.00 Haplic luvisols 5.28.44 Cambisols 7.52.01 Albeluvisols
0.03.00 Chernozems 7.29.14 Cambisols 7.53.01 Stagnosols
2.04.01 Chernozems 7.30.14 Cambisols 3.54.11 Haplic luvisols
1.05.01 Chernozems 2.31.14 Haplic luvisols 3.55.00 Chernozems
0.06.00 Phaeozems 7.32.01 Cambisols 3.56.00 Fluvisols
2.06.10 Chernozems 2.33.01 Cambisols 3.57.00 Fluvisols
2.07.10 Vertisols 8.34.24 Cambisols 5.58.00 Fluvisols
3.08.10 Chernozems 8.35.04 Cambisols 0.59.00 Fluvisols
3.09.00 Greyic phaecozems 9.36.04 Entic podzols 2.61.00 Fluvisols
2.10.10 Haplic luvisols 5.37.16 Cambisols 3.62.00 Phaeozems
4.11.00 Gleysols 7.38.16 Cambisols 0.63.00 Phaeozems
5.12.00 Fluvisols 3.39.19 Haplic luvisols 3.64.01 Fluvisols
3.13.00 Haplic luvisols 5.40.78 Cambisols 8.65.01 Stagnosols
7.14.00 Albeluvisols 5.41.68 Leptosols 8.66.01 Gleyic stagnosols
7.15.12 Haplic luvisols 3.42.00 Haplic luvisols 4.67.01 Gleysols
3.16.02 Albeluvisols 5.43.00 Albeluvisols 7.68.11 Cambisols
4.18.11 Rendzic leptosols 3.44.00 Haplic luvisols 7.69.01 Gleysols
3.19.01 Cambisols 3.44.00 Haplic luvisols 2.70.01 Fluvisols
2.20.01 Leptosols 3.45.01 Haplic luvisols 7.71.01 Cambisols
3.21.10 Fluvisols 7.46.10 Haplic luvisols 8.72.01 Gleysols
3.22.10 Regosols/arenosols 7.47.10 Albeluvisols 7.73.11 Stagnosols
3.23.10 Regosols/arenosols 5.48.11 Albeluvisols 7.74.11 Cambisols
3.24.11 Cambisols 4.49.11 Cambisols 7.75.41 Cambisols
7.25.04 Cambisols 5.49.11 Cambisols 1.77.69 Leptosols
5.26.01 Cambisols 7.50.11 Cambisols 3.78.69 haplic Luvisols
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classified according to the World Reference Base for
Soil Resources (WRB) based on [50], are summarized
in Table 1. Additionally, the particle size distribution
of the samples, as determined according to the USDA
soil texture classification system, is illustrated in the
soil texture triangle (Fig. 2). The collected samples
were taken from various elevations across the Czech
Republic, spanning locations from 48.72°N, 12.62°E to
50.59°N, 17.99°E, with elevations ranging from 174 to
794 m a.s.l., as illustrated in Fig. 1.

Soil samples were collected during the spring season
following primary tillage operations [27]. Sampling was
conducted from the uppermost soil layer [51, 52], with a
maximum depth of 25 mm [53, 54]. After collecting, the
soil samples were air-dried and subsequently analyzed
using the dry sieving technique [26-28, 55]. The EF
content was determined using a flat sieve in combination
with an electromagnetic vibration shaker (Retsch AS
200) to ensure process consistency [29]. The amplitude
and time settings of the electromagnetic vibration shaker
were consistent for all soil samples. An amplitude of 0.1
mm was applied for a duration of 5 min, following [27].
The sieve load, which is related to the varying weight
of the soil, can significantly affect the results and cause
distortions. Therefore, the constant weight of the sieved
soil must be maintained during sieving [29]. According
to [56], the optimal sieve loading should not exceed
30% of its capacity. Based on this criterion, an optimal
soil mass of 100-200 g was determined in this study,
aligning with the values reported by [27].

According to the original EF equation [30], grain
size distribution, organic carbon content, and carbonate
content were determined. The grain size distribution

100
90

was analyzed wusing the hydrometer method in
accordance with [57], following Casagrande’s approach.
The hydrometer method is based on Stokes’ law [58],
with principles detailed in [59]. The organic carbon
content was determined using the [60] method, which
relies on an oxidation-reduction titration. The carbonate
content (CaCOs) was quantified using the Scheibler
method, a volumetric technique conducted in accordance
with ISO 10693 [61, 62].

Data preparation for statistical analyses involved
preprocessing in a conventional spreadsheet editor.
Statistical analyses were conducted in Python using
open-source libraries, including pandas, numpy,
statsmodels, scikit-learn, seaborn, scipy, and matplotlib.

Results and Discussion
Characteristics of the Soil Sample Dataset

The dataset comprised a total of 78 soil samples
(Fig. 2), each representing an individual MSU.
The complexity and variability inherent in the diverse
range of soil properties were characterized through
statistical analysis, as presented in Table 2, which
provides key descriptive statistics, including the median,
mean, standard deviation, minimum, maximum, and
coefficient of variation (CV) for the parameters EF sieve,
sand, silt, clay, sand-to-clay (S/C) ratio, organic carbon,
and CaCOs content.

The dataset compiled by [33], integrating samples
from multiple studies and capturing a broader range
of soil characteristics, serves as a comprehensive
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Fig. 2 Distribution of the collected soil samples within the USDA soil texture triangle.
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Table 2. Statistical evaluation of the analyzed soil parameters for the examined soil samples.

Parameter Unit Median Mean Minimum Maximum Std. Deviation CV (%)
EF Sieve % 21.84 24.21 9.24 89.95 12.33 50.91
Sand % 35.80 39.74 13.21 87.53 18.00 45.29
Silt % 42.42 39.68 5.20 62.00 13.24 33.37
Clay % 19.49 20.57 7.27 41.12 8.89 43.20
S/C Ratio * - 1.76 2.60 0.18 12.03 2.33 89.76
2;%%‘:; % 1.87 232 0.51 7.02 133 57.46
CaCo, % 0.21 2.11 0.03 20.00 4.96 235.19

* calculated value

reference for comparison. Additionally, the dataset from
[34], consisting of 99 samples collected near Nebraska
City, USA, provides further context for comparative
analysis. To enable more robust comparisons in future
studies, soil characteristics could also be derived from
soil spectral libraries [63-66]. A systematic comparison
with the dataset presented in Table 1 reveals significant
variations across multiple soil parameters.

The most pronounced discrepancies are observed in
sand content, which shows lower absolute variance but
slightly higher relative variance in the present study
compared to [33]. While the mean sand content is lower
than that of [33], its relative variability is slightly greater.
Furthermore, the relative variance of organic carbon
content in the current dataset is approximately three
times lower, while its mean value (2.32) is higher and
comparable to the mean organic carbon content reported
by [34] (3.1). Notably, the present dataset shows a wider
range of organic carbon values, indicating greater
variability than in the reference datasets.

In contrast, CaCOs content exhibits roughly
a 0.5-fold increase in relative variance, while its mean
value is less than half of that reported by [33], whose
dataset spans a broader range (0.00-24.30). The dataset
from [34], by comparison, reports a much narrower
CaCOs range (0.5-6.9). Additionally, sand, silt, and clay
contents in the present study display higher absolute
variance but lower relative variance compared to [33].
The dataset from [34] shows greater absolute variance
and higher mean values for EF, sand, clay, and the S/C
ratio, whereas silt and CaCOs contents show lower
absolute variance. Interestingly, the absolute variance
of organic carbon content is nearly identical across
datasets, although its mean value is higher in the present
study. The mean silt content reported by [34] is lower,
whereas the mean CaCOs content is nearly identical to
that presented in Table 2.

Compared to [33], the current dataset has a lower
mean sand content and a slightly narrower range but
higher mean values for silt and clay contents. The
proximity of mean and median values suggests a higher
risk of soil erosion, particularly in areas with elevated EF

content. The maximum silt content in the present dataset
(62) exceeds that of [34] but remains slightly lower than
the maximum reported by [33] (70.30). Similarly, while
the maximum clay content in [33] is 46.00, [34] reports
a higher maximum value (73.90), compared to the
present study.

Assessment of the Predictive Performance
of the [30] Equation for EF

The most comprehensive review of EF estimation
equations to date was conducted by [33], who identified
the [30] equation as the most accurate. Accordingly, this
equation was selected for further validation using the
dataset collected in this study.

Its predictive performance was evaluated through
regression analysis, comparing EF obtained via the
flat sieve method with those predicted by the equation
(Fig. 3). The results revealed a positive linear trend,;
however, the coefficient of determination (R? = 0.1357)
indicates a weak predictive capability, consistent with
the findings of [27, 31, 34].

Although the equation does not systematically
overestimate values exceeding 100%, as reported by
[33], our study confirms that it does not yield negative
EF values (Fig. 3). Nonetheless, its applicability to Czech
soils remains limited. To improve predictive accuracy,
the development of a new model tailored to regional soil
properties is necessary.

Development of Prediction Equations
for EF Calibrated Using the Czech Soils

A correlation analysis was conducted to illustrate
the relationships among individual soil properties
(Fig. 4). EF indicates a strong positive correlation with
the calculated S/C ratio (r = 0.65) and sand content
(r = 0.58), indicating that higher values of these
parameters are associated with increased EF. In contrast,
EF shows a strong negative correlation with silt content
(r = -0.50), suggesting that lower silt content enhances
EF. A moderate negative correlation is observed between
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Fig. 3 Relationship between the measured wind-erodible fraction (flat sieve) and the predicted values for the soil surface (0-2.5 cm depth)

based on the equation by Fryrear et al. (1994) for USA soils.
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Fig. 4 Correlation (Pearson) coefficients of physical and chemical soil surface properties (0-2.5 cm depth) and wind-erodible fraction

obtained with the flat sieve.

EF and clay content (r = -0.43), while weak negative
correlations are found with organic carbon (r = -0.013)
and CaCOs content (r = -0.10). These relationships are
illustrated in Fig. 4. The observed patterns align with the
findings of [33], who also reported the weakest negative
correlation between EF and both organic carbon and
CaCO:s content in their compiled dataset.

The new equation was derived using stepwise
multiple regression with Ordinary Least Squares (OLS)
estimation. Predictor selection was based on statistical
significance (p-value) and multicollinearity assessment
using the variance inflation factor (VIF). The initial
model included the contents of sand, silt, clay, the S/C
ratio, organic carbon, and CaCOs. To optimize model
performance, only the most statistically significant
predictors, including the content of sand (%), silt (%),
clay (%), and the S/C ratio (-), were retained in the
final equation (1). The stepwise regression procedure
correctly excluded organic carbon and CaCOs content,
as they were not statistically significant, which was

further supported by the correlation analysis (Fig. 4).
The exclusion of CaCOs content aligns with previous
findings reported by [27, 33, 34].

S
EF =0.0530 X sand X Eratio +0.0061 x silt? — 0.0719

x silt x §/C ratio + 0.3069 X clay x §/C ratio (1)

Equation (1) yielded a coefficient of determination
(R?) of 0.8995 (p<0.001) and an adjusted R? of 0.8940
(p<0.001), demonstrating strong explanatory power.
To validate the model’s performance, the normality
of residuals was assessed using graphical methods,
including a histogram, a Q-Q plot, and a residual
scatter plot. Furthermore, the Shapiro-Wilk and Jarque-
Bera tests were conducted at a significance level of
p<0.05, both confirming the normality of residuals.
Homoscedasticity was tested using the Breusch-Pagan
test, which indicated significant heteroskedasticity
(p<0.05).
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Conclusions

This study evaluated the predictive accuracy and
applicability of the [30] equation for Czech soils and
aimed to improve the modeling of the wind-erodible
soil fraction by developing a more robust empirical
framework. The findings indicate that the [30] equation
exhibits significant prediction errors when applied to
Czech soils, thereby limiting its applicability across
diverse pedological conditions.

To address this limitation, Equation (1) was
developed, demonstrating strong predictive performance
(R? = 0.8995; p<0.001; adjusted R* = 0.8940; p<0.001).
The model was calibrated using a comprehensive dataset
of Czech soil properties, and the analysis identified sand
(r = 0.58), silt (r = -0.50), and clay (r = -0.43) contents,
along with the sand-to-clay (S/C) ratio (r = 0.65),
as the primary predictors of EF, whereas organic
carbon (r = -0.013) and CaCOs (r = -0.10) exhibited no
significant impact.

The substantial variability within this dataset,
compared to those used in studies from other regions,
suggests that Equation (1) demonstrates strong
predictive capabilities and may be applicable to soils
in different geographical contexts. However, further
validation across diverse environmental conditions is
necessary to confirm its broader applicability and ensure
its generalizability.

This study advances wind-erodible soil fraction
modeling for Central European soils by introducing a
region-specific alternative and emphasizing the need for
localized calibrations.
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