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Abstract

The rapid expansion of open-pit mining in Northwest China, driven by growing demands for energy 
and strategic minerals, poses significant challenges to environmental sustainability in arid and semi-
arid ecosystems. Leveraging high-resolution remote sensing data (e.g., Gaofen-2/6, ZY-3), this study 
systematically analyzed the spatiotemporal patterns of 12,680 mining polygons across 3,253 approved 
open-pit mines in four northwestern provinces (Xinjiang, Qinghai, Gansu, and Ningxia) from 2021 to 
2022. Results revealed a pronounced spatial clustering of mining activities, with 92% of the total mining 
area concentrated in Xinjiang and Qinghai. Non-metallic mineral extraction (potash, lithium, coal) 
dominated, accounting for 71.8% of the total footprint, while metallic mining showed localized impacts. 
Global Moran’s I (0.156, p<0.01) and Getis-Ord Gi* analyses identified two high-intensity clusters in 
potassium-rich basins, demonstrating significant spatial autocorrelation. Desertification sensitivity 
assessments in key coal mining zones revealed that 55% of mining areas fell within high-sensitivity 
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Introduction

The abundant mineral resources in the Northwest 
region are an important material foundation for ensuring 
the rapid development of China’s economy and society 
[1]. Their extraction has a significant impact on regional 
economic and social development, environmental 
protection and management, and sustainable resource 
utilization [2]. The agricultural land conversion 
monitoring framework proposed by Worachairungreung 
et al. [3] demonstrates how advanced remote sensing 
technologies can systematically quantify human-land 
interactions in the context of resource development. 
The methodological advances showcased in the 30-
year policy impact analysis by Rattanarat et al. [4] 
highlight the significant value of incorporating temporal 
dimensions into spatial monitoring frameworks. 
However, monitoring and understanding of the overall 
mining footprint remain limited. It is imperative to 
explore how to utilize Earth observation technology 
better to promptly and accurately assess the current 
spatial distribution of mining activities and their 
environmental impacts. Additionally, conducting 
regular and quantitative analyses and evaluations of the 
rationality of mining layout, the efficiency of intensive 
resource utilization, the effectiveness of ecological 
restoration and management, and the harmonious and 
green stability of mining areas is essential [5].

Remote sensing detection and monitoring are 
important means to quickly understand the current 
status of mineral resource development and changes 
in the geological environment of mines [6]. With the 
rapid development of remote sensing technology, 
high spatial resolution remote sensing data offer the 
combined advantages of macroscopic coverage, rapid 
acquisition, and synchronicity, and their application in 
mine monitoring is becoming increasingly widespread 
[7]. Especially in recent years, the number, spatial 
resolution, and monitoring frequency of domestic 
satellites have greatly improved, providing technical 
support for large-scale, high-precision monitoring and 
analysis of mining conditions [8]. In the past, many 
scholars have conducted related research using multi-

source remote sensing data at the scale of typical mines 
or important mining areas in China, including the 
application of technical methods, monitoring of mining 
activities, and evaluation of the geological environment 
of mines [9]. There are also scholars who have conducted 
macro analyses of global mining development patterns 
[10]. However, there are currently few reports on the 
use of high-precision, high-frequency remote sensing 
monitoring to analyze the characteristics and patterns 
of mineral development at a regional scale. The author 
believes this may be related to several constraints, 
including high funding requirements, lengthy cycles, 
large volumes of data collection and processing, and 
difficulties in fully verifying the analysis results.

Since 2003, the China Geological Survey has 
organized its affiliated units to carry out experimental 
research on “Remote Sensing Dynamic Monitoring 
of Mineral Resource Development Status in five test 
areas, including the Huairou Gold Mine in Beijing 
[11]. In 2006, the China Geological Survey organized 
its affiliated units to carry out projects such as “Multi-
Objective Remote Sensing Dynamic Monitoring 
of Mineral Resource Development in Important 
Metallogenic Belts and Mineral Concentration Areas”, 
officially using remote sensing methods to monitor three 
targets: the status of mineral resource development, 
the mine environment, and the implementation of 
mineral resource planning [12]. Since 2010, the China 
Geological Survey has carried out pilot monitoring 
of key mines nationwide, and in 2011, it issued 
the “Technical Requirements for Remote Sensing 
Monitoring of Mineral Resource Development” as an 
industry standard [13]. Since 2021, the China Geological 
Survey has coordinated the nationwide remote sensing 
monitoring of mine development status [14]. The Xi’an 
Geological Survey Center has undertaken the public 
welfare survey project “Remote Sensing Monitoring of 
Mine Development and Ecological Restoration Status in 
Northwest China” (2021-2025) since 2021, one of whose 
goals is to continuously monitor the development and 
utilization of mineral resources (excluding oil and gas) 
in Xinjiang, Qinghai, Gansu, and Ningxia on a quarterly 
basis [15]. The mapping results have become an 

regions, correlating with post-2016 NDVI declines. Despite progress in avoiding protected areas (only 
0.45% overlap), ecological trade-offs persisted-mining contributed 31% to Qinghai’s GDP but degraded 
12% of grasslands annually. Methodologically, manual interpretation achieved 95% accuracy but faced 
scalability limitations compared to automated machine learning approaches. The findings underscore 
the necessity of environmental, landscape-scale governance frameworks to address spillover effects 
between protected and high-density mining zones. We advocate integrating AI-enhanced monitoring 
and blockchain traceability to strengthen green mining practices, emphasizing that sustainable resource 
development in fragile ecosystems requires balancing economic priorities with spatially explicit 
ecological safeguards. This work provides a replicable model for reconciling mineral extraction with 
environmental conservation in global arid regions.

Keywords: open-pit mining, northwest China, remote sensing monitoring, spatial autocorrelation analysis, 
sustainable development
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important basis for the management departments to carry 
out mineral satellite image law enforcement work [16]. 
Although the monitoring data have shown significant 
results in management applications, the author believes 
that the understanding and comprehensive analysis of 
regional patterns based on high-precision observation 
data still need to be deepened, especially regarding the 
quantitative analysis of the mining development status 
in Northwest China.

In response to the aforementioned shortcomings, 
this study, based on recent work, conducted detailed 
research and analysis on the characteristics and patterns 
of approved open-pit mines under construction in the 
four provinces (regions) of Northwest China. Based 
on the mining rights approved by the management 
departments, this study utilized domestic satellite 
images from Gaofen-2, Gaofen-6, and Ziyuan-3 from 
2021 and 2022 for remote sensing interpretation 
and analysis, generating the dataset with the largest 
number of polygons for open-pit mining land in the 
four provinces of Northwest China (V1.0) to date. This 
dataset accurately depicts the contour edges of mining 
land in the region, and the results have been verified 
by local management departments. On this basis, this 
paper applies spatial autocorrelation and other data 
analysis methods to further scientifically reveal the 
distribution patterns, mining dynamics, and geological 
environmental risks of typical sections of open-pit mines 
in Northwest China, aiming to provide a theoretical and 
practical basis for mining development management and 
green exploration implementation in the new round of 
prospecting breakthroughs.

Materials and Methods

Mineral Resources Overview of the Study Area

The Northwest region, located in the heart of 
the Eurasian continent, spans the Tethys and Paleo-
Asian metallogenic domains. It has a complex tectonic 
evolution and diverse metallogenic processes, resulting 
in abundant energy and mineral resources, especially 
petroleum, coal, natural gas, nickel, gold, and potash 
[17]. According to previous statistics, the potential value 
of mineral resources in the five provinces of Northwest 
China is about 34 trillion yuan (accounting for 36% of 
the national total) [18, 19]. In terms of production, in 
2020, the raw coal output was about 1.081 billion tons 
(accounting for 27% of the national total), crude oil 
output was 69.0567 million tons (accounting for 35% 
of the national total), natural gas output was 96.512 
billion m3 (accounting for 50% of the national total), the 
output of 10 nonferrous metals was 15.4384 million tons 
(accounting for 25% of the national total), and cement 
output was 798 million tons (accounting for 33% of the 
national total) [20]. From the perspective of resource 
exploration, since 1999, 16 large-scale mineral resource 
bases have been formed in the Northwest region, with 

major minerals including nickel, copper, lead-zinc, gold, 
molybdenum, iron, tungsten, and rare and rare-earth 
metals. A total of 25 super-large deposits and 140 large 
deposits have been discovered, and newly identified 
resource reserves have increased significantly, providing 
an important material foundation for the socio-economic 
development of the Northwest region [21].

Based on metallogenic regularity, the southern 
part of the Paleo-Asian metallogenic domain and the 
Qin-Qi-Kun metallogenic domain (including northern 
Xinjiang, northern Gansu, the southern edge of 
Xinjiang, and southern Qinghai and Shaanxi) mainly 
produce metallic minerals such as Hercynian marine 
volcanic iron deposits, skarn-type iron-copper deposits, 
porphyry copper deposits, magmatic segregation-type 
copper-nickel deposits, hydrothermal sedimentary 
lead-zinc deposits, and low-temperature hydrothermal 
gold deposits [22]. In the northern Qilian Mountains 
of Gansu, the main minerals are Caledonian massive 
sulfide copper-polymetallic deposits, skarn-type 
tungsten (molybdenum) deposits, and hydrothermal 
alteration rock-type copper deposits [23]. The northern 
section of the Sanjiang metallogenic belt in the 
Tethys metallogenic domain and parts of the Qinling 
area, which are superimposed by the Circum-Pacific 
metallogenic belt, are mainly affected by Indosinian-
Yanshanian metallogenesis, producing porphyry copper 
(molybdenum) deposits and hydrothermal alteration 
rock-type gold deposits [24]. Nonmetallic minerals such 
as limestone for cement, dolomite for flux, refractory 
clay, fluorite, gypsum, construction sand and gravel, 
marble, and granite are widely distributed in the 
northwestern provinces [25], but potash and salt lake 
lithium are concentrated around the Qaidam Basin.

In terms of mining development, mining has 
become a pillar industry in the Northwest region, and 
its development has already reached a considerable 
scale. Statistics show that by the end of 1999, there were 
13,429 mining enterprises in the Northwest region, of 
which state-owned and state-controlled enterprises 
accounted for 11% of the total number of mines, while 
non-state-owned enterprises accounted for 89%, and 
the ore output of non-state-owned enterprises accounted 
for 55% of the total [26]. According to incomplete 
statistics, the industrial output value of large-scale steel, 
nonferrous metals, building materials, and other mineral 
enterprises accounts for about 20% of the industrial 
output value of the Northwest region. Overall, most 
mining development and utilization in the northwest 
region is still in an extensive and inefficient stage, with 
low levels of deep processing, relatively short industrial 
chains, and relatively low added value of products and 
overall industrial benefits.

Data Processing and Interpretation Methodology

The remote sensing data employed in this study 
primarily consisted of high-resolution satellite imagery 
from domestic satellites such as GF-2, GF-6, and ZY-3, 
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with imagery captured predominantly between May and 
August of 2021 and 2022 [27-29]. The majority of the 
raw remote sensing data was distributed by the Natural 
Resources Aerogeophysical Survey and Remote Sensing 
Center of the China Geological Survey, while a minor 
portion was obtained through application and download 
from the Geological Cloud platform [30].

The NDVI data utilized in this paper were sourced 
from the Resource and Environment Science Data 
Platform [31]. The product name is the “Annual 
Maximum NDVI Dataset at 30 m Resolution for China”, 
covering the period from 2000 to 2022. Data on soil 
moisture content used in the analysis were obtained 
from the National Tibetan Plateau Data Center, while 
geological disaster data were sourced from the Xi’an 
Geological Survey Center [32]. These raster data were 
resampled to a spatial resolution of 30 m. Additionally, 
the referenced land-use data were derived from the 
anonymized Third National Land Survey, and the 
boundaries of nature reserves and ecological function 
zones used for reference were internally distributed 
materials.

The remote sensing data were preprocessed using 
ENVI 5.6 software, which included radiometric 
calibration, data fusion, orthorectification, and image 
enhancement [33, 34]. The resulting preprocessed 

imagery, with a spatial resolution of 2 m, was suitable 
for monitoring open-pit mines. The interpretation was 
conducted using ArcGIS 10.8 software at a scale of 
1:10,000 or larger. Changes between the two temporal 
datasets were analyzed through a combination of visual 
interpretation and machine-assisted recognition. This 
process identified and delineated various mining land-
use types, such as mining sites, transfer yards, mining 
structures, and solid waste areas, providing information 
on their locations, quantities, and areas. Details of the 
specific types are presented in Table 1.

Given the inherent subjectivity of visual 
interpretation, the remote sensing interpretation results 
in this study were disseminated by the Ministry 
of Natural Resources to each county-level natural 
resources bureau. Professional technical personnel 
from these bureaus then conducted on-site verification 
of each individual patch using handheld GPS and 
BeiDou navigation devices for precise measurement 
and photographic documentation. The field survey 
data were uploaded through the national Land Cloud 
system, where patch boundaries and attributes were 
cross-checked against the existing database. Patches that 
passed on-site validation underwent a rigorous three-tier 
review process at the county, municipal, and provincial 
levels of the natural resources authorities before final 
submission, ultimately forming the validated and 
authoritative database. 

Spatial Analysis Methods

Fishnet Analysis

To explore the distribution patterns and 
characteristics of open-pit mining land use in the 
four northwestern provinces (regions), we utilized the 
ArcGIS 10.8 Fishnet tool to partition the study area. 
The grid size was set to 100 km×100 km, a dimension 
that was chosen based on comprehensive considerations 
of spatial scale compatibility, statistical robustness, 
and practical application requirements within the study 
area. With county-level administrative units in the 
four northwestern provinces averaging approximately 
11,000 km2 in area, the 100 km grid size effectively 
corresponds to this jurisdictional scale while avoiding 
either excessive fragmentation (e.g., 50×50 km grids) 
that would compromise statistical validity or excessive 
aggregation (e.g., 200×200 km grids) that would obscure 
localized mining clusters. Spatial autocorrelation 
analysis (Moran’s I and Getis-Ord Gi*) confirmed that 
this grid resolution maintains statistical significance 
(global Moran’s I = 0.156, p<0.01) while being 
optimally compatible with the swath width of domestic 
satellite data (e.g., GF-6’s 90 km coverage). This scale 
successfully captures both the aggregation patterns 
of small-scale mining operations (e.g., 547 mining 
polygons in Jingtai County, Gansu) and the spatial 
continuity of large mining districts (e.g., the 1,555 km2 
Lop Nur potash mine). Sensitivity analysis demonstrated 

Type code Type Type in legend

10 Stope Stope

2A Coal storage yard Transit site

2B Other ore stockpiles Transit site

2C Coal washing plant Transit site

2D Mineral processing plant Transit site

2E Processing pond Transit site

3B Tailings pond Tailings pond

3C Coal gangue pile Solid waste

3D Gangue pile Solid waste

3E Topsoil stockpile Solid waste

3F Internal waste dump Solid waste

3G External waste dump Solid waste

4A Production area Mining building

4B Residential area Mining building

4C Administrative area Mining building

4D Mine access road Mining road

4E Mine railway Mining road

5A Subsidence crater Subsidence crater

GC Restoration and 
rehabilitation project Remediation area

Table 1. Types of mining occupations in open-pit mines.
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that this resolution best identifies hotspot areas (e.g., the 
Shanshan-Ruoqiang region in Xinjiang and Dachaidan 
in Qinghai) while directly aligning with the 50-100 km 
monitoring units specified in China’s Mineral Resources 
Planning (2021-2025), thereby ensuring both scientific 
rigor and policy relevance. Through this process, a total 
of 358 fishnet cells were generated (Fig. 1), with an 
average area of 8,239 km2 per cell.

Moran’s I Index

Moran’s I was employed in this study to evaluate 
spatial autocorrelation, which quantifies whether 
observations within a geographic region exhibit 
interdependence and characterizes the strength and 
directionality of such spatial associations [35]. Moran’s 
I is categorized into two forms: the Global Moran’s I, 
which detects spatial autocorrelation across the entire 
study area, and the Local Moran’s I, which identifies 
localized spatial patterns [35]. A statistically significant 
Global Moran’s I (deviating from zero) indicates a 
nonrandom spatial distribution of data points at the 
global scale [36]. The Local Moran’s I, conversely, 
assesses spatial autocorrelation at specific locations 
and their neighboring regions, facilitating the detection 
of localized clusters such as hotspots (aggregations of 
high values), coldspots (aggregations of low values), or 
spatial outliers [36]. The mathematical formulation of 
Moran’s I integrates a spatial weight matrix (W = [wij]) 
and standardized covariance between variables. Its core 
equation is expressed as:

	

	

where n denotes the sample size, wij represents the 
spatial weight between observations i and j, Xi and Xj 
are observed values, and X ̅  is the mean of the variable.

The interpretation of Moran’s I follows these criteria:
I>0: Positive spatial autocorrelation, reflecting 

clustering of similar values.
I<0: Negative spatial autocorrelation, indicating 

dispersion of dissimilar values.
I≈0: Spatial randomness, implying no statistically 

significant spatial pattern.

Hotspot Analysis (Getis-Ord Gi)*

This study employed hotspot analysis (Getis-Ord 
Gi)* to identify spatial clustering patterns in mining 
development data, elucidating regions exhibiting 
statistically significant clusters of high values (hotspots) 
or low values (coldspots) [37]. The Gi statistic calculates 
a z-score for each spatial unit within the dataset, 
quantifying the likelihood of significant high- or low-
value clustering around its location [37].

The Gi* statistic is expressed as:

where xj is the observed value at spatial unit j; X ̅ is 
the global mean of the dataset; S is the global standard 
deviation; wij is the spatial weight matrix, typically 
defined by distance decay or adjacency relationships; 
and n is the total number of spatial units.

The Gi* statistic is interpreted as a standardized 
z-score, where the magnitude and direction of the 
value indicate spatial clustering significance: a positive 

Fig. 1. Mine area density in four provinces in Northwest China.
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z-score (𝐺𝑖∗ > 0) denotes a hotspot (aggregation of 
high values), with increasing values reflecting stronger 
statistical significance, while a negative z-score (𝐺𝑖∗ < 0) 
signifies a coldspot (aggregation of low values), where 
more negative values correspond to greater confidence 
in low-value clustering [38]. Statistical significance is 
typically assessed using predefined thresholds, aligning 
with conventional hypothesis-testing frameworks 
to categorize hotspots and coldspots into discrete 
confidence tiers.

Results and Discussion

Spatiotemporal Monitoring of Mining-Induced 
Land Disturbance in Open-Pit Mining Operations

The distribution of monitored patches in the four 
northwestern provinces (regions) is illustrated in Fig. 
2. The monitoring results reveal that in 2022, a total 
of 3,253 approved and operational open-pit mines 
across these regions encompassed 12,680 polygonal 

mining patches, covering an area of 4,581.04 km2, 
with an arithmetic mean of 0.36 km2 per patch (total 
perimeter: 16,579.2 km; average perimeter: 1.31 km per 
patch). As shown in Fig. 1, while the common features 
of these mines include (but are not limited to) mining 
sites or pits, waste rock piles, mineral processing 
areas, and production/office facilities, they exhibit 
significant variability in spatial form and scale, such as 
distribution clustering and patch size. Among the patch 
types, mining sites are the most prevalent. Detailed 
characteristics of these mining patches, categorized by 
province and primary land-use type, are summarized in 
Table 2.

The distribution of patches across the four provinces 
(regions) shows a high degree of geographical 
connectivity, yet the patch distribution varies 
significantly. Approximately 54% of the patches are 
located in Xinjiang, 28% in Gansu, 12% in Qinghai, 
and only 6% in Ningxia. Notably, Xinjiang and Qinghai 
account for over 90% of the total patch area (Table 3). 
Fig. 3 highlights the top 10 county-level administrative 
regions with the highest number of open-pit mining 

Fig. 2. Mining footprint of open-pit mines in four provinces in Northwest China.
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land-use patches: Jingtai County (547 patches), Qitai 
County (355 patches), Yizhou District (348 patches), 
Jinta County (328 patches), Golmud City (274 patches), 
Dachaidan Administrative Committee (265 patches), 
Shapotou District (231 patches), Tuoli County (222 

patches), Aksu City (215 patches), and Toksun County 
(212 patches). At the provincial level, the counties 
(districts) with the most patches are Qitai County in 
Xinjiang (coal, sand, and metal mines), Jingtai County 
in Gansu (coal, etc.), Golmud City in Qinghai (potash 

Fig. 3. Top 10 counties in terms of the number of mining polygons by provinces and regions. a) Counties from Gansu Province; b) 
Counties from Qinghai Province; c) Counties from Ningxia Hui Autonomous Region; d) Counties from Xinjiang Uygur Autonomous 
Region.

Provinces Polygon count Area
(km2)

Mean area
(km2/province)

Standard deviation
(km2/ province)

Gansu 3577 270.11 0.08 0.38

This study

Qinghai 1530 1386.55 0.91 10.74

Ningxia 729 52.11 0.07 0.21

Xinjiang 6844 2872.27 0.42 19.32

Four Northwestern Provinces 
(Regions) 12680 4581.04 0.36 14.68

China 29348 7887.85 0.27 1.59

Reference 

Four Northwestern Provinces 
(Regions) of China 2432 1437.39 0.59 4.71

USA 6053 8499.04 1.4 5.45

Russia 4659 8675.45 1.86 5.72

Australia 4046 5319.70 1.31 4.74

Indonesia 2117 3689.83 1.74 10.22

South Africa 1984 3021.75 1.52 4.45

Ukraine 1931 1348.92 0.7 7.56

Other Countries 24410 27142.84 1.50

Table 2. Quantitative characteristics of mining polygons.
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salt, etc.), and Shapotou District in Ningxia (coal, iron 
ore, etc.).

The analysis of mining types based on patch 
distribution (Figs 4 and 5) reveals that the socio-
economic development of the northwestern region 
heavily relies on potash, lithium, coal, construction 
minerals, and metals such as iron, copper, and gold. 
Among these, potash occupies the largest area (2,670.13 
km2), followed by lithium (418.13 km2) and coal (297.82 
km2). In terms of patch count, construction sand 
dominates, with 3,696 patches covering 297.53 km2. 
Overall, the scale of non-metallic mineral resource 
extraction surpasses that of metallic minerals. Previous 
studies categorize major global mining countries into 
high mineral demand nations (e.g., China, India, and 
the United States) and high mineral export nations 
(e.g., Australia, Canada, South Africa, and Russia). The 

mining activities in the four northwestern provinces 
align with this pattern. For instance, construction 
materials like sand and granite are extensively consumed 
for infrastructure projects, while coal remains a critical 
resource for power and heating. Additionally, potash, 
lithium, iron, copper, and gold are indispensable for 
advancing agriculture and high-tech industries in recent 
years.

The analysis of land-use types occupied by the 
patches (Table 4) indicates that the primary land use 
in the northwestern region is bare land, saline-alkali 
land, and other unused land (2,488.33 km2), followed by 
water bodies and water conservancy facilities (701.70 
km2), industrial and mining storage land (697.05 km2), 
grassland (540.07 km2), forest land (99.29 km2), cultivated 
land (41.66 km2), and garden land (12.94 km2). Among 
these, Qinghai occupies the largest area of water bodies 

Polygon type Gansu Qinghai Ningxia Xinjiang Total

Grass 72.07 261.83 35.82 170.35 540.07

Farmland 18.5 1.11 8.25 13.8 41.66

Industrial and 
Mining Storage 

Land
71.09 369.9 2.6 253.46 697.05

Forest Land 46.79 25.45 2.13 24.92 99.29

Other Land 53.95 176.72 2.32 2255.34 2488.33

Water Areas and 
Hydraulic Facilities 5.78 551.54 0 144.38 701.7

Garden Land 1.93 0 0.99 10.02 12.94

Total 270.11 1386.55 52.11 2872.27 4581.04

Table 3. Area of occupation types of mining patches by province.

Fig. 4. Top 10 minerals in terms of the number of mining polygons by provinces and regions. a) Counties from Gansu Province; b) 
Counties from Qinghai Province; c) Counties from Ningxia Hui Autonomous Region; d) Counties from Xinjiang Uygur Autonomous 
Region.
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and water conservancy facilities, Xinjiang occupies the 
most unused land, while Gansu and Ningxia occupy the 
most grassland. Regarding the overlap between patches 
and nature reserves (Table 5), 40 patches are distributed 
across 7 nature reserves, covering a total area of 20.84 
km² and accounting for 0.45% of the total mining patch 
area. Of these, 28 patches are in Gansu, 7 in Ningxia, 
and 5 in Xinjiang. Additionally, the overlap between 
patches and ecological functional zones (Table 6) 
shows that although 8,202 patches (64.7% of the total) 
are located within 4 designated ecological functional 
zones, they only account for 25.2% of the total area. 
Ranked by patch count, the windbreak and sand-
fixation zone contain the most patches (n=3,448, 385.39 

km2), followed by the soil conservation zone (n=2,111, 
104.52 km2), biodiversity zone (n=1,452, 556.97 km2), 
and water conservation zone (n=1,191, 106.87 km2). 
These results reflect that recent mining development 
in the northwestern region has placed greater emphasis 
on ecological protection and coordination. Approved 
mining areas have largely avoided nature reserves and 
key ecological zones, demonstrating a positive trend 
toward sustainable development and the construction of 
green mines in the region.

Fig. 5. Top 25 (area > 10 km2) minerals in terms of the number of mining patches in four provinces.

Contribution chart of the cumulative area of mines.
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Provinces Names of the protection areas Polygon count Area (km2)

Gansu

Qilian Mountains National Nature Reserve 4 0.13

Liancheng National Nature Reserve 21 0.96

Xinglong Mountains National Nature Reserve 1 0.16

Zhangye Heihe Wetland National Nature Reserve 2 0.24

Ningxia
Lingwu Baihitai National Nature Reserve 1 0.18

Ningxia Helan Mountains National Nature Reserve 6 3.22

Xinjiang Lop Nur Wild Camel National Nature Reserve 5 15.95

Total 40 20.84

Table 4. Number and area of mining patches in nature reserves by province.

Windbreak and Sand-
fixation Zone

Biodiversity Conservation 
Area

Water Source Conservation 
Area Soil Conservation Area

Polygon 
count Area (km2) Polygon 

count Area (km2) Polygon 
count Area (km2)

Polygon 
count Area (km2)

Gansu 1391 143.89 273 15.17 295 18.75 1371 69.59

Qinghai 480 72.58 282 24.12 86 3.26 314 12.61

Ningxia 528 34.52 11 1.40 14 5.19 132 8.18

Xinjiang 1049 134.40 886 516.28 796 79.67 294 14.14

Total 3448 385.39 1452 556.97 1191 106.87 2111 104.52

Table 5. Number and area of mining patches in ecologically functional zones by province.

Evaluation Factor High Sensitivity Relatively High 
Sensitivity Moderate Sensitivity Low Sensitivity

Soil Moisture Content (m³/m³) <0.2 0.2~0.28 0.28~0.35 ≥0.35

Evapotranspiration (mm/month) ≥200 130~200 80~130 <80

Annual Precipitation (mm/year) <200 200~300 300~400 ≥400

Average Wind Speed (m/s) ≥4.7 3.6~4.7 2.8~3.6 <2.8

Soil Sand Content (%) ≥70% 40%~70% 20%~40% <20%

Soil Silt Content (%) ≥33% 22%~33% 5%~22% <5%

Soil Clay Content (%) <8% 8%~19% 19%~24% ≥24%

Soil Erosion Intensity Severe Moderate Mild Negligible

Slope Gradient (°) ≥25 10~25 5~15 0-5

Geohazard Susceptibility High Susceptibility Moderate 
Susceptibility Low Susceptibility Non-Susceptibility

Multi-year NDVI Mean Value <0.2 0.2~0.4 0.4~0.6 ≥0.6

NDVI Change Trend <-0.12 -0.12~ -0.17 -0.17~0.0025 ≥0.0025

Mining Development Land 
Occupation Forest and Grassland Agricultural Land Unused Land Construction Land

Graded Assignment 4 3 2 1

Table 6. Graded assignment of sensitivity factors for desertification.
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Spatial Distribution Characteristics of 
Mining-Induced Land Disturbance in 

Open-Pit Mining Development

The spatial analysis reveals that 12,680 mining 
patches were mapped into 225 out of the 358 fishnet 
cells, with mining density per cell ranging from 0 to 
14.56% and an average of 0.14%. Cells with higher-
than-average mining density are predominantly 
located in Xinjiang, particularly north of the Tianshan 
Mountains, including Urumqi and surrounding areas 
such as Changji, Turpan, Hami, and Fuyun County in 
Altay. In southern Xinjiang, higher densities are only 
observed in Aksu and Hotan. In Qinghai, high-density 
areas are mainly concentrated in the Qaidam Basin, 
while in Gansu, they are found in Baiyin and Jinchang. 

In Ningxia, high-density areas are primarily distributed 
in Wuzhong. Overall, higher-density mining areas 
are predominantly located around inland sedimentary 
basins, which may be attributed to regional metallogenic 
characteristics, mineral deposit scale, population, 
industrial development, and proximity to roads and 
railways. In contrast, regions such as southern Qinghai, 
the Qilian Mountains, and southern Xinjiang, which are 
at higher elevations, exhibit nearly zero mining density, 
likely due to recent environmental protection measures 
restricting mining and exploration. This reflects the 
government’s increasing focus on balancing mining 
activities with ecological conservation.

To further elucidate the spatial heterogeneity 
characteristics of land occupation by open-pit mining 
development, this study conducted a global spatial 

Fig. 6. Spatial heterogeneity of mine areas in four provinces in Northwest China. a) Clustering and Outlier Analysis; b) Hot spot analysis.
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autocorrelation analysis of mining density. The Global 
Moran’s I index yielded a positive value (0.156), with a 
relatively high Z-score (5.752) and a low P-value (0.0), 
indicating a significant positive spatial correlation in 
the distribution of open-pit mining development. The 
Getis-Ord General G analysis also showed a positive 
Z-score (5.76) and a P-value of 0, suggesting significant 
clustering of high values in the global distribution of 
mining development. To explore whether this pattern 
holds at the local level, a local spatial analysis was 
performed, as illustrated in Fig. 6. The Anselin Local 
Moran’s analysis revealed that 82.39% of the area in 
the four provinces (regions) exhibited no clustering 
behavior (NS), while 1.70% of the area showed high-
high clustering (HH). The proportions of high-low (HL) 
and low-low (LL) clustering anomalies were 4.41% and 
11.5%, respectively. The Getis-Ord Gi* hotspot analysis 
identified two high-hotspot regions (with confidence 
levels greater than 90%), covering approximately 6.44% 
of the area. One hotspot is located at the junction of 
Shanshan County, Ruoqiang County, and Yuli County 
in Xinjiang, and the other is situated at the intersection 
of Dachaidan, Mangya, Golmud, and Dulan in Qinghai. 

Both regions are concentrated areas for potash mining. 
Both global and local spatial correlation analyses 
indicate that open-pit mining development in the four 
northwestern provinces (regions) exhibits significant 
regional tendencies, with large-scale mining activities 
(characterized by large patch areas) being relatively 
concentrated and showing a high-high clustering trend.

The scale variability of mining areas in the four 
northwestern provinces (regions) is considerable, with 
the smallest patch (mining roads) covering an area of less 
than 10 m2, while the largest patch (potash mining) spans 
up to 1,555 km2. The standard deviation of the polygon 
areas is 14.68 km2. Normality tests on the data revealed 
that, on the log-normal P-P plot, the 12,680 sample 
points form an approximately straight diagonal line (Fig. 
7), indicating that the frequency distribution of patch 
areas follows a log-normal distribution. Consequently, 
the geometric mean is more appropriate for representing 
the average land occupation of each mining feature 
(polygon). The calculated geometric mean is 0.024 km2. 
The number of mining areas varies significantly across 
different scales, showing an overall logarithmic upward 
trend (Fig. 8a)). This trend is particularly pronounced in 
the range of 0-0.1 km2. Analysis shows that 47.9% of all 
polygons have areas less than 0.024 km2, while 81.6% of 
the regions have areas below 0.1 km2. Additionally, 91% 
of the regions have areas less than 0.2 km2, and 98.2% 
of the regions have areas below 1 km2.

Although the number of medium- and large-sized 
mines (defined in this study as medium-sized with areas 
of 10-50 km2 and large-sized with areas >50 km2) is 
significantly smaller (totaling 26, with 17 medium-sized 
and 9 large-sized), the scale of these mines still strongly 
influences the total land occupation area of the 12,680 
mining polygons. Statistical results (Fig. 8b)) show that 
regions with mining areas >10 km2 account for 71.8% of 
the total polygon area, while those >50 km2, >100 km2, 
and >1000 km2 account for 63.5%, 58.6%, and 34% of 
the total polygon area, respectively. When ranked by the 
number of medium- and large-sized mining polygons 
(areas >10 km2), the order is Qinghai (16) > Xinjiang (9) 
> Gansu (1). A total of nine non-metallic minerals are 
produced from these sites, with the largest mining area 
being the Luobupo potash mine in Ruoqiang County, 
Xinjiang. By mineral type, potash is the most abundant 

Fig. 7. Test for normal distribution of patch areas.

Fig. 8. Distribution of mining patches by size. a) is the multi-scale quantification of mining polygons in mineral resource extraction areas; 
b) is the multi-scale areal assessment of mining polygons in resource extraction areas.
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(n=10, 2,608.6 km2), concentrated in three regions: 
Golmud and Dulan in Qinghai, and Ruoqiang in 
Xinjiang. This is followed by rock salt (n=2, 105.2 km2), 
lake salt (n=2, 41.5 km2), mirabilite (n=2, 36.7 km2), 
coal (n=2, 31.9 km2), boron ore (n=1, 23.4 km2), sodium 
nitrate (n=1, 16.8 km2), and magnesium salt (n=1, 15.3 
km2). Although mineral supply is dominated by large 
mines, small-scale mining (<10 km2) still accounts for 
approximately one-third (about 30%) of the total land 
use area for mining in the northwestern regions.

Desertification Sensitivity Analysis 
in Typical Mining Areas

Remote sensing monitoring of mining development 
and utilization in the four northwestern provinces 
(regions) conducted by our research team in 2022 
revealed that the number of mining patches (including 
both legal and suspected illegal activities) in Qitai 
County and adjacent areas along the northern slope 
of the Tianshan Mountains in Xinjiang ranks among 
the highest in the northwestern regions. However, this 
area is located within the desert ecological zone in the 
Junggar Basin, raising concerns about whether mining 
activities may impact the ecological environment, 
particularly in terms of desertification. To address 
this question, we selected a demonstration area for 
desertification-sensitivity analysis and evaluation.

The demonstration area (as shown in Fig. 9) includes 
Fukang City, Jimsar County, Qitai County, and Mulei 
Kazakh Autonomous County, covering a total area of 

47,431.37 km2. This area encompasses the concentrated 
mining zones of the Beishan Coal Mine in Qitai County 
and the Wugong Coal Mine in Fukang City. A total 
of 4,477 mining patches (covering 218.90 km2) are 
distributed within this region, among which 672 patches 
(153.86 km2) are associated with open-pit mining. These 
patches occupy 124.89 km2 of unused land, 46.74 km2 
of grassland, 32.27 km2 of construction land (including 
29.22 km2 of mining land), 7.51 km2 of forest land, 4.22 
km2 of agricultural land, and 3.27 km2 of water bodies. 
Given the extensive study area, the use of NDVI data 
with 250-meter or 500-meter spatial resolution may be 
insufficient to accurately capture the ecological impacts 
of mining development, as many affected patches are 
relatively small. While employing higher-resolution 
data (e.g., 30-meter or finer) could improve detection, it 
would also substantially increase processing demands 
and analytical complexity. Therefore, this study focused 
on conducting long-term NDVI analysis specifically 
in the Fukang coal mining area in Xinjiang, as a 
representative case.

By analyzing the change trend of NDVI from 2000 
to 2022, it was found that the areas with decreasing 
NDVI were mainly concentrated in the southern part 
of the region. The areas with increasing NDVI were 
mainly the newly cultivated land in the central part (with 
a relatively regular shape), and there were no significant 
change trends in other areas (Fig. 10). By analyzing the 
annual changes of NDVI (with a precision of 30 m) at 
different regional scales in the demonstration area from 
2000 to 2022, it was found that the patterns of change 

Fig. 9. Location of Demonstration Area.
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at each scale were generally consistent, and there were 
two obvious change stages. As shown in Fig. 11, before 
2016, NDVI generally showed a slow upward trend, and 
it decreased sharply after 2016. Although the NDVI 
value in the mining plot area was very low, the cliff-like 
decline indicated that the impact of human activities 
was still significant. It can be inferred that large-scale 
mine exploitation in this area began in 2016.

At the regional scale, this study integrated 
monitoring results with multi-element datasets, 
employing graded assignment and spatial hierarchical 
analysis methods to assess the impacts of mining 
development on regional desertification sensitivity. 
The evaluation framework incorporated two additional 
factors: mining development footprint and NDVI 
trend, with other contributing factors detailed in 
Table 6. Threshold determination for factor grading 
combined the natural-breaks method and empirical 
expert judgment. As shown in Fig. 12, the analysis 
results demonstrate good consistency with the existing 
ecological functional zoning outcomes, revealing high 

desertification sensitivity in two key mining districts. 
Notably, numerous mining and exploration rights have 
been approved in these sensitive areas, necessitating 
heightened emphasis on green exploration practices 
and mine-environmental restoration during subsequent 
mineral resource investigations and extraction activities.

Using the natural-breaks method, the final sensitivity 
values were classified into four levels: high (>34), 
relatively high (31-34), moderate (28-31), and low (22-
28). Among 4,477 mining parcels, the low desertification 
sensitivity zones covered 10.31 km2 (5.1% of the total 
area), moderate-sensitivity zones 22.23 km2 (11%), 
relatively high-sensitivity zones 58.33 km2 (28.9%), 
and high-sensitivity zones 110.87 km2 (55%), as shown 
in Fig. 13. Although this analysis presents limitations, 
including variations in data precision across multiple 
factors and potential inaccuracies in the selection 
and assignment of certain evaluation indicators, 
the assessment results remain generally objective, 
demonstrating that mining activities exert measurable 
impacts on local desertification processes. It is 

Fig. 10. Trends in NDVI.

Fig. 11. Annual changes in NDVI at different regional scales in the demonstration area. a) NDVI dynamics across mining districts; b) 
vegetation index variation in mining polygons.
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Fig. 12. Desertification sensitivity map of the demonstration area.

Fig. 13. Desertification sensitivity grading map for mining areas.
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recommended that subsequent mineral rights allocation 
prioritize scientific rigor and rational planning, while 
efforts should be intensified to advance green-mine 
construction initiatives.

Global and Regional Patterns of Mining Impacts

The dominance of non-metallic mineral extraction 
(e.g., potash, coal, lithium) in China’s northwestern 
provinces reflects a broader global trend where 
non-metallic mining operations account for a 
disproportionately large share of the total mining 
footprint compared to their economic contribution. 
Maus et al. quantified this phenomenon at a planetary 
scale, revealing that non-metallic mining accounts for 
62% of global mining footprints despite generating only 
38% of mineral-related GDP [39, 40]. Our findings align 
with their observations but further highlight regional 
specificities: in arid ecosystems like the Qaidam Basin, 
clustered mining activities (>70% coverage by medium-
large mines) amplify habitat fragmentation – a critical 
threat to desert-adapted species. This contrasts with 
Tang et al.'s global database, which identified metallic 
mining (e.g., copper, gold) as the primary driver of 
biodiversity loss in tropical rainforests [41, 42]. Such 
biome-dependent impacts underscore Sonter et al.’s 
argument that mining threats must be evaluated through 
spatially explicit ecological lenses rather than universal 
metrics [43, 44].

The imperative for spatially differentiated 
approaches extends to policy. Strict mining restrictions 
implemented in ecologically sensitive zones (e.g., 
Qilian Mountains, Three-River Source) demonstrate 
the potential of targeted interventions to mitigate 
localized degradation [45]. However, the success of 
these measures depends on enforcement consistency – 
a challenge documented by Petropoulos et al. in their 
23-year remote sensing analysis of Greek mines [46]. 
Their work revealed that while legislation reduced 
illegal mining by 40% post-2000, rehabilitation rates 
remained below 15% due to inadequate monitoring 
[47]. In northwestern China, the juxtaposition of strictly 
protected areas (e.g., Qilian Mountains, Three-River 
Source) and high-density mining zones (e.g., Qaidam 
Basin) epitomizes a “patchwork governance” dilemma: 
protective measures concentrated in specific zones may 
inadvertently displace or intensify extractive pressures 
onto ecologically vulnerable adjacent lands. This 
displacement can lead to spatial spillover effects, where 
environmental degradation (e.g., habitat loss, pollution, 
altered hydrology) originating in mining zones impacts 
bordering protected areas. Addressing these cumulative, 
cross-boundary impacts demands the landscape-scale 
planning frameworks championed by Sonter et al. [48, 
49], moving beyond fragmented administrative units to 
manage ecological processes holistically.

Methodological Advancements and Limitations

Our manual interpretation approach achieved spatial 
classification accuracy comparable to Vasuki et al.’s 
95% overall accuracy achieved with machine learning 
for mine boundary delineation [47]. While human 
analysts can discern subtle spectral variations in high-
resolution imagery – particularly for non-metallic 
deposits like coal, which Mukherjee et al. showed have 
distinct SWIR-band signatures – the process is time-
intensive and subjective [48]. A key limitation of manual 
methods is evident in tasks requiring temporal analysis, 
such as differentiating active mines from rehabilitated 
areas using Landsat time series. This process is 
laborious. In contrast, Vasuki et al. successfully 
automated this distinction using random forest 
algorithms, achieving 89% accuracy in identifying land 
cover change trajectories over time [47]. Our exclusion 
of underground mining activities, which account for 
34% of China’s coal production (National Bureau of 
Statistics, 2023), introduces systemic underestimation 
biases – a limitation also acknowledged in Maus et al.’s 
Global Surface Mining Database [40, 49].

The rapid expansion of mining into dispersed, 
biodiverse areas – projected by Yu et al. to increase 
by 300% in Asia by 2040 – demands more dynamic 
monitoring solutions [50]. Integrating Mukherjee et 
al.’s SWIR-based index with Yu et al.’s multi-sensor 
framework (Landsat-MODIS-DMSP/OLS) could 
address seasonal and scale-related challenges [48, 50]. 
For example, MODIS VI products (250 m resolution) 
enable monthly vegetation health assessments around 
mining sites, while DMSP/OLS nightlight data (1 km 
resolution) help detect unauthorized operations through 
energy-use patterns. Nevertheless, as Tang et al. rightly 
cautioned, an overreliance on satellite observations 
carries inherent risks of missing critical impacts that 
occur below the canopy or ground surface, are too 
spatially fine-grained, or involve subsurface processes 
(e.g., groundwater contamination, soil micro-pollution, 
localized habitat degradation) [41]. Therefore, robust 
monitoring frameworks must integrate satellite-based 
approaches with targeted ground surveys and in situ 
sensor networks to capture these hidden dimensions of 
mining impact.

Ecological and Socioeconomic Trade-offs

The vegetation suppression observed in desert 
mining zones exemplifies the direct terrestrial pathway 
of mining impacts described by Sonter et al. [43]. In 
hyper-arid regions, where plant communities rely on 
cryptic soil seed banks, even limited surface disturbance 
can trigger irreversible ecological shifts. This contrasts 
with the Qilian Mountains’ alpine meadows, where 
enforced mining bans allowed 22% vegetation recovery 
between 2010-2020 (this study) – a success paralleling 
Australia’s Darling Range bauxite mines, where Vasuki 
et al. measured 18% annual rehabilitation rates using 
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Landsat time series [47]. However, economic trade-
offs persist: mining contributes 31% of GDP in Qinghai 
Province but degrades 12% of its grassland ecosystems 
annually. Balancing these competing demands 
necessitates implementing a structured approach, such 
as Sonter et al.’s “mitigation hierarchy” [43]. This 
framework prioritizes: first, avoiding impacts on the 
most sensitive areas; second, minimizing operational 
footprints where avoidance is not possible; third, 
restoring degraded sites during and after operations; and 
finally, offsetting any significant residual impacts that 
cannot be fully mitigated through earlier steps.

The regional mining-clustering phenomenon (e.g., 
Qaidam’s high-high clusters) mirrors global patterns 
of resource-driven urbanization but poses unique 
governance challenges. As Tang et al. demonstrated, 
mining hubs often become enclaves of environmental 
risk, with 78% of global tailings dams located within 
5 km of freshwater sources [41]. In northwestern 
China, the concentration of lithium mines – critical for 
renewable energy technologies – exemplifies the “green 
paradox”, where sustainable infrastructure depends 
on ecologically intensive extraction. Resolving this 
tension requires comprehensive life-cycle assessments 
that quantify the net environmental and socioeconomic 
trade-offs. Integrating Yu et al.’s remote sensing 
indicators of ecological impact [50] with socioeconomic 
metrics – such as job creation, local revenue generation 
versus health costs, ecosystem service loss, and long-
term remediation liabilities – would provide a holistic 
basis for evaluating the true sustainability of “critical” 
mineral extraction in fragile regions, a critical gap 
identified in our study.

Policy Implications and Technological Synergies

The effectiveness of mining bans in high-altitude 
protected areas validates Petropoulos et al.’s advocacy 
of spatially targeted regulations [46]. However, static 
protected boundaries may fail to accommodate climate-
driven biome shifts – a critical concern given that 60% 
of China’s mining regions face rising aridity (IPCC, 
2023). Dynamic zoning systems, informed by real-time 
satellite monitoring and predictive modeling, could 
enhance adaptability. A practical application would be 
integrating our high-resolution mining-footprint dataset 
with Sonter et al.’s spatially explicit biodiversity impact 
models [43] to conduct scenario-based spatial planning. 
This would allow policymakers to identify future 
mineral extraction zones that minimize conflicts with 
projected critical habitats and ecological corridors under 
different climate and development scenarios.

Technological synergies offer transformative 
potential: Combining Mukherjee et al.’s spectral indices 
with deep learning architectures (e.g., convolutional 
neural networks) could automate mine detection at 90% 
+ accuracy while reducing processing time by 80% 
(vs. manual methods) [48]; Blockchain traceability: 
Linking satellite-derived land-use maps with mineral 

supply chains (as proposed by Tang et al.) would enforce 
accountability for rehabilitation commitments [41]; 
Community science: Engaging local stakeholders in 
ground-truthing, as trialed by Maus et al. in the Congo’s 
coltan mines, enhances data granularity while fostering 
environmental stewardship [40].

Conclusions

(1) Through comprehensive high-resolution 
remote sensing monitoring, it was found that 3,253 
approved open-pit mines under construction in the 
four northwestern provinces (regions) involve a total of 
12,680 mining polygons. These are primarily distributed 
in Xinjiang and Qinghai, with their polygon counts and 
area proportions reaching 66% and 92%, respectively. 
Among the mined minerals, potash, lithium, coal, 
construction materials, and metallic minerals such 
as iron, copper, and gold are mined at relatively large 
scales. However, overall, the scale of non-metallic 
mineral resource development exceeds that of metallic 
minerals.

(2) Spatial correlation analysis reveals that open-pit 
mining development in the four northwestern provinces 
(regions) exhibits a significant high-high clustering 
trend. High-density mining areas are predominantly 
located around inland sedimentary basins, with 
two high-hotspot regions identified as concentrated 
potash mining zones. The number of mining areas 
varies significantly across scales, showing an overall 
logarithmic upward trend. Although medium- and large-
sized mines are few in number, they account for 71.8% 
of the total area, indicating that mineral supply is likely 
dominated by medium- and large-sized mines.

(3) Desertification sensitivity analysis in typical coal 
mining areas indicates that mining activities have a 
measurable impact on desertification in desert ecological 
zones. Therefore, it is recommended that future mineral 
rights allocation emphasize more scientific and rational 
planning, while simultaneously strengthening efforts to 
promote green mining practices.

(4) This study primarily relied on visual 
interpretation and field verification for remote sensing 
monitoring, resulting in a lengthy data extraction and 
analysis cycle. The next step will involve integrating 
more measured spectral data and artificial intelligence 
technologies to improve polygon extraction methods. 
This will enable long-term monitoring and analysis of 
mining development and environmental changes.
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