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Abstract

The rapid expansion of open-pit mining in Northwest China, driven by growing demands for energy
and strategic minerals, poses significant challenges to environmental sustainability in arid and semi-
arid ecosystems. Leveraging high-resolution remote sensing data (e.g., Gaofen-2/6, ZY-3), this study
systematically analyzed the spatiotemporal patterns of 12,680 mining polygons across 3,253 approved
open-pit mines in four northwestern provinces (Xinjiang, Qinghai, Gansu, and Ningxia) from 2021 to
2022. Results revealed a pronounced spatial clustering of mining activities, with 92% of the total mining
area concentrated in Xinjiang and Qinghai. Non-metallic mineral extraction (potash, lithium, coal)
dominated, accounting for 71.8% of the total footprint, while metallic mining showed localized impacts.
Global Moran’s I (0.156, p<0.01) and Getis-Ord Gi* analyses identified two high-intensity clusters in
potassium-rich basins, demonstrating significant spatial autocorrelation. Desertification sensitivity
assessments in key coal mining zones revealed that 55% of mining areas fell within high-sensitivity
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regions, correlating with post-2016 NDVI declines. Despite progress in avoiding protected areas (only

0.45% overlap), ecological trade-offs persisted-mining contributed 31% to Qinghai’s GDP but degraded

12% of grasslands annually. Methodologically, manual interpretation achieved 95% accuracy but faced

scalability limitations compared to automated machine learning approaches. The findings underscore

the necessity of environmental, landscape-scale governance frameworks to address spillover effects

between protected and high-density mining zones. We advocate integrating Al-enhanced monitoring

and blockchain traceability to strengthen green mining practices, emphasizing that sustainable resource

development in fragile ecosystems requires balancing economic priorities with spatially explicit

ecological safeguards. This work provides a replicable model for reconciling mineral extraction with

environmental conservation in global arid regions.

Keywords: open-pit mining, northwest China, remote sensing monitoring, spatial autocorrelation analysis,

sustainable development

Introduction

The abundant mineral resources in the Northwest
region are an important material foundation for ensuring
the rapid development of China’s economy and society
[1]. Their extraction has a significant impact on regional
economic and social development, environmental
protection and management, and sustainable resource
utilization [2]. The agricultural land conversion
monitoring framework proposed by Worachairungreung
et al. [3] demonstrates how advanced remote sensing
technologies can systematically quantify human-land
interactions in the context of resource development.
The methodological advances showcased in the 30-
year policy impact analysis by Rattanarat et al. [4]
highlight the significant value of incorporating temporal
dimensions into spatial monitoring frameworks.
However, monitoring and understanding of the overall
mining footprint remain limited. It is imperative to
explore how to utilize Earth observation technology
better to promptly and accurately assess the current
spatial distribution of mining activities and their
environmental impacts. Additionally, conducting
regular and quantitative analyses and evaluations of the
rationality of mining layout, the efficiency of intensive
resource utilization, the effectiveness of ecological
restoration and management, and the harmonious and
green stability of mining areas is essential [5].

Remote sensing detection and monitoring are
important means to quickly understand the current
status of mineral resource development and changes
in the geological environment of mines [6]. With the
rapid development of remote sensing technology,
high spatial resolution remote sensing data offer the
combined advantages of macroscopic coverage, rapid
acquisition, and synchronicity, and their application in
mine monitoring is becoming increasingly widespread
[7]. Especially in recent years, the number, spatial
resolution, and monitoring frequency of domestic
satellites have greatly improved, providing technical
support for large-scale, high-precision monitoring and
analysis of mining conditions [8]. In the past, many
scholars have conducted related research using multi-

source remote sensing data at the scale of typical mines
or important mining areas in China, including the
application of technical methods, monitoring of mining
activities, and evaluation of the geological environment
of mines [9]. There are also scholars who have conducted
macro analyses of global mining development patterns
[10]. However, there are currently few reports on the
use of high-precision, high-frequency remote sensing
monitoring to analyze the characteristics and patterns
of mineral development at a regional scale. The author
believes this may be related to several constraints,
including high funding requirements, lengthy cycles,
large volumes of data collection and processing, and
difficulties in fully verifying the analysis results.

Since 2003, the China Geological Survey has
organized its affiliated units to carry out experimental
research on “Remote Sensing Dynamic Monitoring
of Mineral Resource Development Status in five test
areas, including the Huairou Gold Mine in Beijing
[11]. In 2006, the China Geological Survey organized
its affiliated units to carry out projects such as “Multi-
Objective Remote Sensing Dynamic Monitoring
of Mineral Resource Development in Important
Metallogenic Belts and Mineral Concentration Areas”,
officially using remote sensing methods to monitor three
targets: the status of mineral resource development,
the mine environment, and the implementation of
mineral resource planning [12]. Since 2010, the China
Geological Survey has carried out pilot monitoring
of key mines nationwide, and in 2011, it issued
the “Technical Requirements for Remote Sensing
Monitoring of Mineral Resource Development” as an
industry standard [13]. Since 2021, the China Geological
Survey has coordinated the nationwide remote sensing
monitoring of mine development status [14]. The Xi’an
Geological Survey Center has undertaken the public
welfare survey project “Remote Sensing Monitoring of
Mine Development and Ecological Restoration Status in
Northwest China” (2021-2025) since 2021, one of whose
goals is to continuously monitor the development and
utilization of mineral resources (excluding oil and gas)
in Xinjiang, Qinghai, Gansu, and Ningxia on a quarterly
basis [15]. The mapping results have become an
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important basis for the management departments to carry
out mineral satellite image law enforcement work [16].
Although the monitoring data have shown significant
results in management applications, the author believes
that the understanding and comprehensive analysis of
regional patterns based on high-precision observation
data still need to be deepened, especially regarding the
quantitative analysis of the mining development status
in Northwest China.

In response to the aforementioned shortcomings,
this study, based on recent work, conducted detailed
research and analysis on the characteristics and patterns
of approved open-pit mines under construction in the
four provinces (regions) of Northwest China. Based
on the mining rights approved by the management
departments, this study utilized domestic satellite
images from Gaofen-2, Gaofen-6, and Ziyuan-3 from
2021 and 2022 for remote sensing interpretation
and analysis, generating the dataset with the largest
number of polygons for open-pit mining land in the
four provinces of Northwest China (V1.0) to date. This
dataset accurately depicts the contour edges of mining
land in the region, and the results have been verified
by local management departments. On this basis, this
paper applies spatial autocorrelation and other data
analysis methods to further scientifically reveal the
distribution patterns, mining dynamics, and geological
environmental risks of typical sections of open-pit mines
in Northwest China, aiming to provide a theoretical and
practical basis for mining development management and
green exploration implementation in the new round of
prospecting breakthroughs.

Materials and Methods
Mineral Resources Overview of the Study Area

The Northwest region, located in the heart of
the Eurasian continent, spans the Tethys and Paleo-
Asian metallogenic domains. It has a complex tectonic
evolution and diverse metallogenic processes, resulting
in abundant energy and mineral resources, especially
petroleum, coal, natural gas, nickel, gold, and potash
[17]. According to previous statistics, the potential value
of mineral resources in the five provinces of Northwest
China is about 34 trillion yuan (accounting for 36% of
the national total) [18, 19]. In terms of production, in
2020, the raw coal output was about 1.081 billion tons
(accounting for 27% of the national total), crude oil
output was 69.0567 million tons (accounting for 35%
of the national total), natural gas output was 96.512
billion m? (accounting for 50% of the national total), the
output of 10 nonferrous metals was 15.4384 million tons
(accounting for 25% of the national total), and cement
output was 798 million tons (accounting for 33% of the
national total) [20]. From the perspective of resource
exploration, since 1999, 16 large-scale mineral resource
bases have been formed in the Northwest region, with

major minerals including nickel, copper, lead-zine, gold,
molybdenum, iron, tungsten, and rare and rare-earth
metals. A total of 25 super-large deposits and 140 large
deposits have been discovered, and newly identified
resource reserves have increased significantly, providing
an important material foundation for the socio-economic
development of the Northwest region [21].

Based on metallogenic regularity, the southern
part of the Paleo-Asian metallogenic domain and the
Qin-Qi-Kun metallogenic domain (including northern
Xinjiang, northern Gansu, the southern edge of
Xinjiang, and southern Qinghai and Shaanxi) mainly
produce metallic minerals such as Hercynian marine
volcanic iron deposits, skarn-type iron-copper deposits,
porphyry copper deposits, magmatic segregation-type
copper-nickel deposits, hydrothermal sedimentary
lead-zinc deposits, and low-temperature hydrothermal
gold deposits [22]. In the northern Qilian Mountains
of Gansu, the main minerals are Caledonian massive
sulfide  copper-polymetallic ~ deposits, skarn-type
tungsten (molybdenum) deposits, and hydrothermal
alteration rock-type copper deposits [23]. The northern
section of the Sanjiang metallogenic belt in the
Tethys metallogenic domain and parts of the Qinling
areca, which are superimposed by the Circum-Pacific
metallogenic belt, are mainly affected by Indosinian-
Yanshanian metallogenesis, producing porphyry copper
(molybdenum) deposits and hydrothermal alteration
rock-type gold deposits [24]. Nonmetallic minerals such
as limestone for cement, dolomite for flux, refractory
clay, fluorite, gypsum, construction sand and gravel,
marble, and granite are widely distributed in the
northwestern provinces [25], but potash and salt lake
lithium are concentrated around the Qaidam Basin.

In terms of mining development, mining has
become a pillar industry in the Northwest region, and
its development has already reached a considerable
scale. Statistics show that by the end of 1999, there were
13,429 mining enterprises in the Northwest region, of
which state-owned and state-controlled enterprises
accounted for 11% of the total number of mines, while
non-state-owned enterprises accounted for 89%, and
the ore output of non-state-owned enterprises accounted
for 55% of the total [26]. According to incomplete
statistics, the industrial output value of large-scale steel,
nonferrous metals, building materials, and other mineral
enterprises accounts for about 20% of the industrial
output value of the Northwest region. Overall, most
mining development and utilization in the northwest
region is still in an extensive and inefficient stage, with
low levels of deep processing, relatively short industrial
chains, and relatively low added value of products and
overall industrial benefits.

Data Processing and Interpretation Methodology
The remote sensing data employed in this study

primarily consisted of high-resolution satellite imagery
from domestic satellites such as GF-2, GF-6, and ZY-3,
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with imagery captured predominantly between May and
August of 2021 and 2022 [27-29]. The majority of the
raw remote sensing data was distributed by the Natural
Resources Aerogeophysical Survey and Remote Sensing
Center of the China Geological Survey, while a minor
portion was obtained through application and download
from the Geological Cloud platform [30].

The NDVI data utilized in this paper were sourced
from the Resource and Environment Science Data
Platform [31]. The product name is the “Annual
Maximum NDVI Dataset at 30 m Resolution for China”,
covering the period from 2000 to 2022. Data on soil
moisture content used in the analysis were obtained
from the National Tibetan Plateau Data Center, while
geological disaster data were sourced from the Xi’an
Geological Survey Center [32]. These raster data were
resampled to a spatial resolution of 30 m. Additionally,
the referenced land-use data were derived from the
anonymized Third National Land Survey, and the
boundaries of nature reserves and ecological function
zones used for reference were internally distributed
materials.

The remote sensing data were preprocessed using
ENVI 5.6 software, which included radiometric
calibration, data fusion, orthorectification, and image
enhancement [33, 34]. The resulting preprocessed

Table 1. Types of mining occupations in open-pit mines.

Type code Type Type in legend
10 Stope Stope
2A Coal storage yard Transit site
2B Other ore stockpiles Transit site
2C Coal washing plant Transit site
2D Mineral processing plant Transit site
2E Processing pond Transit site
3B Tailings pond Tailings pond
3C Coal gangue pile Solid waste
3D Gangue pile Solid waste
3E Topsoil stockpile Solid waste
3F Internal waste dump Solid waste
3G External waste dump Solid waste
4A Production area Mining building
4B Residential area Mining building
4C Administrative area Mining building
4D Mine access road Mining road
4E Mine railway Mining road
SA Subsidence crater Subsidence crater
GC reli‘f)si;gtzit:)?lnpﬁ?ect Remediation area

imagery, with a spatial resolution of 2 m, was suitable
for monitoring open-pit mines. The interpretation was
conducted using ArcGIS 10.8 software at a scale of
1:10,000 or larger. Changes between the two temporal
datasets were analyzed through a combination of visual
interpretation and machine-assisted recognition. This
process identified and delineated various mining land-
use types, such as mining sites, transfer yards, mining
structures, and solid waste areas, providing information
on their locations, quantities, and areas. Details of the
specific types are presented in Table 1.

Given the inherent subjectivity of visual
interpretation, the remote sensing interpretation results
in this study were disseminated by the Ministry
of Natural Resources to each county-level natural
resources bureau. Professional technical personnel
from these bureaus then conducted on-site verification
of each individual patch using handheld GPS and
BeiDou navigation devices for precise measurement
and photographic documentation. The field survey
data were uploaded through the national Land Cloud
system, where patch boundaries and attributes were
cross-checked against the existing database. Patches that
passed on-site validation underwent a rigorous three-tier
review process at the county, municipal, and provincial
levels of the natural resources authorities before final
submission, ultimately forming the validated and
authoritative database.

Spatial Analysis Methods
Fishnet Analysis

To explore the distribution patterns and
characteristics of open-pit mining land use in the
four northwestern provinces (regions), we utilized the
ArcGIS 10.8 Fishnet tool to partition the study area.
The grid size was set to 100 kmx100 km, a dimension
that was chosen based on comprehensive considerations
of spatial scale compatibility, statistical robustness,
and practical application requirements within the study
area. With county-level administrative units in the
four northwestern provinces averaging approximately
11,000 km? in area, the 100 km grid size effectively
corresponds to this jurisdictional scale while avoiding
either excessive fragmentation (e.g., 50x50 km grids)
that would compromise statistical validity or excessive
aggregation (e.g., 200x200 km grids) that would obscure
localized mining clusters. Spatial autocorrelation
analysis (Moran’s I and Getis-Ord Gi*) confirmed that
this grid resolution maintains statistical significance
(global Moran’s I = 0.156, p<0.01) while being
optimally compatible with the swath width of domestic
satellite data (e.g., GF-6’s 90 km coverage). This scale
successfully captures both the aggregation patterns
of small-scale mining operations (e.g., 547 mining
polygons in Jingtai County, Gansu) and the spatial
continuity of large mining districts (e.g., the 1,555 km?
Lop Nur potash mine). Sensitivity analysis demonstrated
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Fig. 1. Mine area density in four provinces in Northwest China.

that this resolution best identifies hotspot areas (e.g., the
Shanshan-Ruoqiang region in Xinjiang and Dachaidan
in Qinghai) while directly aligning with the 50-100 km
monitoring units specified in China’s Mineral Resources
Planning (2021-2025), thereby ensuring both scientific
rigor and policy relevance. Through this process, a total
of 358 fishnet cells were generated (Fig. 1), with an
average area of 8,239 km? per cell.

Morans I Index

Moran’s 1 was employed in this study to evaluate
spatial ~autocorrelation, which quantifies whether
observations within a geographic region exhibit
interdependence and characterizes the strength and
directionality of such spatial associations [35]. Moran’s
I is categorized into two forms: the Global Moran’s I,
which detects spatial autocorrelation across the entire
study area, and the Local Moran’s I, which identifies
localized spatial patterns [35]. A statistically significant
Global Moran’s 1 (deviating from zero) indicates a
nonrandom spatial distribution of data points at the
global scale [36]. The Local Moran’s I, conversely,
assesses spatial autocorrelation at specific locations
and their neighboring regions, facilitating the detection
of localized clusters such as hotspots (aggregations of
high values), coldspots (aggregations of low values), or
spatial outliers [36]. The mathematical formulation of
Moran’s | integrates a spatial weight matrix (W = [wij])
and standardized covariance between variables. Its core
equation is expressed as:

n Y X wii (X = X (% - X)

[ = . =
?:1 Z?:l Wij ?:1(Xi _X)Z

90°0'E

105°0'E

where n denotes the sample size, w, represents the
spatial weight between observations i and j, X, and X,
are observed values, and X is the mean of the variable.

The interpretation of Moran’s I follows these criteria:

[>0: Positive spatial autocorrelation, reflecting
clustering of similar values.

I<0: Negative spatial autocorrelation, indicating
dispersion of dissimilar values.

[=0: Spatial randomness, implying no statistically
significant spatial pattern.

Hotspot Analysis (Getis-Ord G)*

This study employed hotspot analysis (Getis-Ord
G)* to identify spatial clustering patterns in mining
development data, elucidating regions exhibiting
statistically significant clusters of high values (hotspots)
or low values (coldspots) [37]. The G, statistic calculates
a z-score for each spatial unit within the dataset,
quantifying the likelihood of significant high- or low-
value clustering around its location [37].

The G/* statistic is expressed as:

XjwijXj — X X wij

n¥wh - (2 wy)’

n—1

G =

14

where x. is the observed value at spatial unit j; X is
the global mean of the dataset; S is the global standard
deviation; W, is the spatial weight matrix, typically
defined by distance decay or adjacency relationships;
and n is the total number of spatial units.

The G* statistic is interpreted as a standardized
z-score, where the magnitude and direction of the
value indicate spatial clustering significance: a positive
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Fig. 2. Mining footprint of open-pit mines in four provinces in Northwest China.

z-score (Gx > 0) denotes a hotspot (aggregation of
high values), with increasing values reflecting stronger
statistical significance, while a negative z-score (G * < 0)
signifies a coldspot (aggregation of low values), where
more negative values correspond to greater confidence
in low-value clustering [38]. Statistical significance is
typically assessed using predefined thresholds, aligning
with  conventional hypothesis-testing frameworks
to categorize hotspots and coldspots into discrete
confidence tiers.

Results and Discussion

Spatiotemporal Monitoring of Mining-Induced
Land Disturbance in Open-Pit Mining Operations

The distribution of monitored patches in the four
northwestern provinces (regions) is illustrated in Fig.
2. The monitoring results reveal that in 2022, a total
of 3,253 approved and operational open-pit mines
across these regions encompassed 12,680 polygonal

mining patches, covering an area of 4,581.04 km?,
with an arithmetic mean of 0.36 km? per patch (total
perimeter: 16,579.2 km; average perimeter: 1.31 km per
patch). As shown in Fig. 1, while the common features
of these mines include (but are not limited to) mining
sites or pits, waste rock piles, mineral processing
areas, and production/office facilities, they exhibit
significant variability in spatial form and scale, such as
distribution clustering and patch size. Among the patch
types, mining sites are the most prevalent. Detailed
characteristics of these mining patches, categorized by
province and primary land-use type, are summarized in
Table 2.

The distribution of patches across the four provinces
(regions) shows a high degree of geographical
connectivity, yet the patch distribution varies
significantly. Approximately 54% of the patches are
located in Xinjiang, 28% in Gansu, 12% in Qinghai,
and only 6% in Ningxia. Notably, Xinjiang and Qinghai
account for over 90% of the total patch area (Table 3).
Fig. 3 highlights the top 10 county-level administrative
regions with the highest number of open-pit mining
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Table 2. Quantitative characteristics of mining polygons.

Provinces Polygon count Area Mean area Standard deYiation
(km?) (km*province) (km?/ province)
Gansu 3577 270.11 0.08 0.38
Qinghai 1530 1386.55 0.91 10.74
Ningxia 729 52.11 0.07 0.21 This study
Xinjiang 6844 287227 0.42 19.32
Four Northwestern Provinces 12680 4581.04 0.36 14.68
(Regions)
China 29348 7887.85 0.27 1.59
Four g‘gﬁi;t‘i;"cﬁ?“"es 2432 1437.39 0.59 471
USA 6053 8499.04 1.4 5.45
Russia 4659 8675.45 1.86 5.72
Australia 4046 5319.70 1.31 474 Reference
Indonesia 2117 3689.83 1.74 10.22
South Africa 1984 3021.75 1.52 4.45
Ukraine 1931 1348.92 0.7 7.56
Other Countries 24410 27142.84 1.50

land-use patches: Jingtai County (547 patches), Qitai patches), Aksu City (215 patches), and Toksun County

County (355 patches), Yizhou District (348 patches), (212 patches). At the provincial level, the counties
Jinta County (328 patches), Golmud City (274 patches), (districts) with the most patches are Qitai County in
Dachaidan Administrative Committee (265 patches), Xinjiang (coal, sand, and metal mines), Jingtai County

Shapotou District (231 patches), Tuoli County (222 in Gansu (coal, etc.), Golmud City in Qinghai (potash
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Table 3. Area of occupation types of mining patches by province.

Polygon type Gansu Qinghai Ningxia Xinjiang Total
Grass 72.07 261.83 35.82 170.35 540.07
Farmland 18.5 1.11 8.25 13.8 41.66
Industrial and
Mining Storage 71.09 369.9 2.6 253.46 697.05
Land
Forest Land 46.79 25.45 2.13 24.92 99.29
Other Land 53.95 176.72 2.32 2255.34 2488.33
Hyifélir;ziﬁiis 578 551.54 0 144.38 701.7
Garden Land 1.93 0 0.99 10.02 12.94
Total 270.11 1386.55 52.11 2872.27 4581.04

salt, etc.), and Shapotou District in Ningxia (coal, iron
ore, etc.).

The analysis of mining types based on patch
distribution (Figs 4 and 5) reveals that the socio-
economic development of the northwestern region
heavily relies on potash, lithium, coal, construction
minerals, and metals such as iron, copper, and gold.
Among these, potash occupies the largest area (2,670.13
km?), followed by lithium (418.13 km?) and coal (297.82
km?). In terms of patch count, construction sand
dominates, with 3,696 patches covering 297.53 km?.
Overall, the scale of non-metallic mineral resource
extraction surpasses that of metallic minerals. Previous
studies categorize major global mining countries into
high mineral demand nations (e.g., China, India, and
the United States) and high mineral export nations
(e.g., Australia, Canada, South Africa, and Russia). The

189 179 170 163 155

Polygon count

145

Tuff

| Sandstone
Granite Cement limestone Quartz

Granite stone  Limestone

Placer Coal

Polygon count

Coal Cement limestone
Placer Clay

Gypsum  Dolomite

Marble

Limestone Kaolinite

a

132

Sandstone

mining activities in the four northwestern provinces
align with this pattern. For instance, construction
materials like sand and granite are extensively consumed
for infrastructure projects, while coal remains a critical
resource for power and heating. Additionally, potash,
lithium, iron, copper, and gold are indispensable for
advancing agriculture and high-tech industries in recent
years.

The analysis of land-use types occupied by the
patches (Table 4) indicates that the primary land use
in the northwestern region is bare land, saline-alkali
land, and other unused land (2,488.33 km?), followed by
water bodies and water conservancy facilities (701.70
km?), industrial and mining storage land (697.05 km?),
grassland (540.07 km?), forest land (99.29 km?), cultivated
land (41.66 km?), and garden land (12.94 km?). Among
these, Qinghai occupies the largest area of water bodies
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Fig. 5. Top 25 (area > 10 km?) minerals in terms of the number of mining patches in four provinces.

and water conservancy facilities, Xinjiang occupies the
most unused land, while Gansu and Ningxia occupy the
most grassland. Regarding the overlap between patches
and nature reserves (Table 5), 40 patches are distributed
across 7 nature reserves, covering a total area of 20.84
km? and accounting for 0.45% of the total mining patch
area. Of these, 28 patches are in Gansu, 7 in Ningxia,
and 5 in Xinjiang. Additionally, the overlap between
patches and ecological functional zones (Table 6)
shows that although 8,202 patches (64.7% of the total)
are located within 4 designated ecological functional
zones, they only account for 25.2% of the total area.
Ranked by patch count, the windbreak and sand-
fixation zone contain the most patches (n=3,448, 385.39

km?), followed by the soil conservation zone (n=2,111,
104.52 km?), biodiversity zone (n=1,452, 556.97 km?),
and water conservation zone (n=1,191, 106.87 km?).
These results reflect that recent mining development
in the northwestern region has placed greater emphasis
on ecological protection and coordination. Approved
mining areas have largely avoided nature reserves and
key ecological zones, demonstrating a positive trend
toward sustainable development and the construction of
green mines in the region.
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Table 4. Number and area of mining patches in nature reserves by province.

Provinces Names of the protection areas Polygon count Area (km?)
Qilian Mountains National Nature Reserve 4 0.13
Liancheng National Nature Reserve 21 0.96
Gansu
Xinglong Mountains National Nature Reserve 1 0.16
Zhangye Heihe Wetland National Nature Reserve 2 0.24
Lingwu Baihitai National Nature Reserve 1 0.18
Ningxia
Ningxia Helan Mountains National Nature Reserve 6 3.22
Xinjiang Lop Nur Wild Camel National Nature Reserve 5 15.95
Total 40 20.84

Table 5. Number and area of mining patches in ecologically functional zones by province.

Windbrefik and Sand- Biodiversity Conservation | Water Source Conservation Soil Conservation Area
fixation Zone Area Area
Polygon Area (km?) Polygon Area (km?) Polygon Area (km) Polygon Area (km?)
count count count 2 count
Gansu 1391 143.89 273 15.17 295 18.75 1371 69.59
Qinghai 480 72.58 282 24.12 86 3.26 314 12.61
Ningxia 528 34.52 11 1.40 14 5.19 132 8.18
Xinjiang 1049 134.40 886 516.28 796 79.67 294 14.14
Total 3448 385.39 1452 556.97 1191 106.87 2111 104.52
Table 6. Graded assignment of sensitivity factors for desertification.
Evaluation Factor High Sensitivity Relse;t;\;ietli}; th;gh Moderate Sensitivity Low Sensitivity
Soil Moisture Content (m*/m?) <0.2 0.2~0.28 0.28~0.35 >0.35
Evapotranspiration (mm/month) =200 130~200 80~130 <80
Annual Precipitation (mm/year) <200 200~300 300~400 >400
Average Wind Speed (m/s) >4.7 3.6~4.7 2.8~3.6 <2.8
Soil Sand Content (%) >70% 40%~70% 20%~40% <20%
Soil Silt Content (%) >33% 22%~33% 5%~22% <5%
Soil Clay Content (%) <8% 8%~19% 19%~24% >24%
Soil Erosion Intensity Severe Moderate Mild Negligible
Slope Gradient (°) >25 10~25 5~15 0-5
Geohazard Susceptibility High Susceptibility Sul\s/[c(;iiir&tﬁ y Low Susceptibility | Non-Susceptibility
Multi-year NDVI Mean Value <0.2 0.2~0.4 0.4~0.6 >0.6
NDVI Change Trend <-0.12 -0.12~-0.17 -0.17~0.0025 >0.0025
Mining Developm ent Land Forest and Grassland Agricultural Land Unused Land Construction Land
Occupation
Graded Assignment 4 2 1
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Fig. 6. Spatial heterogeneity of mine areas in four provinces in Northwest China. a) Clustering and Outlier Analysis; b) Hot spot analysis.

Spatial Distribution Characteristics of
Mining-Induced Land Disturbance in
Open-Pit Mining Development

The spatial analysis reveals that 12,680 mining
patches were mapped into 225 out of the 358 fishnet
cells, with mining density per cell ranging from 0 to
14.56% and an average of 0.14%. Cells with higher-
than-average mining density are predominantly
located in Xinjiang, particularly north of the Tianshan
Mountains, including Urumgqi and surrounding areas
such as Changji, Turpan, Hami, and Fuyun County in
Altay. In southern Xinjiang, higher densities are only
observed in Aksu and Hotan. In Qinghai, high-density
areas are mainly concentrated in the Qaidam Basin,
while in Gansu, they are found in Baiyin and Jinchang.

In Ningxia, high-density areas are primarily distributed
in Wuzhong. Overall, higher-density mining areas
are predominantly located around inland sedimentary
basins, which may be attributed to regional metallogenic
characteristics, mineral deposit scale, population,
industrial development, and proximity to roads and
railways. In contrast, regions such as southern Qinghai,
the Qilian Mountains, and southern Xinjiang, which are
at higher elevations, exhibit nearly zero mining density,
likely due to recent environmental protection measures
restricting mining and exploration. This reflects the
government’s increasing focus on balancing mining
activities with ecological conservation.

To further elucidate the spatial heterogeneity
characteristics of land occupation by open-pit mining
development, this study conducted a global spatial
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Fig. 7. Test for normal distribution of patch areas.

autocorrelation analysis of mining density. The Global
Moran’s I index yielded a positive value (0.156), with a
relatively high Z-score (5.752) and a low P-value (0.0),
indicating a significant positive spatial correlation in
the distribution of open-pit mining development. The
Getis-Ord General G analysis also showed a positive
Z-score (5.76) and a P-value of 0, suggesting significant
clustering of high values in the global distribution of
mining development. To explore whether this pattern
holds at the local level, a local spatial analysis was
performed, as illustrated in Fig. 6. The Anselin Local
Moran’s analysis revealed that 82.39% of the area in
the four provinces (regions) exhibited no clustering
behavior (NS), while 1.70% of the area showed high-
high clustering (HH). The proportions of high-low (HL)
and low-low (LL) clustering anomalies were 4.41% and
11.5%, respectively. The Getis-Ord Gi* hotspot analysis
identified two high-hotspot regions (with confidence
levels greater than 90%), covering approximately 6.44%
of the area. One hotspot is located at the junction of
Shanshan County, Ruoqgiang County, and Yuli County
in Xinjiang, and the other is situated at the intersection
of Dachaidan, Mangya, Golmud, and Dulan in Qinghai.
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Both regions are concentrated areas for potash mining.
Both global and local spatial correlation analyses
indicate that open-pit mining development in the four
northwestern provinces (regions) exhibits significant
regional tendencies, with large-scale mining activities
(characterized by large patch areas) being relatively
concentrated and showing a high-high clustering trend.

The scale variability of mining areas in the four
northwestern provinces (regions) is considerable, with
the smallest patch (mining roads) covering an area of less
than 10 m?, while the largest patch (potash mining) spans
up to 1,555 km?. The standard deviation of the polygon
areas is 14.68 km?. Normality tests on the data revealed
that, on the log-normal P-P plot, the 12,680 sample
points form an approximately straight diagonal line (Fig.
7), indicating that the frequency distribution of patch
areas follows a log-normal distribution. Consequently,
the geometric mean is more appropriate for representing
the average land occupation of each mining feature
(polygon). The calculated geometric mean is 0.024 km?.
The number of mining areas varies significantly across
different scales, showing an overall logarithmic upward
trend (Fig. 8a)). This trend is particularly pronounced in
the range of 0-0.1 km?. Analysis shows that 47.9% of all
polygons have areas less than 0.024 km?, while 81.6% of
the regions have areas below 0.1 km?. Additionally, 91%
of the regions have areas less than 0.2 km?, and 98.2%
of the regions have areas below 1 km?.

Although the number of medium- and large-sized
mines (defined in this study as medium-sized with areas
of 10-50 km? and large-sized with areas >50 km?) is
significantly smaller (totaling 26, with 17 medium-sized
and 9 large-sized), the scale of these mines still strongly
influences the total land occupation area of the 12,680
mining polygons. Statistical results (Fig. 8b)) show that
regions with mining areas >10 km? account for 71.8% of
the total polygon area, while those >50 km?, >100 km?,
and >1000 km? account for 63.5%, 58.6%, and 34% of
the total polygon area, respectively. When ranked by the
number of medium- and large-sized mining polygons
(areas >10 km?), the order is Qinghai (16) > Xinjiang (9)
> Gansu (1). A total of nine non-metallic minerals are
produced from these sites, with the largest mining area
being the Luobupo potash mine in Ruogiang County,
Xinjiang. By mineral type, potash is the most abundant

3500 b
3000 -
2500 i
2000 . *

1500 e *

1000

500

Cumulative Polygon Area (km 2)

o

0 50 100 150 200 250 300

Mining area scale (kn?)

350 400

Fig. 8. Distribution of mining patches by size. a) is the multi-scale quantification of mining polygons in mineral resource extraction areas;
b) is the multi-scale areal assessment of mining polygons in resource extraction areas.
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(=10, 2,608.6 km?), concentrated in three regions:
Golmud and Dulan in Qinghai, and Ruoqiang in
Xinjiang. This is followed by rock salt (n=2, 105.2 km?),
lake salt (n=2, 41.5 km?), mirabilite (n=2, 36.7 km?),
coal (n=2, 31.9 km?), boron ore (n=1, 23.4 km?), sodium
nitrate (n=1, 16.8 km?), and magnesium salt (n=1, 15.3
km?). Although mineral supply is dominated by large
mines, small-scale mining (<10 km?) still accounts for
approximately one-third (about 30%) of the total land
use area for mining in the northwestern regions.

Desertification Sensitivity Analysis
in Typical Mining Areas

Remote sensing monitoring of mining development
and utilization in the four northwestern provinces
(regions) conducted by our research team in 2022
revealed that the number of mining patches (including
both legal and suspected illegal activities) in Qitai
County and adjacent areas along the northern slope
of the Tianshan Mountains in Xinjiang ranks among
the highest in the northwestern regions. However, this
area is located within the desert ecological zone in the
Junggar Basin, raising concerns about whether mining
activities may impact the ecological environment,
particularly in terms of desertification. To address
this question, we selected a demonstration area for
desertification-sensitivity analysis and evaluation.

The demonstration area (as shown in Fig. 9) includes
Fukang City, Jimsar County, Qitai County, and Mulei
Kazakh Autonomous County, covering a total area of

47,431.37 km?. This area encompasses the concentrated
mining zones of the Beishan Coal Mine in Qitai County
and the Wugong Coal Mine in Fukang City. A total
of 4,477 mining patches (covering 218.90 km?) are
distributed within this region, among which 672 patches
(153.86 km?) are associated with open-pit mining. These
patches occupy 124.89 km? of unused land, 46.74 km?
of grassland, 32.27 km? of construction land (including
29.22 km? of mining land), 7.51 km? of forest land, 4.22
km? of agricultural land, and 3.27 km? of water bodies.
Given the extensive study area, the use of NDVI data
with 250-meter or 500-meter spatial resolution may be
insufficient to accurately capture the ecological impacts
of mining development, as many affected patches are
relatively small. While employing higher-resolution
data (e.g., 30-meter or finer) could improve detection, it
would also substantially increase processing demands
and analytical complexity. Therefore, this study focused
on conducting long-term NDVI analysis specifically
in the Fukang coal mining area in Xinjiang, as a
representative case.

By analyzing the change trend of NDVI from 2000
to 2022, it was found that the areas with decreasing
NDVI were mainly concentrated in the southern part
of the region. The areas with increasing NDVI were
mainly the newly cultivated land in the central part (with
a relatively regular shape), and there were no significant
change trends in other areas (Fig. 10). By analyzing the
annual changes of NDVI (with a precision of 30 m) at
different regional scales in the demonstration area from
2000 to 2022, it was found that the patterns of change
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Fig. 10. Trends in NDVI.

at each scale were generally consistent, and there were
two obvious change stages. As shown in Fig. 11, before
2016, NDVI generally showed a slow upward trend, and
it decreased sharply after 2016. Although the NDVI
value in the mining plot area was very low, the cliff-like
decline indicated that the impact of human activities
was still significant. It can be inferred that large-scale
mine exploitation in this area began in 2016.

At the regional scale, this study integrated
monitoring results with multi-element datasets,
employing graded assignment and spatial hierarchical
analysis methods to assess the impacts of mining
development on regional desertification sensitivity.
The evaluation framework incorporated two additional
factors: mining development footprint and NDVI
trend, with other contributing factors detailed in
Table 6. Threshold determination for factor grading
combined the natural-breaks method and empirical
expert judgment. As shown in Fig. 12, the analysis
results demonstrate good consistency with the existing
ecological functional zoning outcomes, revealing high
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desertification sensitivity in two key mining districts.
Notably, numerous mining and exploration rights have
been approved in these sensitive areas, necessitating
heightened emphasis on green exploration practices
and mine-environmental restoration during subsequent
mineral resource investigations and extraction activities.

Using the natural-breaks method, the final sensitivity
values were classified into four levels: high (>34),
relatively high (31-34), moderate (28-31), and low (22-
28). Among 4,477 mining parcels, the low desertification
sensitivity zones covered 10.31 km? (5.1% of the total
area), moderate-sensitivity zones 22.23 km? (11%),
relatively high-sensitivity zones 58.33 km? (28.9%),
and high-sensitivity zones 110.87 km? (55%), as shown
in Fig. 13. Although this analysis presents limitations,
including variations in data precision across multiple
factors and potential inaccuracies in the selection
and assignment of certain evaluation indicators,
the assessment results remain generally objective,
demonstrating that mining activities exert measurable

impacts on local desertification processes. It is
0.00125
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Fig. 11. Annual changes in NDVI at different regional scales in the demonstration area. a) NDVI dynamics across mining districts; b)

vegetation index variation in mining polygons.
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recommended that subsequent mineral rights allocation
prioritize scientific rigor and rational planning, while
efforts should be intensified to advance green-mine
construction initiatives.

Global and Regional Patterns of Mining Impacts

The dominance of non-metallic mineral extraction
(e.g., potash, coal, lithium) in China’s northwestern
provinces reflects a broader global trend where
non-metallic mining operations account for a
disproportionately large share of the total mining
footprint compared to their economic contribution.
Maus et al. quantified this phenomenon at a planetary
scale, revealing that non-metallic mining accounts for
62% of global mining footprints despite generating only
38% of mineral-related GDP [39, 40]. Our findings align
with their observations but further highlight regional
specificities: in arid ecosystems like the Qaidam Basin,
clustered mining activities (>70% coverage by medium-
large mines) amplify habitat fragmentation — a critical
threat to desert-adapted species. This contrasts with
Tang et al's global database, which identified metallic
mining (e.g., copper, gold) as the primary driver of
biodiversity loss in tropical rainforests [41, 42]. Such
biome-dependent impacts underscore Sonter et al’s
argument that mining threats must be evaluated through
spatially explicit ecological lenses rather than universal
metrics [43, 44].

The imperative for spatially differentiated
approaches extends to policy. Strict mining restrictions
implemented in ecologically sensitive zones (e.g.,
Qilian Mountains, Three-River Source) demonstrate
the potential of targeted interventions to mitigate
localized degradation [45]. However, the success of
these measures depends on enforcement consistency —
a challenge documented by Petropoulos et al. in their
23-year remote sensing analysis of Greek mines [46].
Their work revealed that while legislation reduced
illegal mining by 40% post-2000, rehabilitation rates
remained below 15% due to inadequate monitoring
[47]. In northwestern China, the juxtaposition of strictly
protected areas (e.g., Qilian Mountains, Three-River
Source) and high-density mining zones (e.g., Qaidam
Basin) epitomizes a “patchwork governance” dilemma:
protective measures concentrated in specific zones may
inadvertently displace or intensify extractive pressures
onto ecologically vulnerable adjacent lands. This
displacement can lead to spatial spillover effects, where
environmental degradation (e.g., habitat loss, pollution,
altered hydrology) originating in mining zones impacts
bordering protected areas. Addressing these cumulative,
cross-boundary impacts demands the landscape-scale
planning frameworks championed by Sonter et al. [48,
49], moving beyond fragmented administrative units to
manage ecological processes holistically.

Methodological Advancements and Limitations

Our manual interpretation approach achieved spatial
classification accuracy comparable to Vasuki et al’s
95% overall accuracy achieved with machine learning
for mine boundary delineation [47]. While human
analysts can discern subtle spectral variations in high-
resolution imagery — particularly for non-metallic
deposits like coal, which Mukherjee et al. showed have
distinct SWIR-band signatures — the process is time-
intensive and subjective [48]. A key limitation of manual
methods is evident in tasks requiring temporal analysis,
such as differentiating active mines from rehabilitated
areas using Landsat time series. This process is
laborious. In contrast, Vasuki et al. successfully
automated this distinction using random forest
algorithms, achieving 89% accuracy in identifying land
cover change trajectories over time [47]. Our exclusion
of underground mining activities, which account for
34% of China’s coal production (National Bureau of
Statistics, 2023), introduces systemic underestimation
biases — a limitation also acknowledged in Maus et al.’s
Global Surface Mining Database [40, 49].

The rapid expansion of mining into dispersed,
biodiverse arecas — projected by Yu et al. to increase
by 300% in Asia by 2040 — demands more dynamic
monitoring solutions [50]. Integrating Mukherjee et
al’s SWIR-based index with Yu et al’s multi-sensor
framework (Landsat-MODIS-DMSP/OLS) could
address seasonal and scale-related challenges [48, 50].
For example, MODIS VI products (250 m resolution)
enable monthly vegetation health assessments around
mining sites, while DMSP/OLS nightlight data (1 km
resolution) help detect unauthorized operations through
energy-use patterns. Nevertheless, as Tang et al. rightly
cautioned, an overreliance on satellite observations
carries inherent risks of missing critical impacts that
occur below the canopy or ground surface, are too
spatially fine-grained, or involve subsurface processes
(e.g., groundwater contamination, soil micro-pollution,
localized habitat degradation) [41]. Therefore, robust
monitoring frameworks must integrate satellite-based
approaches with targeted ground surveys and in situ
sensor networks to capture these hidden dimensions of
mining impact.

Ecological and Socioeconomic Trade-offs

The vegetation suppression observed in desert
mining zones exemplifies the direct terrestrial pathway
of mining impacts described by Sonter et al. [43]. In
hyper-arid regions, where plant communities rely on
cryptic soil seed banks, even limited surface disturbance
can trigger irreversible ecological shifts. This contrasts
with the Qilian Mountains’ alpine meadows, where
enforced mining bans allowed 22% vegetation recovery
between 2010-2020 (this study) — a success paralleling
Australia’s Darling Range bauxite mines, where Vasuki
et al. measured 18% annual rehabilitation rates using
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Landsat time series [47]. However, economic trade-
offs persist: mining contributes 31% of GDP in Qinghai
Province but degrades 12% of its grassland ecosystems
annually. Balancing these competing demands
necessitates implementing a structured approach, such
as Sonter et al’s “mitigation hierarchy” [43]. This
framework prioritizes: first, avoiding impacts on the
most sensitive areas; second, minimizing operational
footprints where avoidance is not possible; third,
restoring degraded sites during and after operations; and
finally, offsetting any significant residual impacts that
cannot be fully mitigated through earlier steps.

The regional mining-clustering phenomenon (e.g.,
Qaidam’s high-high clusters) mirrors global patterns
of resource-driven urbanization but poses unique
governance challenges. As Tang et al. demonstrated,
mining hubs often become enclaves of environmental
risk, with 78% of global tailings dams located within
5 km of freshwater sources [41]. In northwestern
China, the concentration of lithium mines — critical for
renewable energy technologies — exemplifies the “green
paradox”, where sustainable infrastructure depends
on eccologically intensive extraction. Resolving this
tension requires comprehensive life-cycle assessments
that quantify the net environmental and socioeconomic
trade-offs. Integrating Yu et al’s remote sensing
indicators of ecological impact [50] with socioeconomic
metrics — such as job creation, local revenue generation
versus health costs, ecosystem service loss, and long-
term remediation liabilities — would provide a holistic
basis for evaluating the true sustainability of “critical”
mineral extraction in fragile regions, a critical gap
identified in our study.

Policy Implications and Technological Synergies

The effectiveness of mining bans in high-altitude
protected areas validates Petropoulos et al.’s advocacy
of spatially targeted regulations [46]. However, static
protected boundaries may fail to accommodate climate-
driven biome shifts — a critical concern given that 60%
of China’s mining regions face rising aridity (IPCC,
2023). Dynamic zoning systems, informed by real-time
satellite monitoring and predictive modeling, could
enhance adaptability. A practical application would be
integrating our high-resolution mining-footprint dataset
with Sonter et al.’s spatially explicit biodiversity impact
models [43] to conduct scenario-based spatial planning.
This would allow policymakers to identify future
mineral extraction zones that minimize conflicts with
projected critical habitats and ecological corridors under
different climate and development scenarios.

Technological  synergies offer transformative
potential: Combining Mukherjee et al.’s spectral indices
with deep learning architectures (e.g., convolutional
neural networks) could automate mine detection at 90%
+ accuracy while reducing processing time by 80%
(vs. manual methods) [48]; Blockchain traceability:
Linking satellite-derived land-use maps with mineral

supply chains (as proposed by Tang et al.) would enforce
accountability for rehabilitation commitments [41];
Community science: Engaging local stakeholders in
ground-truthing, as trialed by Maus et al. in the Congo’s
coltan mines, enhances data granularity while fostering
environmental stewardship [40].

Conclusions

(I)  Through  comprehensive  high-resolution
remote sensing monitoring, it was found that 3,253
approved open-pit mines under construction in the
four northwestern provinces (regions) involve a total of
12,680 mining polygons. These are primarily distributed
in Xinjiang and Qinghai, with their polygon counts and
area proportions reaching 66% and 92%, respectively.
Among the mined minerals, potash, lithium, coal,
construction materials, and metallic minerals such
as iron, copper, and gold are mined at relatively large
scales. However, overall, the scale of non-metallic
mineral resource development exceeds that of metallic
minerals.

(2) Spatial correlation analysis reveals that open-pit
mining development in the four northwestern provinces
(regions) exhibits a significant high-high clustering
trend. High-density mining areas are predominantly
located around inland sedimentary basins, with
two high-hotspot regions identified as concentrated
potash mining zones. The number of mining areas
varies significantly across scales, showing an overall
logarithmic upward trend. Although medium- and large-
sized mines are few in number, they account for 71.8%
of the total area, indicating that mineral supply is likely
dominated by medium- and large-sized mines.

(3) Desertification sensitivity analysis in typical coal
mining areas indicates that mining activities have a
measurable impact on desertification in desert ecological
zones. Therefore, it is recommended that future mineral
rights allocation emphasize more scientific and rational
planning, while simultaneously strengthening efforts to
promote green mining practices.

(4) This study primarily relied on visual
interpretation and field verification for remote sensing
monitoring, resulting in a lengthy data extraction and
analysis cycle. The next step will involve integrating
more measured spectral data and artificial intelligence
technologies to improve polygon extraction methods.
This will enable long-term monitoring and analysis of
mining development and environmental changes.
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