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Abstract

Urban air quality prediction faces dual challenges: complex pollution processes and cross-regional
diversity. Traditional methods and deep learning techniques often struggle with non-stationary time
series data and fail to adapt to unique urban pollution patterns. Additionally, existing models face
computational limitations when processing long sequences. Although the Informer model improves
computational efficiency through ProbSparse self-attention mechanisms, its accuracy decreases with
longer prediction horizons. This limitation stems from inadequate adaptability to non-stationary
environmental changes and insufficient capture of temporal variations inherent in urban air quality
data. Meanwhile, cities in developed and developing countries exhibit fundamentally different pollution
mechanisms, challenging models’ cross-regional generalization capabilities. To tackle these two
challenges, this study proposes TC-MixerInformer, combining Reversible Instance Normalization
(RevIN) with a Temporal-Channel Mixer (TCMixer) module. Validation using Shanghai (Jing’an)
and London (North Kensington) monitoring stations demonstrates excellent performance in both
short-term (1-12 h) and long-term (24-168 h) predictions, with 8%-54% error reductions compared
to baseline models. The model effectively handles Shanghai’s complex pollution patterns
(2-378 pg/m?, mean 28.23 pg/m?) and London’s lower concentrations (0-121.56 pg/m? mean 8.08 pg/m?).
RevIN addresses time series non-stationarity while TCMixer enhances multi-scale feature expression,
maintaining stable performance across different time scales. The model shows particular advantages
in predicting extreme pollution events, especially capturing substantial peaks approaching
350+ pg/m? in Shanghai. Our research provides a new technical approach for addressing scale diversity
and temporal non-stationarity in urban air quality prediction.
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Introduction

Urban air quality has emerged as one of the most
pressing environmental challenges of the 21% century,
with fine particulate matter (PM, ,) serving as a critical
indicator of atmospheric pollution and public health
risks. PM,, is defined as particulate matter with an
aerodynamic diameter smaller than 2.5 micrometers,
which poses significant threats to human health due
to its ability to penetrate deep into the respiratory
system and enter the bloodstream, leading to various
diseases, including respiratory and cardiovascular
disorders [1, 2]. The World Health Organization
estimates that ambient air pollution, primarily driven
by PM,,, causes approximately 7 million premature
deaths globally each year [3]. This alarming statistic
underscores the urgent need for accurate, reliable, and
timely PM, , concentration prediction systems to support
environmental management and public health protection
strategies.

However, PM, . concentration prediction is far
more complex than conventionally understood, rooted
in multifaceted interactions between anthropogenic
activities and natural systems. Recent research has
revealed intricate relationships between land resource
allocation and environmental pollution patterns.
Studies on China’s land resource misallocation
demonstrate significant spatial spillover effects, where
pollution in one region propagates to neighboring
areas through atmospheric transport, creating complex
interdependencies that traditional prediction models
often fail to capture [4]. The dynamic impacts of
ecosystem service supply and demand on air quality
have been extensively documented in large watershed
systems such as the Yellow River Basin, where
industrial emissions, urbanization pressures, and
natural ecological processes interact nonlinearly [5, 6].
Fine-scale analyses reveal that production-living-
ecological function coupling varies significantly across
spatial scales and temporal periods, fundamentally
influencing local and regional air quality patterns [7].

This complexity is further compounded by
fundamental atmospheric chemistry and physics
mechanisms. PM, ; concentrations result from nonlinear
interactions between primary emissions (directly
emitted particles from combustion sources) and
secondary aerosol formation through photochemical
reactions involving precursor gases (SO,, NOx, VOCs).
The reaction rates and pathways vary significantly
across climate zones: subtropical regions like Shanghai
experience higher photochemical activity due to
elevated solar radiation and temperature, leading
to more rapid secondary aerosol formation, while
temperate maritime climates like London exhibit slower
photochemical processes but a stronger influence from
synoptic-scale meteorological systems [8]. Moreover,
meteorological conditions (temperature inversions,
boundary layer height, wind patterns) exhibit nonlinear
relationships with pollutant dispersion, where small

changes in atmospheric stability can trigger order-of-
magnitude variations in surface concentrations. These
multiscale nonlinear interactions explain why traditional
linear models fail and why effective PM, , prediction
models must transcend simple emission-concentration
relationships to incorporate socioeconomic drivers, land
use dynamics, ecosystem service flows, and atmospheric
processes — a requirement that poses substantial
challenges for conventional modeling approaches but
creates opportunities for deep learning methods. Accurate
prediction of air pollutant concentrations has thus become
a critical challenge in environmental science. Traditional
statistical models and numerical simulation methods
often struggle to characterize the dynamic patterns of
PM,, due to its complex formation mechanisms and
significant spatiotemporal variability [9].

Within this wave of technological development, the
application of deep learning in air quality prediction
has evolved significantly from early architectures
to more sophisticated approaches. Initial studies
primarily employed Recurrent Neural Network
(RNN) architectures [10-12], with bidirectional LSTM
networks achieving remarkable success in short-term
prediction tasks [2, 13]. Subsequently, the integration
of Convolutional Neural Networks (CNN) with LSTM
enhanced feature extraction capabilities, enabling better
capture of spatial and temporal patterns in air quality
data. However, these models faced critical limitations
when handling long-sequence predictions, including
gradient vanishing and computational inefficiency.
To overcome these limitations, the introduction of
Transformers brought revolutionary breakthroughs
to time series prediction tasks through self-attention
mechanisms, enabling parallel processing of sequential
data and first demonstrating significant success in
natural language processing [14, 15]. When applied to
air quality prediction, these models showed remarkable
advantages in capturing long-term dependencies among
pollutants [16]. Nevertheless, standard Transformers
encountered severe challenges related to quadratic
computational complexity when processing long
sequences, making them computationally prohibitive for
practical air quality prediction applications.

To address the computational bottleneck of
Transformers, the Informer model proposed by Zhou
et al. [17] effectively resolved this issue through
the ProbSparse self-attention mechanism, reducing
complexity from O(L?) to O(LlogL). This innovative
approach, combined with self-attention distillation
to minimize memory consumption and a generative
decoder architecture, makes Informer particularly
suitable for air quality prediction tasks that require
processing large amounts of historical data to capture
seasonal and cyclical pollution patterns. Despite these
significant computational advantages, preliminary
experiments conducted in this study indicate
that Informer still exhibits considerable accuracy
degradation with increasing prediction horizons when
handling non-stationary time series data — an inherent
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characteristic of urban air quality patterns that fluctuate
due to seasonal factors, economic activities, and policy
implementations [18].

This limitation is not an isolated case, but rather
reflects a common challenge faced by current deep
learning architectures in time series prediction.
Through systematic analysis of mainstream models,
including LSTM, Transformer, and their variants, we
have identified that the performance bottlenecks of
these methods in cross-regional air quality prediction
stem from three fundamental theoretical deficiencies.
These deficiencies not only explain the accuracy
degradation phenomenon observed in Informer, but
also reveal the root causes why existing techniques
struggle to achieve robust cross-domain generalization:
(1) Mathematical Non-Stationarity and Distribution
Shift [19, 20]: Urban PM, , concentrations exhibit time-
varying statistical properties — shifting mean p(t) and
variance o2(t) — that violate the stationarity assumption
underlying traditional neural network architectures.
Standard normalization techniques (e.g., BatchNorm)
compute global statistics across the training data and
apply fixed transformations during inference, resulting
in systematic prediction errors when the test data
diverge from the training distributions. This manifests
acutely in cross-regional applications: a model trained
on high-concentration urban environments learns
feature representations optimized for that distribution,
systematically producing biased predictions when
applied to cities with fundamentally different pollution
characteristics. The mathematical root cause lies in the
non-reversible nature of standard normalization: while
it standardizes training data, it cannot adapt to new
distributions without retraining, leading to substantial
performance degradation when applied to cities with
significantly different baseline concentrations and
variability patterns.

(2) Attention Mechanism Limitations in Long-
Sequence Modeling: While Transformers theoretically
capture long-range dependencies through self-attention,
the softmax-based attention mechanism produces over-
smoothed representations for extended prediction

horizons. This occurs because attention weights
T

Vd

mass across all time steps, causing distant historical
information to receive near-zero weights that are
numerically  unstable  during  backpropagation.
As sequence length L increases, the effective receptive
field shrinks due to gradient dilution, preventing the
model from learning long-term pollution evolution
patterns. This theoretical limitation manifests as
substantial accuracy degradation in long-term
predictions: existing models show markedly increasing
errors as prediction horizons extend from hours to days.
The ProbSparse attention mechanism reduces
computational complexity from O(L?) to O(LlogL) but
does not address the fundamental gradient dilution

computed via sof tmax< ) distribute probability

problem, explaining why computational efficiency
improvements do not translate to accuracy gains in long-
term predictions.

(3) Cross-Domain Generalization Paradox [21]:
Deep learning models face a fundamental trade-off
between specialization (overfitting to source domain
characteristics) and generalization (underfitting to target
domain patterns). This paradox is particularly severe in
air quality prediction due to the heterogeneity of urban
pollution mechanisms. Models must simultaneously
learn: (a) universal temporal dynamics (diurnal cycles,
meteorological influences) that transfer across cities, and
(b) city-specific pollution signatures (emission source
structures, topographical effects) that require local
adaptation. Standard training procedures optimize for
average performance across the training distribution,
producing models that excel within their training
domain but fail to extrapolate to new environments.
The theoretical challenge lies in the absence of explicit
mechanisms to disentangle universal patterns from
domain-specific characteristics during representation
learning. Without such disentanglement, learned
features conflate transferable temporal dynamics with
non-transferable regional baselines, causing systematic
prediction biases when applied to new cities. This
explains why existing models trained on single-city
datasets exhibit limited cross-regional applicability
despite achieving high accuracy within their training
domains.

These theoretical insights reveal that improving
cross-regional  air  quality prediction  requires
architectural innovations that explicitly address
distribution shift (through adaptive normalization),
long-sequence modeling limitations (through alternative
attention mechanisms), and cross-domain generalization
(through disentangled representation learning).

Based on a comprehensive understanding of
the aforementioned challenges, this study proposes
TC-MixerInformer, a novel deep learning architecture
that combines advanced normalization techniques with
efficient attention mechanisms for robust cross-regional
PM, . prediction.

To ensure the practicality and reliability of the
model, this work conducts systematic cross-regional
validation using data from Shanghai (Jing’an) and
London (North Kensington), which represent different
pollution mechanisms, with a comprehensive evaluation
across multiple prediction horizons ranging from 1 h to
7 days. This comprehensive validation approach ensures
the robustness and applicability of the model under
different geographical and climatic conditions.

Specifically, the main innovations of this work lie
in two key technical contributions that directly address
the identified limitations. First, the integration of the
Reversible Instance Normalization (RevIN) mechanism
[20] specifically addresses the distribution shift
challenges that limit cross-regional model transferability.
RevIN performs instance-level normalization to
eliminate regional baseline differences and seasonal
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variations while preserving temporal dynamics through
mathematical reversibility, enabling the model to
maintain accuracy across different geographical regions
with varying pollution characteristics. Second, the
development of the Temporal-Channel Mixer (TCMixer)
module [22] revolutionizes temporal and feature
dependency modeling through a unified mixing strategy
that captures cross-dimensional interactions. This
innovation enhances multi-scale feature representation
and improves long-term prediction accuracy. The
integration of RevIN and TCMixer innovations produces
a model that maintains high prediction accuracy across
multiple time scales while demonstrating exceptional
cross-regional adaptability, providing a robust solution
for global air quality monitoring applications with
significant implications for environmental management
and public health protection.

Materials and Methods
Study Areas and Data Sources

This study utilizes air quality and meteorological
data from two representative urban monitoring
stations across different climate zones and pollution
characteristics (Fig. 1). The Shanghai Jing’an station
(31.23°N, 121.46°E) represents a typical subtropical
megacity environment with complex industrial-urban
mixed pollution sources. The London North Kensington

station (51.52°N, 0.21°W) serves as a temperate climate
reference with predominantly traffic-related emissions.

Research data include two parts: (1) Air Quality
Monitoring Data: Air quality data for the Jing’an
(Shanghai) monitoring station were sourced from
Wang Xiaolei’s research group and the National
Urban Air Quality Real-time Publishing Platform of
China’s Environmental Monitoring Center. Data for the
North Kensington (London) monitoring station were
obtained from the London Air Quality Network official
database (https://www.londonair.org.uk/). Monitored
parameters include particulate matter (PM, ;, PM, ) and
gaseous pollutants (SO,, NO,, O,, CO) concentrations,
with  hourly observations spanning 2020-2024.
(2) Meteorological Data: Meteorological observations
for London Heathrow Airport and Shanghai Honggiao
International ~ Airport were acquired through
the Meteostat open-source data platform (https:/
meteostat.net/), encompassing key parameters including
temperature, dew point temperature, relative humidity,
wind speed, and atmospheric pressure.

Data Preprocessing

This study employed a comprehensive multi-level
data quality control methodology to ensure the reliability
of subsequent analyses. The preprocessing workflow
began with data standardization, where a standard time
series spanning 2020-2024 was constructed, comprising
35,064 observations, with temporal alignment of air

Fig. 1. Study area locations. a) Overview map showing Jing’an (Shanghai, 31.23°N, 121.46°E) and North Kensington (London, 51.52°N,
0.21°W) monitoring stations. b) Shanghai Station urban context. ¢) London station urban context.
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Fig. 2. Air Quality Data Preprocessing Framework Diagram.

quality indicators (PMz,s’ PM,;, SO,, NO,, O,, CO)
and meteorological parameters. Outlier identification
and processing were subsequently conducted based on
established physical constraint ranges (e.g., temperature
-10°C to 45°C, relative humidity 0-100%) combined
with a time-grouped KNN algorithm [23]. Missing
value imputation was implemented through a 24 h
time-grouped KNN interpolation method, utilizing
distance-weighted 5-nearest-neighbor interpolation for
gap-filling [24]. The final step involved comprehensive
completeness verification to ensure data record integrity
(35,064 entries), indicator range reasonability, and
time series continuity. The preprocessing workflow
framework is shown in Fig. 2.

TC-MixerInformer Model Architecture

This research proposes an improved Informer model
for air quality prediction (TC-MixerInformer), which
builds upon the original Informer’s long-sequence
prediction capabilities by innovatively introducing the
Reversible Instance Normalization (RevIN) mechanism
and Time-Channel Mixer (TCMixer) module to enhance
the model’s adaptability to pollution characteristics
across different cities [25].

Informer Model Foundation

The Informer model is a deep learning model
specifically  designed for long-sequence  time
series prediction tasks, incorporating significant
improvements to the basic Transformer architecture.
Traditional Transformers face challenges of high
computational complexity, large memory consumption,
and low prediction efficiency when handling long-
sequence predictions. To address these challenges,
Informer introduces three key innovations. First,
the ProbSparse self-attention mechanism, which is
based on the observation that most attention scores in
traditional self-attention contribute minimally to the
output. By defining the concept of dominant queries

Inter polation
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Anomaly Integrity A High-quality
Filterin T Dt
- Validation e
k Value
KNN Range
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and selecting the Top-u queries for attention calculation,
it successfully reduces computational complexity from
O(L?) to O(LlogL). Second, the self-attention distillation
mechanism, which introduces convolutional layers
between encoder layers to distill features, progressively
reducing sequence length and filtering redundant
information while preserving important features,
effectively addressing memory efficiency issues. Third,
the design of a generative decoder, which simplifies the
traditional Transformer decoding process by adopting a
generative prediction strategy, improves the efficiency
of long-sequence prediction. These innovations enable
Informer to maintain high prediction accuracy while
reducing computational complexity and memory
consumption [13, 17]. The successful development of
Informer provides new ideas and methods for solving
long-sequence time series prediction problems, and its
efficient computational characteristics and excellent
prediction performance make it one of the important
models in this field, as shown in Fig. 3.

RevIN Mechanism

To address distribution shifts caused by seasonal
fluctuations and sudden events in time series data,
RevIN dynamically normalizes input features and
restores the original distribution during prediction
through reversibility [20].

1.  Normalization phase: At the input stage
of the model, RevIN normalizes the input feature
matrix XeRZ*P where B represents batch size, L
represents sequence length, and D represents feature
dimension (i.e., the number of pollutant indicators). The
normalization operation on X includes the following
steps:

(1) Calculate mean g, , and standard deviation o, ,
along the time dimension:

Mpa =7 k-1 Xpea Vb € [1,BLt € [1,L],d € [1,D],
(1
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1 2
Oy = \/;Z%ﬂ(xm ~tpq) +eVbE (1B te[1,L],d€[1,D]
@)

where u, €R” is the mean of feature d in batch b,
o, dERD is the standard deviation of feature d in batch b;
€>0 is a small positive value used to avoid division by
Zero.

(2) Normalize the data:

Xptd—Hb,d
Xnorm,btd = , Vb, t,d.

9. (3)

2. Denormalization phase: Use the mean and
standard deviation saved during the input phase to
restore the normalized results to the original distribution:

Ydenorm,btd = Ynorm,btd *Op,a + Upd, Vb, t,d. 4)

TCMixer Module Design and Principles

The TCMixer module employs a dual-branch
architecture to handle complex temporal and feature
interactions [26]:

Temporal Processing Branch:

Htemporal(X) =X+ MLPtemporal(XT)T- (5)

Channel Processing Branch:

MLPtemporai (X) = Wy Relu(W1X + by) + by, (6)

where W ERYimet, W ER"Uime, d = 1Lx2, b, b,
are corresponding bias terms.

Attention

I

‘---.---.---..-‘

Masked Multi-head
ProbSparse
Self-attention

Inputs:  Xfged ae={ Xiokens Xo}

Feature Fusion:

Hout = Hchannel (Htemporal(X))- (7)

Final output through linear transformation:
When there is no time encoding (X ):

mark

Y = Linear (Hoyt) = WinearHout + b ®)

When there is time encoding (X, ):

Y = Linear (Hout; Xmark) = Wiinear [Hout; Xmari] + b-(9)

The Mixer architecture is shown in the Fig. 4.

This architectural design enables the model to
simultaneously capture temporal dependencies and
interactions between pollutants, effectively improving
prediction performance. Particularly when handling
long-sequence prediction tasks, the model demonstrates
significant advantages, providing reliable technical
support for air quality prediction.

Model Evaluation and Experimental Design
Experimental Setup and Comparison Models

The experiments were implemented based on Python
3.8 and the PyTorch 1.8.0 framework. Model input
features include historical data of co-pollutants such as
PM,,, SO,, NO,, CO, O,, and meteorological elements,
including temperature, humidity, wind speed, and
wind direction, to capture the chemical transformation
relationships between pollutants and the influence
of meteorological conditions, thereby improving the

prediction accuracy for PM, ..
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The dataset was divided into training, validation, and 1on -

. . T MAE ==>:_.lyi — ¥il,
testing sets at a ratio of 7:1:2. An Adam optimizer with nzl‘llyl yil (14)
a learning rate of 0.001 was employed, and a dynamic o
batching strategy was designed based on prediction R2 = Zi::l(ii’)’
length: short-term prediction (<12 h) with a batch size i =92 (15)
of 1024, medium-term (<24 h) with 512, longer-term . R
(<72 h) with 128, and long-term (>72 h) with 64. MAPE = 2% yn u|
To ensure experimental reproducibility, each set of n Vi (16)

experiments was repeated 5 times, and the average
values were taken. The following typical models were
selected for comparison, as shown in Table 1:

The experiment employed a sliding window for data
sampling, with random shuffling only applied to the
training set while maintaining the temporal continuity
of the validation and test sets to ensure the authenticity
of the evaluation.

Model Evaluation Metrics

This research uses Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Coefficient of
Determination (R?), and Mean Absolute Percentage
Error (MAPE) as indicators for evaluating model
prediction performance.

RMSE = /Z?=1(yl'—37i)2’
n (13)

Table 1. Comparison Model Introduction.

Where y, represents the true values, y, represents the
predicted values, 7 represents the mean of all observed
values, and n represents the sample size. RMSE reflects
the overall level of prediction error, MAE represents the
average magnitude of prediction bias, R*? measures the
degree to which the model explains the variability in
the data, and MAPE provides a percentage measure of
relative error.

Results and discussion
Data Characteristics and Regional Comparison

The comparative analysis of PM, concentration
patterns  between the Shanghai (Jing’an) and
London (North Kensington) monitoring stations
reveals fundamental differences in wurban air
quality  characteristics ~ that  directly  inform

Model Name Description Parameter Settings

Informer Long sequence prediction model based on a sparse self- Number of attention heads = 8, Hidden layer
[17] attention mechanism dimension = 512

TSMixer MLP-based temporal feature mixing model Number of mixing la:yers =2, Hidden layer
[22] dimension =512

LightT$ Lightweight self-attention mechanism for time series N uml?er (ifattennon heads =4, Hidden layfir
[27] .. dimension = 256, Number of encoder layers = 2

prediction
Pyraformer Prediction model with pyramid attention mechanism Number of p }frarmd. layfrs =2, Attention

[28] dimension = 512
GRU Classic gated recurrent unit network as a classic RNN Hidden layer dimension = 512, Number of
[29] variant layers =2
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the TC-Mixerlnformer model development. These
regional variations provide the empirical foundation
for understanding the complexity of cross-regional air
quality prediction challenges.

Statistical Analysis of Data

Shanghai demonstrates significantly higher PM,
concentrations with a mean of 28.23 pg/m® (range:
2-378 pg/m®) compared to London’s mean of 8.08 pg/m?
(range: 0.19-121.56 pg/m?®) (Table 2, Table 3).
The coefficient of variation reveals substantial temporal
variability in both cities (Shanghai: 78.26%, London:
89.21%), indicating the inherent non-stationary nature of
urban air quality time series. Shanghai’s 95" percentile

concentration (72 pg/m?) exceeds WHO guidelines by
a factor of five, while London’s (21.98 pg/m?) approaches
the recommended threshold, reflecting the distinct
pollution regimes between developing and developed
urban environments.

The extreme concentration events present particular
modeling challenges. Shanghai experiences frequent
pollution episodes exceeding 100 pg/m® with maximum
values reaching 378 pg/m?, characteristics of complex
industrial-urban mixed pollution sources typical of
rapidly developing megacities. Conversely, London’s
pollution profile exhibits lower baseline concentrations
with occasional moderate peaks, primarily attributed
to traffic emissions and meteorological accumulation
effects. These contrasting patterns necessitate adaptive

Table 2. Statistical Characteristics of Air Quality and Meteorological Parameters at the Jing’an (Shanghai) Monitoring Station.

Mean Min Max 50% cv(%) 95th_percentile
PM, 28.23 2 378 22 78.26 72
CO 0.66 0.3 242 0.61 30.62 1.04
NO, 32.15 4 140 27 59.01 72
PM,, 43.71 1 554 36 72.11 100
0, 69.14 2 267 65 55.48 142
SO, 6.44 3 33 6 29.28 10
Temperature ¢ 18.63 -7 40 19 493 33
Dew point_c 12.55 -15 29.1 13 78.73 26
Relative_humidity percent 70.15 15 100 72 26.09 94
Wind speed kmh 13.8 1.8 75.6 14.4 48.11 252
Wind_direction 166.47 0 360 150 65.58 350
Pressure_hpa 1016.2 982 1044 1016 0.92 1031

Table 3. Statistical Characteristics of Air Quality and Meteorological Parameters at the North Kensington (London) Monitoring Station.

Mean Min Max 50% cv(%) 95th_percentile

PM, 8.08 0.19 121.56 59 89.21 21.98

CO 0.17 0.01 2.49 0.13 73.62 0.36

NO, 18.5 0.19 191.66 13.58 80.35 50.3

PM,, 13.17 0.4 160.45 10.8 71.27 31

0, 52.99 0.13 216.53 54.48 47.93 91.4

SO, 1.26 0.07 15.97 0.8 104.41 3.5
Temperature ¢ 12.23 -8.3 40.2 11.9 50.5 22.7
Dew point_c 7.62 -14.3 20.1 7.9 64.57 15.2

Relative humidity percent 75.86 14 100 80 21.76 96
Wind_speed_kmh 14.67 1.8 68.4 13 54.78 29.5
Wind_direction 193 10 360 210 48.51 330
Pressure_hpa 1015.17 955.7 1049.6 1016.1 1.11 1031.8
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modeling approaches capable of handling both high-
amplitude variations and subtle fluctuation patterns.

Data Correlation Analysis

Correlation analysis employs the Spearman rank
correlation coefficient [30], a non-parametric correlation
measure, to evaluate the degree of linear correlation
between different pollutants in Shanghai and London.

Correlation  analysis using Spearman rank
coefficients reveals distinct meteorological influences
on PM, . concentrations across regions (Fig. 35).
In Shanghai, PM, ; exhibits weak negative correlations
with temperature (r = -0.24), relative humidity (r =-0.15),
and wind speed (r = -0.14), consistent with photochemical
reaction dynamics and atmospheric dispersion
mechanisms in subtropical climates [31]. The strongest
positive correlation occurs with PM,  (r = 0.76), followed
by moderate positive correlations with CO (r = 0.57) and
NO, (r = 0.56), indicating significant contributions from
combustion processes and vehicular emissions.

London demonstrates a notably stronger PM, .-
PM,, correlation (r = 0.93), reflecting more uniform
particulate matter sources consistent with London’s
urban characteristics, where traffic-related emissions
constitute a dominant contribution to fine particulate
matter. The correlation with NO, (r = 0.48) remains
substantial but is lower than in Shanghai, attributable
to more stringent vehicular emission controls under
European standards and differences in fuel composition
[32]. Most notably, the relationship with wind speed
(r = -0.40) is significantly stronger than in Shanghai,
which aligns with the pronounced influence of Atlantic
weather systems and the dynamic westerly wind patterns
characteristic of temperate maritime climates.

These region-specific correlation patterns provide
empirical foundations for the TC-MixerInformer’s

Shanghai Spearman Correlation Matrix
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Fig. 5. Multivariate correlation analysis for Shanghai and London.

relative_humidity_percent -

adaptive  feature interaction mechanisms. The
differential correlation strengths directly informed the
design of temporal-channel mixing strategies, enabling
the model to apply region-appropriate weightings to
meteorological and chemical features.

These contrasting pollution signatures provide
crucial guidance for TC-MixerInformer architecture
design, particularly in feature interaction modeling
and temporal processing strategies, enabling enhanced
adaptability to diverse urban pollution scenarios.

Model Performance Evaluation
Multi-City Prediction Performance Evaluation

Experimental results presented in Table 4 and Table 5
demonstrate that TC-MixerInformer exhibits significant
predictive advantages across both urban environments.
At the Shanghai Jing’an station, the model maintains
exceptional stability from short-term (1-12 h) to long-
term predictions (24-168 h). In 168 h predictions, TC-
MixerInformer achieves RMSE = 8.000 compared to
Informer’s 17.492, representing a 54% improvement.
At the London North Kensington station, performance
remains robust across all horizons (1 h RMSE = 1.938 to
168 h RMSE = 2.600), substantially outperforming GRU
(1 h RMSE = 2.424 to 168 h RMSE = 5.871).

The superior performance stems from three
architectural innovations addressing fundamental
modeling challenges. First, the dual-branch TCMixer
architecture  simultaneously = processes  temporal
dependencies  (token-mixing) and inter-variable
relationships (channel-mixing) [33], whereas recurrent
models like GRU sequentially process only temporal
patterns. This architectural difference explains GRU’s
severe degradation in long-term Shanghai predictions
(168 h RMSE = 23762 vs. 8.000), as recurrent

London Spearman Correlation Matrix
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Table 4. Jing’an Shanghai Model Prediction Performance comparison.

Model TS-MixerInformer Informer LightTS TSMixer Pyraformer GRU
errd;tciger? RMSE | MAE RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE MAE
lh 6.074 2.856 8.359 4.095 | 10.623 | 6.191 | 9.225 | 5.753 | 7.923 | 3.535| 7.488 4.093
6h 6.391 3.045 7.882 3.828 | 8.012 | 4588 | 11.460 | 7.293 | 8.728 | 3.985 | 13.987 8.560
12h 6.387 3.130 8.757 4.553 | 9.979 | 5.954 | 14.651 | 9.716 | 9.275 | 4.548 | 16.653 10.455
24h 6.836 3.231 8.217 4.130 | 7.832 | 4446 | 11.837 | 7.686 | 10.614 | 5.485 | 22.042 14.550
48 h 8.545 5.012 9.387 5987 | 9.691 | 5.618 | 12.660 | 8.239 | 10.199 | 5.856 | 23.509 15.518
72h 7.184 4.264 12.804 | 7.986 | 8.365 | 4.829 | 11.558 | 7.777 | 10.508 | 5.607 | 24.100 15.993
168 h 8.000 4.822 17.492 | 10.394 | 11.255 | 7.324 | 12.395 | 8.224 | 10.788 | 5.974 | 23.762 15.830
Table 5. North Kensington (London) Model Prediction Performance comparison.
Model TS-MixerInformer Informer LightTS TSMixer Pyraformer GRU
lzirfrd;gz? RMSE MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE
1h 1.938 1.149 2275 1.438 3.432 | 2304 | 2.848 | 1.935 | 2.061 1.306 | 2.424 | 1.597
6h 1.989 1.209 2.169 1.387 2367 | 1.541 | 3.416 | 2.374 | 2.217 1.441 4.143 | 2.858
12h 1.993 1.208 2.271 1.493 3.047 | 2.093 | 4.134 | 3.073 | 2.456 1.673 | 4.691 | 3.279
24h 2.150 1.320 2.517 1.736 2515 | 1.614 | 3.418 | 2.351 | 2.717 1.885 | 5.406 | 4.002
48 h 2.329 1.485 4.132 3.092 2,648 | 1.740 | 3.611 | 2.413 | 3.111 2.081 5.614 | 4.191
72h 2.358 1.538 2.793 1.935 2430 | 1.596 | 3.667 | 2.508 | 2.952 1.956 | 5.718 | 4.304
168 h 2.600 1.799 5.567 3.499 3.514 | 2415 | 4272 | 3.066 | 3.521 2350 | 5.871 | 4.505

Note: The best experimental results are highlighted in bold.

connections suffer gradient vanishing beyond 24-48 h,
preventing effective capture of weekly pollution cycles.
Second, RevIN’s dynamic instance-level normalization
adapts to distribution shifts through reversible
transformations that preserve temporal dynamics while
eliminating regional baseline differences. In contrast,
LightTS employs static normalization optimized
for training distributions, causing systematic errors
when test conditions diverge. This manifests in
London’s stable environment, where LightTS achieves
comparable 168 h performance (RMSE = 3.514 vs.
2.600), but deteriorates significantly in Shanghai’s
high-variability conditions (RMSE = 11.255 vs. 8.000)
— a 40.7% performance gap demonstrating inability to
handle non-stationary distributions. Third, ProbSparse
attention identifies critical pollution events through
selective focus on dominant queries, achieving a 27.3%
improvement over standard Informer in Shanghai.
Fixed-weight approaches in TSMixer and Pyraformer
distribute attention uniformly across all time steps,
failing to prioritize extreme concentration periods and
resulting in systematic underestimation during rapid
pollution transitions, as evidenced by their 168 h RMSE

values (12.395 and 10.788, respectively) exceeding
TC-MixerInformer by 55% and 35%.

Comparative Analysis of Short-term and Long-term
Prediction Performance Under Urban Differences

The scatter plot analysis (Fig. 6 and Fig. 7) provides
an intuitive visualization of prediction accuracy
characteristics across different models through the
distribution relationship between predicted and actual
values. TC-MixerInformer demonstrates optimal linear
fitting performance in both 1 h and 168 h predictions,
with prediction points tightly clustered around the
ideal diagonal line. For the Shanghai Jing’an station,
the 1 h prediction achieves an R? of 0.940, maintaining
excellent consistency even in high concentration regions
(>100 pg/m?3); for the London North Kensington station,
it exhibits the tightest linear relationship (R* = 0.885)
with the most uniform distribution of prediction points.

In contrast, other models exhibit significant
prediction deviations. The Informer model already
shows noticeable bias in high concentration regions
during short-term predictions, with performance further
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deteriorating in 168 h forecasts where scatter points
deviate markedly from the diagonal line. The GRU
model demonstrates substantial errors across the entire
concentration range, with long-term prediction scatter
points exhibiting a “fan-shaped” distribution, indicating
that prediction uncertainty increases dramatically with
concentration levels.

The point density distribution in the scatter plots
further confirms TC-MixerInformer’s superiority in
prediction consistency. Near the ideal diagonal line,
TC-MixerInformer displays the highest point density
concentration, while other models show relatively
dispersed scatter distributions, particularly exhibiting

greater prediction variability in extreme value regions.

Time Series Prediction Visualization:
Comparison of Multi-model Short-term and
Long-term Prediction Performance

The time series comparisons further validate the
model stability (Fig. 8 and Fig. 9). Shanghai data
exhibits extensive concentration variability (0-350+
ug/m?®), presenting significant forecasting challenges
(Fig. 8). TC-MixerInformer demonstrates exceptional
trend-tracking capability in both short-term and
long-term predictions, with prediction curves highly
consistent with actual measurements, maintaining good
alignment even during sudden pollution peak periods.
In contrast, Informer shows obvious deviations in high-
concentration intervals, with particularly significant
performance degradation in long-term predictions.
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Fig. 6. Comparison of scatter plots of different models at the Jing’an (Shanghai) and North Kensington (London) stations (1 h prediction).
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Shanghai & London - Configuration: pl168
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Fig. 7. Comparison of scatter plots of different models at the Jing’an (Shanghai) and North Kensington (London) stations (168 h

prediction).

While the GRU model can track basic trends, it still
exhibits certain gaps in prediction accuracy.

London data presents a contrasting profile, with
lower concentrations (0-20+ pg/m?®) characterized by
frequent minor fluctuations (Fig. 9). TC-MixerInformer
demonstrates superior adaptability in both short-term
and long-term predictions, with prediction curves
capable of precisely tracking subtle measurement
variations while maintaining good forecasting
stability.

Alternative models exhibit obvious limitations:
Informer shows over-prediction at several time points,
with this deviation further amplified in long-term
predictions; TSMixer and Pyraformer display temporal
inconsistencies in responding to minor fluctuations; the

GRU model shows reduced sensitivity to small-scale
changes, with prediction curves being overly smooth.

Comprehensive Analysis of Cross-Regional
Adaptability and Generalization Capability

(I) Temporal Scale Adaptability Characteristics

TC-MixerInformer demonstrates significant
adaptability characteristics across different prediction
time horizons (as shown in Table 4 and Table 5). The
model exhibits exceptional stability in short-term
predictions (1-12 h), with performance degradation
of only 5.2% and 2.8% in Shanghai and London,
respectively, while medium-to-long-term predictions
(24-168 h) show more pronounced performance
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Fig. 8. Time series comparison of different models at the Shanghai and London stations for 1 h prediction.

decline, with RMSE increases reaching 17.0% and
20.9%, respectively [34]. Detailed analysis reveals that
performance degradation follows a progressive pattern:
short-term internal decay (1 h—12 h) remains at the
lowest levels of 5.2% in Shanghai and 2.8% in London;
medium-term decay (12 h—24 h) increases to 7.0% and
7.9%; long-term decay (24 h—168 h) reaches 17.0%
and 20.9%. The data indicate that the model maintains
relatively stable performance in the 12-24 h range, which
is closely related to the diurnal cycle characteristics of
urban pollution.

Performance degradation stems from three
interrelated fundamental factors. First, nonlinear
cumulative error effects cause slight prediction

errors to gradually amplify into systematic biases
in long-term predictions. Short-term predictions
are primarily controlled by local meteorological
conditions and near-source emissions, making pollutant
concentration changes relatively predictable, while
long-term predictions need to consider complex
processes, including regional transport and chemical
transformation, whose nonlinear characteristics and
randomness increase prediction difficulty [35]. Second,
the complexity of large-scale meteorological systems
exceeds the model’s expressive capacity, as long-

term predictions need to handle complex atmospheric
processes, including frontal passages and air mass
transitions. Additionally, dynamic changes in emission
source patterns pose challenges for long-term modeling,
including  weekday-weekend  emission  patterns
and seasonal variations, which are difficult to fully
capture.

TC-MixerInformer’s hierarchical architecture design
enables it to adopt differentiated processing strategies
across different time scales. In short-term predictions,
the model primarily utilizes the token-mixing branch
of TCMixer to capture local temporal dependencies
within sequences, while the RevIN mechanism ensures
statistical stability of input features. As the prediction
window extends, the model gradually shifts to
relying on the channel-mixing branch to handle long-
term interaction patterns among multiple variables.
However, limited by the expressive capacity of linear
transformations, the model still faces difficulties in
fully characterizing complex nonlinear long-term
dependencies. In contrast, the baseline Informer model
exhibits more severe performance degradation in long-
term predictions, demonstrating the critical role of the
RevIN and TCMixer modules in maintaining long-term
prediction stability.
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Shanghai & London Time Series Comparison - Configuration: pl168
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Fig. 9. Time series comparison of different models at the Shanghai and London stations for 168 h prediction.

(2) Cross-Regional Performance Mechanisms and
Adaptation Challenges

Through comprehensive comparative analysis of
the TC-MixerInformer performance in Shanghai and
London, we systematically examined the model’s
cross-regional adaptability characteristics. Although
Shanghai’s 1 h prediction RMSE of 6.074 significantly
exceeded London’s 1.938 (approximately 3-fold
difference), R* coefficient analysis revealed that
TC-MixerInformer maintained exceptional trend-
tracking capability in Shanghai’s complex pollution
environment (1 h prediction R? = 0.940 vs. Informer’s
0.885; 168 h prediction R? = 0.894 vs. Informer’s
0.491), demonstrating the model’s strong adaptability to
complex nonlinear pollution systems, as illustrated in
Fig. 6 and Fig. 7 [36].

Despite higher absolute errors, TC-MixerInformer
exhibited superior relative performance and model-
environment synergy in Shanghai, revealing amplified
architectural advantages under complex environmental
conditions.  Performance  enhancement  analysis
demonstrated that the model’s architectural innovations
produced more significant improvements in Shanghai’s
challenging environment: 1 h prediction RMSE
decreased by 27.3% (from 8.359 to 6.074), while London

showed only a 14.8% reduction (from 2.275 to 1.938).
This differential improvement pattern indicates that TC-
MixerInformer’s complex architecture identifies greater
optimization potential in high-complexity environments,
where traditional models encounter greater difficulties,
thereby amplifying the relative advantages of advanced
feature learning mechanisms.

Root cause analysis revealed three interconnected
factors driving regional performance differences.
Fundamental differences in pollutant concentration
distribution characteristics constitute the primary
challenge. Shanghai’s PM, . concentration ranged from
2-378 pg/m?* (mean 28.23 pg/m?®), characterized by high
concentrations, large variations, and frequent extreme
events, while London’s concentration ranged from
0-121.56 pg/m* (mean 8.08 pg/m?), displaying relatively
moderate and stable variations as detailed in Table 2 and
Table 3. Correlation analysis shows that Shanghai’s PM,
exhibits moderate positive correlations with multiple
pollutants (PM,: r = 0.76, CO: r = 0.57, NO,: r = 0.56),
reflecting complex multi-source interactions, while
London demonstrates a dominant PM, .-PM | correlation
(r = 0.93), indicating more uniform emission patterns.
Shanghai’s nearly 200-fold extreme concentration
range and frequent pollution events exceeding 100 pg/
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m? created optimal conditions for TC-MixerInformer’s
dual-branch architecture in nonlinear pattern recognition
and extreme value prediction, while London’s limited
concentration range provided restricted opportunities
for the model’s complex architecture to demonstrate its
full predictive capabilities.

Meteorological condition complexity constitutes the
second critical factor. Shanghai’s subtropical monsoon
climate, influenced by multiple weather systems,
exhibits significantly higher variability in meteorological
variables compared to London’s temperate oceanic
climate, substantially increasing model learning
complexity. Due to complex urban topography, Shanghai
exhibits weaker wind speed effects (r = -0.14), while
London demonstrates stronger atmospheric dispersion
relationships (r = -0.40), as shown in Fig. 5. Emission
source structural differences constitute the third critical
challenge. Shanghai, as an industrial port city, features
diversified pollution sources (industrial emissions,
vehicle exhaust, ship emissions, construction dust)
with significant spatiotemporal variations in source
contributions, providing rich multi-source interaction
learning opportunities for the model’s channel
mixing branch, while London, following extensive
environmental management, exhibits relatively singular
and well-controlled traffic-dominated emission sources
with stable emission patterns [37].

Based on these findings, the complexity-adaptability
matching principle emerges as a key insight: TC-
MixerInformer’s architectural design is inherently more
suitable for high-complexity, multi-variable interactive
time series prediction tasks. In Shanghai’s complex
industrial-urban mixed pollution environment, the
model fully leverages its design advantages through
dual-branch mixing mechanisms for handling complex
variation patterns across multiple temporal scales, RevIN
dynamic normalization for processing high-variability
distribution characteristics, and attention mechanisms
for capturing long-range dependencies. Conversely, in
London’s relatively simple traffic-dominated pollution
environment, the complex architecture’s advantages
cannot be fully realized, potentially leading to relative
“over-engineering” phenomena.

Cross-regional  application  validation  further
confirmed TC-MixerInformer’s remarkable
environmental adaptability. In London’s relatively simple
traffic-dominated pollution environment, the model
achieved stable high-precision predictions through
effective capture of regular temporal patterns and
dominant variable relationships. In Shanghai’s complex
industrial-urban mixed pollution source environment,
despite higher absolute errors, the model successfully
captured pollution peaks approaching 350+ pg/m?
while maintaining excellent trend-tracking capability
in complex nonlinear relationships, showing more
significant relative improvements compared to baseline
models. Particularly noteworthy is that the model
demonstrated stronger relative improvement advantages
in Shanghai’s more challenging environment, validating

TC-MixerInformer as an adaptive framework capable
of automatically adjusting feature learning strategies
according to environmental complexity, providing
reliable technical solutions for air quality prediction in
diverse urban environments.

Several additional factors contribute to the observed
performance disparities. First, regional transport
contributions differ substantially: Shanghai’s PM,
is significantly influenced by long-range transport
from the Yangtze River Delta [38], resulting in higher
background concentrations, whereas London’s pollution
is more locally dominated. Second, pollution episode
characteristics vary: Shanghai experiences more
frequent extreme events (>150 pg/m®) with longer
persistence (multi-day episodes), creating highly
nonlinear dynamics that challenge prediction, while
London’s events are typically shorter and less extreme
[39]. Third, the 2013-2023 period encompasses different
policy trajectories: Shanghai underwent rapid emission
control changes, introducing stronger non-stationarity,
whereas London experienced gradual improvements
[40]. These factors collectively increase Shanghai’s
prediction complexity, explaining higher absolute errors
despite robust relative performance improvements.

Technical Discussion: Model Mechanisms,
Limitations, and Future Improvements

RevIN Mechanism and Its Operational Principles

The introduction of the Reversible Instance
Normalization (RevIN) mechanism effectively addresses
the non-stationarity issues inherent in air quality time
series data. By dynamically preserving and restoring
distributional characteristics of the data, RevIN enables
the model to better handle distributional variations
across different time periods and abrupt pollution
events. This mechanism demonstrates excellent
adaptability when processing the distinctly different
pollution patterns observed in Shanghai and London,
providing crucial support for the model’s cross-regional
generalization capabilities.

Innovation Value of the TCMixer Module

The Time-Channel Mixer module achieves effective
modeling of complex temporal dependencies and feature
interactions through its dual-branch architecture. The
temporal mixing branch focuses on extracting variation
patterns across different temporal scales ranging from
hourly to multi-day intervals, while the channel mixing
branch models the interrelationships between PM, , and
other pollutants as well as meteorological variables.
This parallel processing mechanism allows the model to
simultaneously consider temporal evolution patterns and
multivariate interaction effects, thereby demonstrating
excellent adaptability when handling two cities with
distinct pollution characteristics — Shanghai and
London.
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Model Limitations and Challenge Analysis

Despite TC-MixerInformer’s excellent performance
in air quality prediction, it still faces several important
limitations when handling complex environmental
conditions.

Root Cause Analysis of Sudden Event
Prediction Limitations

The model’s limited capability in predicting
sudden pollution events stems from three fundamental
architectural constraints that are well-documented in
time series forecasting literature.

First, training data distribution imbalance creates
systematic bias toward common pollution patterns.
As shown in Table 2, Shanghai’s PM, ; concentrations
exhibit extreme variability (range: 2-378 pg/m?
CV = 78.26%), with the 95" percentile (72 pg/m?)
representing only a small fraction of observations.
This severe class imbalance causes the model to optimize
primarily for frequent moderate pollution patterns
rather than rare extreme events. The loss function’s
equal weighting across all samples means that extreme
pollution episodes, despite their critical importance for
public health warnings, contribute minimally to the total
training loss due to their low frequency [39].

Second, the absence of external trigger information
fundamentally limits the model’s ability to anticipate
sudden events. The current input features comprise
only historical pollution concentrations and routine
meteorological parameters (temperature, humidity, wind
speed, pressure), lacking critical indicators of sudden
pollution triggers. Research has demonstrated that
extreme pollution events are often triggered by factors
outside the scope of conventional monitoring data,
including industrial accidents, biomass burning, dust
storms, and regional transport from upstream sources.
Without access to such trigger signals, the model can
only react to concentration increases after they manifest
in monitoring data, resulting in delayed predictions.

Third, temporal context window limitations
constrain the model’s ability to capture precursor signals
of extreme events. While the current 168 h input window
captures weekly cycles and short-term meteorological
patterns, it may be insufficient for detecting synoptic-
scale atmospheric circulation changes that precede major
pollution episodes. Studies have shown that extreme
pollution events are often preceded by identifiable
atmospheric circulation pattern shifts several days in
advance, including weakening of cold front intensity,
establishment of stable atmospheric stratification, and
reduction in boundary layer height.

The model primarily relies on historical data
patterns, which limits its predictive capability for
sudden pollution events such as industrial accidents or
dust storms. For extreme pollution events, including
industrial accidents, dust storms, and forest fires, the
model’s reliance on historical pattern learning makes it

difficult to predict anomalies that exceed the distribution
range of training data. Experimental data show that
Shanghai’s  PM, | concentrations can reach extreme
levels of 378 pg/m?, and when facing such sudden high-
concentration pollution, the model’s prediction accuracy
faces challenges. This limitation stems from the model’s
dependence on historical data patterns, while historical
data itself lacks sufficient representation of rare extreme
events [41].

Mechanistic Analysis of Data Quality Dependence

The model’s sensitivity to input data quality
manifests through three distinct propagation pathways
documented in environmental monitoring literature.

Systematic sensor bias introduces persistent
directional errors that accumulate across prediction
horizons. Research on air quality monitoring equipment
has shown that PM,  sensors typically exhibit calibration
drift over time, with bias magnitude often correlating
with local pollution levels. When such biased data
enters the model’s training process, the RevIN
normalization —mechanism, designed to handle
distribution shifts, may inadvertently learn and
perpetuate these systematic errors. The reversible
nature of RevIN means that any systematic bias in the
normalized space will be faithfully restored during
denormalization, potentially amplifying prediction
errors in long-term forecasts.

Missing meteorological variables create critical
information gaps that force the model to rely on
incomplete feature representations. As demonstrated
in Fig. 5, different meteorological variables exhibit
varying correlations with PM, ; across regions: wind
speed shows a weak correlation in Shanghai (r = -0.14)
but a stronger correlation in London (r = -0.40), while
humidity and temperature effects differ substantially
between subtropical and temperate climates. When
key meteorological drivers are missing, the TCMixer
module’s channel-mixing branch cannot properly
model the multivariate interactions that govern
pollution dynamics, leading to degraded prediction
accuracy.

Temporal data gaps disrupt the model’s ability to
track pollution evolution continuity. The TCMixer
module’s temporal-mixing branch relies on continuous
temporal patterns to extract meaningful features across
different time scales. When data gaps are filled using
simple interpolation methods (as described in “Data
Preprocessing” Section), the interpolated values lack
the natural variability and correlation structures present
in actual measurements. This artificial smoothness can
mislead the temporal pattern recognition mechanisms,
particularly for the self-attention components in the
Informer encoder that depend on authentic temporal
dependencies.

The model’s performance exhibits high dependence
on input data quality, constituting vulnerability in actual
deployment. Missing key meteorological variables affect
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prediction accuracy, and calibration deviations or sensor
failures in pollution monitoring equipment may lead
to systematic biases in model outputs, with cumulative
effects propagating throughout the entire prediction
time range [42]. Additionally, the dual-branch structure
of the TCMixer module requires more computational
resources compared to traditional single architectures,
increasing the system’s computational burden and
memory requirements to some extent.

Computational Resource Requirements Analysis

The computational demands of TC-MixerInformer
stem from its dual-branch TCMixer architecture and
the integration of multiple advanced components. As
described in “TC-MixerInformer Model Architecture”
Section, the model combines the Informer’s ProbSparse
self-attention mechanism with the TCMixer’s parallel
temporal and channel mixing branches, plus the RevIN
normalization layers.

Architectural complexity arises from several sources.
The dual-branch structure of TCMixer processes
both temporal dependencies (through token-mixing
operations) and feature interactions (through channel-
mixing operations) in parallel, effectively doubling
the computational load compared to single-branch
architectures. The temporal-mixing branch performs
linear transformations across the time dimension with
complexity O(Lxd, ), while the channel-mixing branch
operates across the feature dimension with complexity
o(Lxd,, ), where d_time and d_channel are typically
set to 2xL and 2xD respectively as per the TSMixer
design [22].

Memory requirements increase due to the need
to maintain intermediate activations for both mixing
branches throughout the forward pass, as well as storing
gradients for both branches during backpropagation. The
Informer encoder’s multi-head attention mechanism,
despite using ProbSparse attention to reduce complexity
from O(L?) to O (L log L) still requires substantial
memory for attention score matrices, particularly when
processing long sequences (168 h in our implementation)
[17].

Inference latency considerations become critical
for real-time prediction applications. While the model
achieves superior accuracy, the sequential nature of
the encoder-decoder architecture and the dual-branch
processing in TCMixer introduce computational
overhead compared to simpler recurrent architectures
like GRU. This trade-off between accuracy and
computational efficiency is well-documented in deep
learning literature and represents a fundamental
challenge in deploying sophisticated models for
operational air quality forecasting systems [34, 42].

The model’s cross-regional transferability faces
additional challenges, with uncertain effectiveness when
directly applied to untrained cities. From experimental
results, Shanghai and London show significant
differences in PM,, concentration characteristics

(Shanghai: 2-378 pg/m? mean 28.23 pg/m3; London:
0-121.56 pg/m®, mean 8.08 pg/m®). Differences
in climate types, emission source structures, and
monitoring networks among different cities all affect
model applicability, requiring careful consideration of
domain adaptation strategies. The current framework
assumes relatively stable emission source characteristics
and meteorological patterns, which may not adequately
consider the impacts of rapid urban development or
climate change, factors that could alter fundamental
pollution dynamics over time.

Comprehensive Improvement Framework
and Future Prospects

Based on the detailed root cause analysis of model
limitations, we propose a systematic improvement
framework comprising multiple interconnected technical
strategies, each grounded in established methodologies
from recent literature.

To address the challenge of sudden pollution
event prediction, we propose a multi-component
enhancement framework based on established deep
learning techniques. Concentration-aware weighted loss
functions can be implemented to assign higher weights
to extreme pollution events, following approaches
successfully applied in imbalanced time series
prediction [41]. The weighted loss can be formulated
as Lwel.ghte = 2 w(,) - L(Y, y), where w(y) increases
exponentially with concentration levels to emphasize
rare extreme events. This approach has been shown
to improve model sensitivity to minority classes
without sacrificing overall performance. Additionally,
expanding the input feature space to incorporate sudden
event precursor signals through multi-source data fusion
would be valuable. Research has demonstrated the
benefits of integrating external trigger information such
as satellite observations, industrial activity monitoring,
meteorological warnings, and traffic flow data, which
can provide early signals of pollution events [31, 35].
Technical implementation would employ heterogeneous
feature encoders that process diverse data types before
fusion with the main architecture, following successful
multi-modal fusion approaches in environmental
prediction. Furthermore, addressing temporal receptive
field limitations through hierarchical architectures that
process both long-range context (capturing synoptic-
scale patterns) and high-resolution recent dynamics
would enable the model to detect atmospheric circulation
changes that precede extreme pollution events by several
days, inspired by multi-scale temporal modeling in
weather forecasting [36].

To mitigate sensitivity to input data quality issues,
several robustness enhancement strategies can be
implemented. Meta-learning-based calibration correction
approaches that learn to detect and compensate
for systematic sensor biases using historical calibration
data would involve training auxiliary networks to
predict and correct measurement biases based on sensor
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metadata and historical performance patterns. Replacing
deterministic interpolation with probabilistic approaches
(e.g., Gaussian Process regression) that preserve natural
variability and uncertainty would improve missing
data handling, particularly when combined with hybrid
approaches that integrate spatial interpolation from
nearby stations with temporal modeling for longer data
gaps. Augmenting training with adversarial examples
that simulate realistic data quality issues would force the
model to learn robust features invariant to small input
perturbations, a technique that has proven effective in
improving model robustness across various domains.

Computational resource requirements can be
addressed through established model compression
techniques. Implementing  city-specific ~ model
configurations that allocate computational resources
proportionally to environmental complexity would
allow cities with simpler pollution patterns (like
London) to achieve adequate performance with reduced
model capacity, while complex environments (like
Shanghai) benefit from full architectural sophistication.
Training lightweight student models that mimic full
model predictions through knowledge distillation while
requiring fewer computational resources has been
successfully applied in deploying complex models for
real-time applications [43].

Cross-regional adaptability can be enhanced through
domain adaptation techniques. Integrating static city
characteristics (climate type, emission source profiles,
geographical features) as auxiliary inputs helps the model
adapt to different urban contexts [18]. Implementing
differentiated normalization strategies based on city
pollution characteristics — where high-variability cities
benefit from segmented normalization approaches
while low-variability cities perform better with global
normalization — would improve adaptation. Dividing
model parameters into general layers (processing
universal time series patterns) and city-specific layers
(capturing local pollution characteristics) enables rapid
adaptation to new cities by freezing general parameters
and fine-tuning only city-specific layers with limited
local data. Employing multi-task learning approaches
that treat predictions for different cities as related tasks
enables the model to learn shared representations while
maintaining city-specific adaptations.

Beyond these immediate improvements, several
promising research directions emerge for advancing
urban air quality prediction capabilities. Incorporating
satellite observations and real-time emission inventory
data would enhance responsiveness to sudden
environmental changes. Developing probabilistic
prediction frameworks that provide reliable confidence
intervals is crucial for risk-based decision-making in
air quality management. Researching online learning
systems that continuously update model parameters
as new data become available would enable the model
to adapt to evolving urban characteristics and climate
patterns. Implementing attention visualization and
feature importance analysis techniques would provide

interpretable insights into model predictions, facilitating
trust and adoption by environmental management
agencies. These systematic improvements, grounded
in established methodologies and recent advances in
deep learning for environmental applications, will
significantly enhance TC-MixerInformer’s robustness,
efficiency, and cross-regional adaptability to meet
diverse urban air quality prediction needs globally.

Having established the technical capabilities and
limitations of TC-MixerInformer, we now examine how
these advancements translate into practical applications
for urban environmental governance and public health
protection.

Practical Implications for Environmental
Management and Public Health

The TC-MixerInformer model’s technical capabilities
translate into three critical practical applications for
urban environmental governance and public health
protection, validated through the Shanghai and London
case studies.

Early Warning Systems for Pollution Episodes

The model’s 24-168 h prediction horizon
with maintained accuracy (Shanghai 168 h: RMSE
= 8.000 pg/m? R? = 0.894) enables authorities to issue
pollution alerts 1-7 days in advance, providing sufficient
lead time for implementing mitigation measures.
For Shanghai’s extreme pollution events approaching
350+ pg/m? (as captured in Fig. 8 and 9), 48-72 h advance
warnings allow implementation of emergency response
protocols, including temporary traffic restrictions,
industrial emission controls, and construction activity
suspensions. In London’s context, the model’s sensitivity
to moderate pollution peaks (20-40 pg/m?®) supports
preemptive public health advisories for vulnerable
populations  (children, elderly, individuals with
respiratory conditions). The cross-regional validation
demonstrates that a single model framework can serve
cities with fundamentally different pollution regimes,
reducing the need for city-specific model development
[44].

Quantitative Health Impact Assessment

Accurate extreme pollution prediction directly
supports quantitative health risk assessment and
intervention planning. Shanghai’s frequent episodes
exceeding 100 pg/m* (95" percentile: 72 pg/m?
Table 2) are associated with acute respiratory health
impacts. The model’s capability to predict these
episodes 24-48 h in advance enables targeted
interventions: (1) proactive distribution of protective
masks to vulnerable populations in affected districts;
(2) rescheduling of outdoor activities in schools and
elderly care facilities; (3) pre-positioning of medical
resources in hospitals, anticipating increased respiratory
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emergency visits. For London, where concentrations
remain generally lower (mean 8.08 pg/m’) but
occasionally exceed WHO guidelines (95" percentile:
21.98 pg/m?, Table 3), the model’s 168 h predictions
support weekly air quality planning for outdoor
events and urban green space management. While
direct health outcome validation requires longitudinal
epidemiological studies beyond this work’s scope,
the demonstrated prediction accuracy provides the
technical foundation for integrating air quality forecasts
into public health early warning systems, potentially
reducing pollution-related health burdens through timely
preventive actions [45].

Baseline Establishment for Policy Impact Assessment

The model’s accurate representation of baseline
pollution dynamics (evidenced by consistently high
R? wvalues across 24-168 h horizons in both cities,
Figs 6 and 7) provides a critical foundation for
evaluating emission control policy effectiveness [46].
By establishing expected concentration trajectories
under business-as-usual conditions, the model enables
post-implementation assessment of policy interventions
through comparison of observed versus predicted
concentrations. For example, if Shanghai implements
emergency traffic restrictions or industrial emission
controls during a predicted pollution episode, deviations
between actual measurements and model forecasts can
quantify the intervention’s immediate effectiveness.
The model’s 24-168 h prediction window aligns with
policy evaluation timescales, allowing assessment of
both short-term emergency responses (24-48 h traffic
restrictions) and sustained impacts of regulatory
measures (weekly industrial emission adjustments).
The cross-regional validation framework established
in this study — Shanghai representing developing
megacities with high pollution variability and London
representing developed urban areas with lower baseline
concentrations — demonstrates that consistent baseline
modeling across different urban contexts is achievable
[47]. This consistency enables comparative policy
analysis, allowing cities to evaluate the transferability
of emission control strategies across different pollution
regimes and urban development stages. Furthermore,
the model’s ability to maintain accuracy across extreme
events and moderate fluctuations ensures that policy
impact assessments remain reliable across the full
spectrum of pollution conditions encountered in real-
world urban environments.

Conclusions

This  study  successfully  developed  TC-
MixerInformer, a novel deep learning framework
that addresses key challenges in cross-regional urban
air quality prediction. The integration of Reversible
Instance Normalization (RevIN) with Temporal-

Channel Mixer (TCMixer) enables superior adaptability
to diverse pollution characteristics across Shanghai and
London monitoring stations. Key achievements include:
(1) Consistent performance improvements with 8-54%
error reductions compared to baseline models across
all prediction horizons; (2) Effective handling of both
Shanghai’s high-concentration pollution events (up to
350+ pg/m®) and London’s lower-concentration patterns
(mean 8.08 pg/m?); (3) Maintained stability from short-
term (1-12 h) to long-term (24-168 h) predictions;
(4)  Demonstrated  cross-regional  generalization
capabilities across different urban pollution regimes.

The proposed architecture provides a practical
solution for environmental monitoring systems requiring
both temporal stability and geographical adaptability,
supporting more effective public health protection
strategies in smart city frameworks.
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