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Abstract

Urban air quality prediction faces dual challenges: complex pollution processes and cross-regional 
diversity. Traditional methods and deep learning techniques often struggle with non-stationary time 
series data and fail to adapt to unique urban pollution patterns. Additionally, existing models face 
computational limitations when processing long sequences. Although the Informer model improves 
computational efficiency through ProbSparse self-attention mechanisms, its accuracy decreases with 
longer prediction horizons. This limitation stems from inadequate adaptability to non-stationary 
environmental changes and insufficient capture of temporal variations inherent in urban air quality 
data. Meanwhile, cities in developed and developing countries exhibit fundamentally different pollution 
mechanisms, challenging models’ cross-regional generalization capabilities. To tackle these two 
challenges, this study proposes TC-MixerInformer, combining Reversible Instance Normalization 
(RevIN) with a Temporal-Channel Mixer (TCMixer) module. Validation using Shanghai (Jing’an) 
and London (North Kensington) monitoring stations demonstrates excellent performance in both 
short-term (1-12 h) and long-term (24-168 h) predictions, with 8%-54% error reductions compared 
to baseline models. The model effectively handles Shanghai’s complex pollution patterns 
(2-378 μg/m³, mean 28.23 μg/m³) and London’s lower concentrations (0-121.56 μg/m³, mean 8.08 μg/m³). 
RevIN addresses time series non-stationarity while TCMixer enhances multi-scale feature expression, 
maintaining stable performance across different time scales. The model shows particular advantages 
in predicting extreme pollution events, especially capturing substantial peaks approaching 
350+ μg/m³ in Shanghai. Our research provides a new technical approach for addressing scale diversity 
and temporal non-stationarity in urban air quality prediction.

Keywords: urban air quality prediction, TC-MixerInformer model, PM2.5 forecasting, time series 
non-stationarity
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Introduction

Urban air quality has emerged as one of the most 
pressing environmental challenges of the 21st century, 
with fine particulate matter (PM2.5) serving as a critical 
indicator of atmospheric pollution and public health 
risks. PM2.5 is defined as particulate matter with an 
aerodynamic diameter smaller than 2.5 micrometers, 
which poses significant threats to human health due 
to its ability to penetrate deep into the respiratory 
system and enter the bloodstream, leading to various 
diseases, including respiratory and cardiovascular 
disorders [1, 2]. The World Health Organization 
estimates that ambient air pollution, primarily driven 
by PM2.5, causes approximately 7 million premature 
deaths globally each year [3]. This alarming statistic 
underscores the urgent need for accurate, reliable, and 
timely PM2.5 concentration prediction systems to support 
environmental management and public health protection 
strategies.

However, PM2.5 concentration prediction is far 
more complex than conventionally understood, rooted 
in multifaceted interactions between anthropogenic 
activities and natural systems. Recent research has 
revealed intricate relationships between land resource 
allocation and environmental pollution patterns. 
Studies on China’s land resource misallocation 
demonstrate significant spatial spillover effects, where 
pollution in one region propagates to neighboring 
areas through atmospheric transport, creating complex 
interdependencies that traditional prediction models 
often fail to capture [4]. The dynamic impacts of 
ecosystem service supply and demand on air quality 
have been extensively documented in large watershed 
systems such as the Yellow River Basin, where 
industrial emissions, urbanization pressures, and 
natural ecological processes interact nonlinearly [5, 6].  
Fine-scale analyses reveal that production-living-
ecological function coupling varies significantly across 
spatial scales and temporal periods, fundamentally 
influencing local and regional air quality patterns  [7].

This complexity is further compounded by 
fundamental atmospheric chemistry and physics 
mechanisms. PM2.5 concentrations result from nonlinear 
interactions between primary emissions (directly 
emitted particles from combustion sources) and 
secondary aerosol formation through photochemical 
reactions involving precursor gases (SO2, NOx, VOCs). 
The reaction rates and pathways vary significantly 
across climate zones: subtropical regions like Shanghai 
experience higher photochemical activity due to 
elevated solar radiation and temperature, leading 
to more rapid secondary aerosol formation, while 
temperate maritime climates like London exhibit slower 
photochemical processes but a stronger influence from 
synoptic-scale meteorological systems [8]. Moreover, 
meteorological conditions (temperature inversions, 
boundary layer height, wind patterns) exhibit nonlinear 
relationships with pollutant dispersion, where small 

changes in atmospheric stability can trigger order-of-
magnitude variations in surface concentrations. These 
multiscale nonlinear interactions explain why traditional 
linear models fail and why effective PM2.5 prediction 
models must transcend simple emission-concentration 
relationships to incorporate socioeconomic drivers, land 
use dynamics, ecosystem service flows, and atmospheric 
processes – a requirement that poses substantial 
challenges for conventional modeling approaches but 
creates opportunities for deep learning methods. Accurate 
prediction of air pollutant concentrations has thus become 
a critical challenge in environmental science. Traditional 
statistical models and numerical simulation methods 
often struggle to characterize the dynamic patterns of 
PM2.5 due to its complex formation mechanisms and 
significant spatiotemporal variability [9].

Within this wave of technological development, the 
application of deep learning in air quality prediction 
has evolved significantly from early architectures 
to more sophisticated approaches. Initial studies 
primarily employed Recurrent Neural Network 
(RNN) architectures [10-12], with bidirectional LSTM 
networks achieving remarkable success in short-term 
prediction tasks [2, 13]. Subsequently, the integration 
of Convolutional Neural Networks (CNN) with LSTM 
enhanced feature extraction capabilities, enabling better 
capture of spatial and temporal patterns in air quality 
data. However, these models faced critical limitations 
when handling long-sequence predictions, including 
gradient vanishing and computational inefficiency. 
To overcome these limitations, the introduction of 
Transformers brought revolutionary breakthroughs 
to time series prediction tasks through self-attention 
mechanisms, enabling parallel processing of sequential 
data and first demonstrating significant success in 
natural language processing [14, 15]. When applied to 
air quality prediction, these models showed remarkable 
advantages in capturing long-term dependencies among 
pollutants [16]. Nevertheless, standard Transformers 
encountered severe challenges related to quadratic 
computational complexity when processing long 
sequences, making them computationally prohibitive for 
practical air quality prediction applications.

To address the computational bottleneck of 
Transformers, the Informer model proposed by Zhou 
et al. [17] effectively resolved this issue through 
the ProbSparse self-attention mechanism, reducing 
complexity from O(L²) to O(LlogL). This innovative 
approach, combined with self-attention distillation 
to minimize memory consumption and a generative 
decoder architecture, makes Informer particularly 
suitable for air quality prediction tasks that require 
processing large amounts of historical data to capture 
seasonal and cyclical pollution patterns. Despite these 
significant computational advantages, preliminary 
experiments conducted in this study indicate 
that Informer still exhibits considerable accuracy 
degradation with increasing prediction horizons when 
handling non-stationary time series data – an inherent 
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characteristic of urban air quality patterns that fluctuate 
due to seasonal factors, economic activities, and policy 
implementations [18].

This limitation is not an isolated case, but rather 
reflects a common challenge faced by current deep 
learning architectures in time series prediction. 
Through systematic analysis of mainstream models, 
including LSTM, Transformer, and their variants, we 
have identified that the performance bottlenecks of 
these methods in cross-regional air quality prediction 
stem from three fundamental theoretical deficiencies. 
These deficiencies not only explain the accuracy 
degradation phenomenon observed in Informer, but 
also reveal the root causes why existing techniques 
struggle to achieve robust cross-domain generalization: 
(1) Mathematical Non-Stationarity and Distribution 
Shift [19, 20]: Urban PM2.5 concentrations exhibit time-
varying statistical properties – shifting mean μ(t) and 
variance σ²(t) – that violate the stationarity assumption 
underlying traditional neural network architectures. 
Standard normalization techniques (e.g., BatchNorm) 
compute global statistics across the training data and 
apply fixed transformations during inference, resulting 
in systematic prediction errors when the test data 
diverge from the training distributions. This manifests 
acutely in cross-regional applications: a model trained 
on high-concentration urban environments learns 
feature representations optimized for that distribution, 
systematically producing biased predictions when 
applied to cities with fundamentally different pollution 
characteristics. The mathematical root cause lies in the 
non-reversible nature of standard normalization: while 
it standardizes training data, it cannot adapt to new 
distributions without retraining, leading to substantial 
performance degradation when applied to cities with 
significantly different baseline concentrations and 
variability patterns.

(2) Attention Mechanism Limitations in Long-
Sequence Modeling: While Transformers theoretically 
capture long-range dependencies through self-attention, 
the softmax-based attention mechanism produces over-
smoothed representations for extended prediction 
horizons. This occurs because attention weights 

computed via 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
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√𝑑𝑑𝑑𝑑
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mass across all time steps, causing distant historical 
information to receive near-zero weights that are 
numerically unstable during backpropagation.  
As sequence length L increases, the effective receptive 
field shrinks due to gradient dilution, preventing the 
model from learning long-term pollution evolution 
patterns. This theoretical limitation manifests as 
substantial accuracy degradation in long-term 
predictions: existing models show markedly increasing 
errors as prediction horizons extend from hours to days. 
The ProbSparse attention mechanism reduces 
computational complexity from O(L²) to O(LlogL) but 
does not address the fundamental gradient dilution 

problem, explaining why computational efficiency 
improvements do not translate to accuracy gains in long-
term predictions.

(3) Cross-Domain Generalization Paradox [21]: 
Deep learning models face a fundamental trade-off 
between specialization (overfitting to source domain 
characteristics) and generalization (underfitting to target 
domain patterns). This paradox is particularly severe in 
air quality prediction due to the heterogeneity of urban 
pollution mechanisms. Models must simultaneously 
learn: (a) universal temporal dynamics (diurnal cycles, 
meteorological influences) that transfer across cities, and 
(b) city-specific pollution signatures (emission source 
structures, topographical effects) that require local 
adaptation. Standard training procedures optimize for 
average performance across the training distribution, 
producing models that excel within their training 
domain but fail to extrapolate to new environments. 
The theoretical challenge lies in the absence of explicit 
mechanisms to disentangle universal patterns from 
domain-specific characteristics during representation 
learning. Without such disentanglement, learned 
features conflate transferable temporal dynamics with 
non-transferable regional baselines, causing systematic 
prediction biases when applied to new cities. This 
explains why existing models trained on single-city 
datasets exhibit limited cross-regional applicability 
despite achieving high accuracy within their training 
domains.

These theoretical insights reveal that improving 
cross-regional air quality prediction requires 
architectural innovations that explicitly address 
distribution shift (through adaptive normalization), 
long-sequence modeling limitations (through alternative 
attention mechanisms), and cross-domain generalization 
(through disentangled representation learning). 

Based on a comprehensive understanding of  
the aforementioned challenges, this study proposes 
TC-MixerInformer, a novel deep learning architecture 
that combines advanced normalization techniques with 
efficient attention mechanisms for robust cross-regional 
PM2.5 prediction.

To ensure the practicality and reliability of the 
model, this work conducts systematic cross-regional 
validation using data from Shanghai (Jing’an) and 
London (North Kensington), which represent different 
pollution mechanisms, with a comprehensive evaluation 
across multiple prediction horizons ranging from 1 h to 
7 days. This comprehensive validation approach ensures 
the robustness and applicability of the model under 
different geographical and climatic conditions. 

Specifically, the main innovations of this work lie 
in two key technical contributions that directly address 
the identified limitations. First, the integration of the 
Reversible Instance Normalization (RevIN) mechanism 
[20] specifically addresses the distribution shift 
challenges that limit cross-regional model transferability. 
RevIN performs instance-level normalization to 
eliminate regional baseline differences and seasonal 
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variations while preserving temporal dynamics through 
mathematical reversibility, enabling the model to 
maintain accuracy across different geographical regions 
with varying pollution characteristics. Second, the 
development of the Temporal-Channel Mixer (TCMixer) 
module [22] revolutionizes temporal and feature 
dependency modeling through a unified mixing strategy 
that captures cross-dimensional interactions. This 
innovation enhances multi-scale feature representation 
and improves long-term prediction accuracy. The 
integration of RevIN and TCMixer innovations produces 
a model that maintains high prediction accuracy across 
multiple time scales while demonstrating exceptional 
cross-regional adaptability, providing a robust solution 
for global air quality monitoring applications with 
significant implications for environmental management 
and public health protection.

Materials and Methods

Study Areas and Data Sources

This study utilizes air quality and meteorological 
data from two representative urban monitoring 
stations across different climate zones and pollution 
characteristics (Fig. 1). The Shanghai Jing’an station 
(31.23°N, 121.46°E) represents a typical subtropical 
megacity environment with complex industrial-urban 
mixed pollution sources. The London North Kensington 

station (51.52°N, 0.21°W) serves as a temperate climate 
reference with predominantly traffic-related emissions.

Research data include two parts: (1) Air Quality 
Monitoring Data: Air quality data for the Jing’an 
(Shanghai) monitoring station were sourced from 
Wang Xiaolei’s research group and the National 
Urban Air Quality Real-time Publishing Platform of 
China’s Environmental Monitoring Center. Data for the 
North Kensington (London) monitoring station were 
obtained from the London Air Quality Network official 
database (https://www.londonair.org.uk/). Monitored 
parameters include particulate matter (PM2.5, PM10) and 
gaseous pollutants (SO2, NO2, O3, CO) concentrations, 
with hourly observations spanning 2020-2024.  
(2) Meteorological Data: Meteorological observations 
for London Heathrow Airport and Shanghai Hongqiao 
International Airport were acquired through  
the Meteostat open-source data platform (https://
meteostat.net/), encompassing key parameters including 
temperature, dew point temperature, relative humidity, 
wind speed, and atmospheric pressure.

Data Preprocessing

This study employed a comprehensive multi-level 
data quality control methodology to ensure the reliability 
of subsequent analyses. The preprocessing workflow 
began with data standardization, where a standard time 
series spanning 2020-2024 was constructed, comprising 
35,064 observations, with temporal alignment of air 

Fig. 1. Study area locations. a) Overview map showing Jing’an (Shanghai, 31.23°N, 121.46°E) and North Kensington (London, 51.52°N, 
0.21°W) monitoring stations. b) Shanghai Station urban context. c) London station urban context.

a)

b) c)



5Environmental Assessment of PM2.5 Concentration...

and selecting the Top-u queries for attention calculation, 
it successfully reduces computational complexity from 
O(L²) to O(LlogL). Second, the self-attention distillation 
mechanism, which introduces convolutional layers 
between encoder layers to distill features, progressively 
reducing sequence length and filtering redundant 
information while preserving important features, 
effectively addressing memory efficiency issues. Third, 
the design of a generative decoder, which simplifies the 
traditional Transformer decoding process by adopting a 
generative prediction strategy, improves the efficiency 
of long-sequence prediction. These innovations enable 
Informer to maintain high prediction accuracy while 
reducing computational complexity and memory 
consumption [13, 17]. The successful development of 
Informer provides new ideas and methods for solving 
long-sequence time series prediction problems, and its 
efficient computational characteristics and excellent 
prediction performance make it one of the important 
models in this field, as shown in Fig. 3.

RevIN Mechanism

To address distribution shifts caused by seasonal 
fluctuations and sudden events in time series data, 
RevIN dynamically normalizes input features and 
restores the original distribution during prediction 
through reversibility [20].

1.	 Normalization phase: At the input stage 
of the model, RevIN normalizes the input feature 
matrix X∈RB×L×D, where B represents batch size, L 
represents sequence length, and D represents feature 
dimension (i.e., the number of pollutant indicators). The 
normalization operation on X includes the following 
steps:

(1)	 Calculate mean μb,d and standard deviation σb,d 
along the time dimension:

	 	  
(1)

quality indicators (PM2.5, PM10, SO2, NO2, O3, CO) 
and meteorological parameters. Outlier identification 
and processing were subsequently conducted based on 
established physical constraint ranges (e.g., temperature 
-10ºC to 45ºC, relative humidity 0-100%) combined 
with a time-grouped KNN algorithm [23]. Missing 
value imputation was implemented through a 24 h 
time-grouped KNN interpolation method, utilizing 
distance-weighted 5-nearest-neighbor interpolation for 
gap-filling [24]. The final step involved comprehensive 
completeness verification to ensure data record integrity 
(35,064 entries), indicator range reasonability, and 
time series continuity. The preprocessing workflow 
framework is shown in Fig. 2.

TC-MixerInformer Model Architecture

This research proposes an improved Informer model 
for air quality prediction (TC-MixerInformer), which 
builds upon the original Informer’s long-sequence 
prediction capabilities by innovatively introducing the 
Reversible Instance Normalization (RevIN) mechanism 
and Time-Channel Mixer (TCMixer) module to enhance 
the model’s adaptability to pollution characteristics 
across different cities [25].

Informer Model Foundation

The Informer model is a deep learning model 
specifically designed for long-sequence time 
series prediction tasks, incorporating significant 
improvements to the basic Transformer architecture. 
Traditional Transformers face challenges of high 
computational complexity, large memory consumption, 
and low prediction efficiency when handling long-
sequence predictions. To address these challenges, 
Informer introduces three key innovations. First, 
the ProbSparse self-attention mechanism, which is 
based on the observation that most attention scores in 
traditional self-attention contribute minimally to the 
output. By defining the concept of dominant queries  

Fig. 2. Air Quality Data Preprocessing Framework Diagram.
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 (2)

where μb,d∈RD is the mean of feature d in batch b,  
σb,d∈RD is the standard deviation of feature d in batch b; 

϶>0 is a small positive value used to avoid division by 
zero.

(2)	 Normalize the data:

	 	  (3)

2.	 Denormalization phase: Use the mean and 
standard deviation saved during the input phase to 
restore the normalized results to the original distribution:

	 	(4)

TCMixer Module Design and Principles

The TCMixer module employs a dual-branch 
architecture to handle complex temporal and feature 
interactions [26]:

Temporal Processing Branch:

	 	 (5)

Channel Processing Branch:

	(6)

where W1∈Rdtime×L, W2∈RL×dtime, dtime = L×2, b1, b2   
are corresponding bias terms.

Feature Fusion:

	 	  (7)

Final output through linear transformation:
When there is no time encoding (Xmark):

	 	  (8)

When there is time encoding (Xmark):

	(9)

The Mixer architecture is shown in the Fig. 4.
This architectural design enables the model to 

simultaneously capture temporal dependencies and 
interactions between pollutants, effectively improving 
prediction performance. Particularly when handling 
long-sequence prediction tasks, the model demonstrates 
significant advantages, providing reliable technical 
support for air quality prediction.

Model Evaluation and Experimental Design

Experimental Setup and Comparison Models

The experiments were implemented based on Python 
3.8 and the PyTorch 1.8.0 framework. Model input 
features include historical data of co-pollutants such as 
PM10, SO2, NO2, CO, O3, and meteorological elements, 
including temperature, humidity, wind speed, and 
wind direction, to capture the chemical transformation 
relationships between pollutants and the influence 
of meteorological conditions, thereby improving the 
prediction accuracy for PM2.5.

Fig. 3. Informer overall architecture.
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The dataset was divided into training, validation, and 
testing sets at a ratio of 7:1:2. An Adam optimizer with 
a learning rate of 0.001 was employed, and a dynamic 
batching strategy was designed based on prediction 
length: short-term prediction (≤12 h) with a batch size 
of 1024, medium-term (≤24 h) with 512, longer-term  
(≤72 h) with 128, and long-term (>72 h) with 64. 
To ensure experimental reproducibility, each set of 
experiments was repeated 5 times, and the average 
values were taken. The following typical models were 
selected for comparison, as shown in Table 1:

The experiment employed a sliding window for data 
sampling, with random shuffling only applied to the 
training set while maintaining the temporal continuity 
of the validation and test sets to ensure the authenticity 
of the evaluation.

Model Evaluation Metrics

This research uses Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Coefficient of 
Determination (R²), and Mean Absolute Percentage 
Error (MAPE) as indicators for evaluating model 
prediction performance.

	 	  (13)

	 	  (14)

	 	  (15)

	 	  (16)

Where yi represents the true values, ŷi represents the 
predicted values, ȳ represents the mean of all observed 
values, and n represents the sample size. RMSE reflects 
the overall level of prediction error, MAE represents the 
average magnitude of prediction bias, R² measures the 
degree to which the model explains the variability in 
the data, and MAPE provides a percentage measure of 
relative error.

Results and discussion

Data Characteristics and Regional Comparison

The comparative analysis of PM2.5 concentration 
patterns between the Shanghai (Jing’an) and 
London (North Kensington) monitoring stations 
reveals fundamental differences in urban air 
quality characteristics that directly inform  

Fig. 4. TC-Mixer architecture.

Table 1. Comparison Model Introduction.

Model Name Description Parameter Settings

Informer
[17]

Long sequence prediction model based on a sparse self-
attention mechanism

Number of attention heads = 8, Hidden layer 
dimension = 512

TSMixer
[22] MLP-based temporal feature mixing model Number of mixing layers = 2, Hidden layer 

dimension = 512
LightTS

[27]

Pyraformer
[28]

Lightweight self-attention mechanism for time series 
prediction

Prediction model with pyramid attention mechanism

Number of attention heads = 4, Hidden layer 
dimension = 256, Number of encoder layers = 2

Number of pyramid layers = 2, Attention 
dimension = 512

GRU
[29]

Classic gated recurrent unit network as a classic RNN 
variant

Hidden layer dimension = 512, Number of 
layers = 2
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the TC-MixerInformer model development. These 
regional variations provide the empirical foundation 
for understanding the complexity of cross-regional air 
quality prediction challenges.

Statistical Analysis of Data

Shanghai demonstrates significantly higher PM2.5 
concentrations with a mean of 28.23 μg/m³ (range: 
2-378 μg/m³) compared to London’s mean of 8.08 μg/m³ 
(range: 0.19-121.56 μg/m³) (Table 2, Table 3).  
The coefficient of variation reveals substantial temporal 
variability in both cities (Shanghai: 78.26%, London: 
89.21%), indicating the inherent non-stationary nature of 
urban air quality time series. Shanghai’s 95th percentile 

concentration (72 μg/m³) exceeds WHO guidelines by  
a factor of five, while London’s (21.98 μg/m³) approaches 
the recommended threshold, reflecting the distinct 
pollution regimes between developing and developed 
urban environments.

The extreme concentration events present particular 
modeling challenges. Shanghai experiences frequent 
pollution episodes exceeding 100 μg/m³ with maximum 
values reaching 378 μg/m³, characteristics of complex 
industrial-urban mixed pollution sources typical of 
rapidly developing megacities. Conversely, London’s 
pollution profile exhibits lower baseline concentrations 
with occasional moderate peaks, primarily attributed 
to traffic emissions and meteorological accumulation 
effects. These contrasting patterns necessitate adaptive 

Table 3. Statistical Characteristics of Air Quality and Meteorological Parameters at the North Kensington (London) Monitoring Station.

Table 2. Statistical Characteristics of Air Quality and Meteorological Parameters at the Jing’an (Shanghai) Monitoring Station.

Mean Min Max 50% cv(%) 95th_percentile

PM2.5 28.23 2 378 22 78.26 72

CO 0.66 0.3 2.42 0.61 30.62 1.04

NO2 32.15 4 140 27 59.01 72

PM10 43.71 1 554 36 72.11 100

O3 69.14 2 267 65 55.48 142

SO2 6.44 3 33 6 29.28 10

Temperature_c 18.63 -7 40 19 49.3 33

Dew point_c 12.55 -15 29.1 13 78.73 26

Relative_humidity_percent 70.15 15 100 72 26.09 94

Wind_speed_kmh 13.8 1.8 75.6 14.4 48.11 25.2

Wind_direction 166.47 0 360 150 65.58 350

Pressure_hpa 1016.2 982 1044 1016 0.92 1031

Mean Min Max 50% cv(%) 95th_percentile

PM2.5 8.08 0.19 121.56 5.9 89.21 21.98

CO 0.17 0.01 2.49 0.13 73.62 0.36

NO2 18.5 0.19 191.66 13.58 80.35 50.3

PM10 13.17 0.4 160.45 10.8 71.27 31

O3 52.99 0.13 216.53 54.48 47.93 91.4

SO2 1.26 0.07 15.97 0.8 104.41 3.5

Temperature_c 12.23 -8.3 40.2 11.9 50.5 22.7

Dew point_c 7.62 -14.3 20.1 7.9 64.57 15.2

Relative_humidity_percent 75.86 14 100 80 21.76 96

Wind_speed_kmh 14.67 1.8 68.4 13 54.78 29.5

Wind_direction 193 10 360 210 48.51 330

Pressure_hpa 1015.17 955.7 1049.6 1016.1 1.11 1031.8
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modeling approaches capable of handling both high-
amplitude variations and subtle fluctuation patterns.

Data Correlation Analysis

Correlation analysis employs the Spearman rank 
correlation coefficient [30], a non-parametric correlation 
measure, to evaluate the degree of linear correlation 
between different pollutants in Shanghai and London.

Correlation analysis using Spearman rank 
coefficients reveals distinct meteorological influences 
on PM2.5 concentrations across regions (Fig. 5).  
In Shanghai, PM2.5 exhibits weak negative correlations 
with temperature (r = -0.24), relative humidity (r = -0.15), 
and wind speed (r = -0.14), consistent with photochemical 
reaction dynamics and atmospheric dispersion 
mechanisms in subtropical climates [31]. The strongest 
positive correlation occurs with PM10 (r = 0.76), followed 
by moderate positive correlations with CO (r = 0.57) and 
NO2 (r = 0.56), indicating significant contributions from 
combustion processes and vehicular emissions.

London demonstrates a notably stronger PM2.5-
PM10 correlation (r = 0.93), reflecting more uniform 
particulate matter sources consistent with London’s 
urban characteristics, where traffic-related emissions 
constitute a dominant contribution to fine particulate 
matter. The correlation with NO2 (r = 0.48) remains 
substantial but is lower than in Shanghai, attributable 
to more stringent vehicular emission controls under 
European standards and differences in fuel composition 
[32]. Most notably, the relationship with wind speed 
(r = -0.40) is significantly stronger than in Shanghai, 
which aligns with the pronounced influence of Atlantic 
weather systems and the dynamic westerly wind patterns 
characteristic of temperate maritime climates.

These region-specific correlation patterns provide 
empirical foundations for the TC-MixerInformer’s 

adaptive feature interaction mechanisms. The 
differential correlation strengths directly informed the 
design of temporal-channel mixing strategies, enabling 
the model to apply region-appropriate weightings to 
meteorological and chemical features.

These contrasting pollution signatures provide 
crucial guidance for TC-MixerInformer architecture 
design, particularly in feature interaction modeling 
and temporal processing strategies, enabling enhanced 
adaptability to diverse urban pollution scenarios.

Model Performance Evaluation

Multi-City Prediction Performance Evaluation

Experimental results presented in Table 4 and Table 5 
demonstrate that TC-MixerInformer exhibits significant 
predictive advantages across both urban environments. 
At the Shanghai Jing’an station, the model maintains 
exceptional stability from short-term (1-12 h) to long-
term predictions (24-168 h). In 168 h predictions, TC-
MixerInformer achieves RMSE = 8.000 compared to 
Informer’s 17.492, representing a 54% improvement. 
At the London North Kensington station, performance 
remains robust across all horizons (1 h RMSE = 1.938 to 
168 h RMSE = 2.600), substantially outperforming GRU 
(1 h RMSE = 2.424 to 168 h RMSE = 5.871).

The superior performance stems from three 
architectural innovations addressing fundamental 
modeling challenges. First, the dual-branch TCMixer 
architecture simultaneously processes temporal 
dependencies (token-mixing) and inter-variable 
relationships (channel-mixing) [33], whereas recurrent 
models like GRU sequentially process only temporal 
patterns. This architectural difference explains GRU’s 
severe degradation in long-term Shanghai predictions 
(168 h RMSE = 23.762 vs. 8.000), as recurrent 

Fig. 5. Multivariate correlation analysis for Shanghai and London.



Zihan Wang, Changgui Gu10

connections suffer gradient vanishing beyond 24-48 h, 
preventing effective capture of weekly pollution cycles. 
Second, RevIN’s dynamic instance-level normalization 
adapts to distribution shifts through reversible 
transformations that preserve temporal dynamics while 
eliminating regional baseline differences. In contrast, 
LightTS employs static normalization optimized 
for training distributions, causing systematic errors 
when test conditions diverge. This manifests in 
London’s stable environment, where LightTS achieves 
comparable 168 h performance (RMSE = 3.514 vs. 
2.600), but deteriorates significantly in Shanghai’s 
high-variability conditions (RMSE = 11.255 vs. 8.000) 
– a 40.7% performance gap demonstrating inability to 
handle non-stationary distributions. Third, ProbSparse 
attention identifies critical pollution events through 
selective focus on dominant queries, achieving a 27.3% 
improvement over standard Informer in Shanghai. 
Fixed-weight approaches in TSMixer and Pyraformer 
distribute attention uniformly across all time steps, 
failing to prioritize extreme concentration periods and 
resulting in systematic underestimation during rapid 
pollution transitions, as evidenced by their 168 h RMSE 

values (12.395 and 10.788, respectively) exceeding  
TC-MixerInformer by 55% and 35%.

Comparative Analysis of Short-term and Long-term 
Prediction Performance Under Urban Differences

The scatter plot analysis (Fig. 6 and Fig. 7) provides 
an intuitive visualization of prediction accuracy 
characteristics across different models through the 
distribution relationship between predicted and actual 
values. TC-MixerInformer demonstrates optimal linear 
fitting performance in both 1 h and 168 h predictions, 
with prediction points tightly clustered around the 
ideal diagonal line. For the Shanghai Jing’an station, 
the 1 h prediction achieves an R² of 0.940, maintaining 
excellent consistency even in high concentration regions 
(>100 μg/m³); for the London North Kensington station, 
it exhibits the tightest linear relationship (R² = 0.885) 
with the most uniform distribution of prediction points.

In contrast, other models exhibit significant 
prediction deviations. The Informer model already 
shows noticeable bias in high concentration regions 
during short-term predictions, with performance further 

Table 4. Jing’an Shanghai Model Prediction Performance comparison.

Model TS-MixerInformer Informer LightTS TSMixer Pyraformer GRU

Predicted 
duration RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 h 6.074 2.856 8.359 4.095 10.623 6.191 9.225 5.753 7.923 3.535 7.488 4.093

6 h 6.391 3.045 7.882 3.828 8.012 4.588 11.460 7.293 8.728 3.985 13.987 8.560

12 h 6.387 3.130 8.757 4.553 9.979 5.954 14.651 9.716 9.275 4.548 16.653 10.455

24 h 6.836 3.231 8.217 4.130 7.832 4.446 11.837 7.686 10.614 5.485 22.042 14.550

48 h 8.545 5.012 9.387 5.987 9.691 5.618 12.660 8.239 10.199 5.856 23.509 15.518

72 h 7.184 4.264 12.804 7.986 8.365 4.829 11.558 7.777 10.508 5.607 24.100 15.993

168 h 8.000 4.822 17.492 10.394 11.255 7.324 12.395 8.224 10.788 5.974 23.762 15.830

Table 5. North Kensington (London) Model Prediction Performance comparison.

Model TS-MixerInformer Informer LightTS TSMixer Pyraformer GRU

Predicted 
duration RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 h 1.938 1.149 2.275 1.438 3.432 2.304 2.848 1.935 2.061 1.306 2.424 1.597

6 h 1.989 1.209 2.169 1.387 2.367 1.541 3.416 2.374 2.217 1.441 4.143 2.858

12 h 1.993 1.208 2.271 1.493 3.047 2.093 4.134 3.073 2.456 1.673 4.691 3.279

24 h 2.150 1.320 2.517 1.736 2.515 1.614 3.418 2.351 2.717 1.885 5.406 4.002

48 h 2.329 1.485 4.132 3.092 2.648 1.740 3.611 2.413 3.111 2.081 5.614 4.191

72 h 2.358 1.538 2.793 1.935 2.430 1.596 3.667 2.508 2.952 1.956 5.718 4.304

168 h 2.600 1.799 5.567 3.499 3.514 2.415 4.272 3.066 3.521 2.350 5.871 4.505

Note: The best experimental results are highlighted in bold. 
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deteriorating in 168 h forecasts where scatter points 
deviate markedly from the diagonal line. The GRU 
model demonstrates substantial errors across the entire 
concentration range, with long-term prediction scatter 
points exhibiting a “fan-shaped” distribution, indicating 
that prediction uncertainty increases dramatically with 
concentration levels.

The point density distribution in the scatter plots 
further confirms TC-MixerInformer’s superiority in 
prediction consistency. Near the ideal diagonal line, 
TC-MixerInformer displays the highest point density 
concentration, while other models show relatively 
dispersed scatter distributions, particularly exhibiting 
greater prediction variability in extreme value regions.

Time Series Prediction Visualization: 
Comparison of Multi-model Short-term and 

Long-term Prediction Performance

The time series comparisons further validate the 
model stability (Fig. 8 and Fig. 9). Shanghai data 
exhibits extensive concentration variability (0-350+ 
μg/m³), presenting significant forecasting challenges 
(Fig. 8). TC-MixerInformer demonstrates exceptional 
trend-tracking capability in both short-term and 
long-term predictions, with prediction curves highly 
consistent with actual measurements, maintaining good 
alignment even during sudden pollution peak periods. 
In contrast, Informer shows obvious deviations in high-
concentration intervals, with particularly significant 
performance degradation in long-term predictions. 

Fig. 6. Comparison of scatter plots of different models at the Jing’an (Shanghai) and North Kensington (London) stations (1 h prediction).
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While the GRU model can track basic trends, it still 
exhibits certain gaps in prediction accuracy.

London data presents a contrasting profile, with 
lower concentrations (0-20+ μg/m³) characterized by 
frequent minor fluctuations (Fig. 9). TC-MixerInformer 
demonstrates superior adaptability in both short-term 
and long-term predictions, with prediction curves 
capable of precisely tracking subtle measurement 
variations while maintaining good forecasting  
stability.

Alternative models exhibit obvious limitations: 
Informer shows over-prediction at several time points, 
with this deviation further amplified in long-term 
predictions; TSMixer and Pyraformer display temporal 
inconsistencies in responding to minor fluctuations; the 

GRU model shows reduced sensitivity to small-scale 
changes, with prediction curves being overly smooth.

Comprehensive Analysis of Cross-Regional 
Adaptability and Generalization Capability

(1)	 Temporal Scale Adaptability Characteristics
TC-MixerInformer demonstrates significant 

adaptability characteristics across different prediction 
time horizons (as shown in Table 4 and Table 5). The 
model exhibits exceptional stability in short-term 
predictions (1-12 h), with performance degradation 
of only 5.2% and 2.8% in Shanghai and London, 
respectively, while medium-to-long-term predictions 
(24-168 h) show more pronounced performance 

Fig. 7. Comparison of scatter plots of different models at the Jing’an (Shanghai) and North Kensington (London) stations (168 h 
prediction).
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decline, with RMSE increases reaching 17.0% and 
20.9%, respectively [34]. Detailed analysis reveals that 
performance degradation follows a progressive pattern: 
short-term internal decay (1 h→12 h) remains at the 
lowest levels of 5.2% in Shanghai and 2.8% in London; 
medium-term decay (12 h→24 h) increases to 7.0% and 
7.9%; long-term decay (24 h→168 h) reaches 17.0% 
and 20.9%. The data indicate that the model maintains 
relatively stable performance in the 12-24 h range, which 
is closely related to the diurnal cycle characteristics of 
urban pollution.

Performance degradation stems from three 
interrelated fundamental factors. First, nonlinear 
cumulative error effects cause slight prediction 
errors to gradually amplify into systematic biases 
in long-term predictions. Short-term predictions 
are primarily controlled by local meteorological 
conditions and near-source emissions, making pollutant 
concentration changes relatively predictable, while 
long-term predictions need to consider complex 
processes, including regional transport and chemical 
transformation, whose nonlinear characteristics and 
randomness increase prediction difficulty [35]. Second, 
the complexity of large-scale meteorological systems 
exceeds the model’s expressive capacity, as long-

term predictions need to handle complex atmospheric 
processes, including frontal passages and air mass 
transitions. Additionally, dynamic changes in emission 
source patterns pose challenges for long-term modeling, 
including weekday-weekend emission patterns  
and seasonal variations, which are difficult to fully 
capture.

TC-MixerInformer’s hierarchical architecture design 
enables it to adopt differentiated processing strategies 
across different time scales. In short-term predictions, 
the model primarily utilizes the token-mixing branch 
of TCMixer to capture local temporal dependencies 
within sequences, while the RevIN mechanism ensures 
statistical stability of input features. As the prediction 
window extends, the model gradually shifts to 
relying on the channel-mixing branch to handle long-
term interaction patterns among multiple variables. 
However, limited by the expressive capacity of linear 
transformations, the model still faces difficulties in 
fully characterizing complex nonlinear long-term 
dependencies. In contrast, the baseline Informer model 
exhibits more severe performance degradation in long-
term predictions, demonstrating the critical role of the 
RevIN and TCMixer modules in maintaining long-term 
prediction stability.

Fig. 8. Time series comparison of different models at the Shanghai and London stations for 1 h prediction.
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(2)	 Cross-Regional Performance Mechanisms and 
Adaptation Challenges

Through comprehensive comparative analysis of 
the TC-MixerInformer performance in Shanghai and 
London, we systematically examined the model’s 
cross-regional adaptability characteristics. Although 
Shanghai’s 1 h prediction RMSE of 6.074 significantly 
exceeded London’s 1.938 (approximately 3-fold 
difference), R² coefficient analysis revealed that 
TC-MixerInformer maintained exceptional trend-
tracking capability in Shanghai’s complex pollution 
environment (1 h prediction R² = 0.940 vs. Informer’s 
0.885; 168 h prediction R² = 0.894 vs. Informer’s 
0.491), demonstrating the model’s strong adaptability to 
complex nonlinear pollution systems, as illustrated in 
Fig. 6 and Fig. 7 [36].

Despite higher absolute errors, TC-MixerInformer 
exhibited superior relative performance and model-
environment synergy in Shanghai, revealing amplified 
architectural advantages under complex environmental 
conditions. Performance enhancement analysis 
demonstrated that the model’s architectural innovations 
produced more significant improvements in Shanghai’s 
challenging environment: 1 h prediction RMSE 
decreased by 27.3% (from 8.359 to 6.074), while London 

showed only a 14.8% reduction (from 2.275 to 1.938). 
This differential improvement pattern indicates that TC-
MixerInformer’s complex architecture identifies greater 
optimization potential in high-complexity environments, 
where traditional models encounter greater difficulties, 
thereby amplifying the relative advantages of advanced 
feature learning mechanisms.

Root cause analysis revealed three interconnected 
factors driving regional performance differences. 
Fundamental differences in pollutant concentration 
distribution characteristics constitute the primary 
challenge. Shanghai’s PM2.5 concentration ranged from 
2-378 μg/m³ (mean 28.23 μg/m³), characterized by high 
concentrations, large variations, and frequent extreme 
events, while London’s concentration ranged from 
0-121.56 μg/m³ (mean 8.08 μg/m³), displaying relatively 
moderate and stable variations as detailed in Table 2 and 
Table 3. Correlation analysis shows that Shanghai’s PM2.5 
exhibits moderate positive correlations with multiple 
pollutants (PM10: r = 0.76, CO: r = 0.57, NO2: r = 0.56), 
reflecting complex multi-source interactions, while 
London demonstrates a dominant PM2.5-PM10 correlation 
(r = 0.93), indicating more uniform emission patterns. 
Shanghai’s nearly 200-fold extreme concentration 
range and frequent pollution events exceeding 100 μg/

Fig. 9. Time series comparison of different models at the Shanghai and London stations for 168 h prediction.
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m³ created optimal conditions for TC-MixerInformer’s 
dual-branch architecture in nonlinear pattern recognition 
and extreme value prediction, while London’s limited 
concentration range provided restricted opportunities 
for the model’s complex architecture to demonstrate its 
full predictive capabilities.

Meteorological condition complexity constitutes the 
second critical factor. Shanghai’s subtropical monsoon 
climate, influenced by multiple weather systems, 
exhibits significantly higher variability in meteorological 
variables compared to London’s temperate oceanic 
climate, substantially increasing model learning 
complexity. Due to complex urban topography, Shanghai 
exhibits weaker wind speed effects (r = -0.14), while 
London demonstrates stronger atmospheric dispersion 
relationships (r = -0.40), as shown in Fig. 5. Emission 
source structural differences constitute the third critical 
challenge. Shanghai, as an industrial port city, features 
diversified pollution sources (industrial emissions, 
vehicle exhaust, ship emissions, construction dust) 
with significant spatiotemporal variations in source 
contributions, providing rich multi-source interaction 
learning opportunities for the model’s channel 
mixing branch, while London, following extensive 
environmental management, exhibits relatively singular 
and well-controlled traffic-dominated emission sources 
with stable emission patterns [37].

Based on these findings, the complexity-adaptability 
matching principle emerges as a key insight: TC-
MixerInformer’s architectural design is inherently more 
suitable for high-complexity, multi-variable interactive 
time series prediction tasks. In Shanghai’s complex 
industrial-urban mixed pollution environment, the 
model fully leverages its design advantages through 
dual-branch mixing mechanisms for handling complex 
variation patterns across multiple temporal scales, RevIN 
dynamic normalization for processing high-variability 
distribution characteristics, and attention mechanisms 
for capturing long-range dependencies. Conversely, in 
London’s relatively simple traffic-dominated pollution 
environment, the complex architecture’s advantages 
cannot be fully realized, potentially leading to relative 
“over-engineering” phenomena.

Cross-regional application validation further 
confirmed TC-MixerInformer’s remarkable 
environmental adaptability. In London’s relatively simple 
traffic-dominated pollution environment, the model 
achieved stable high-precision predictions through 
effective capture of regular temporal patterns and 
dominant variable relationships. In Shanghai’s complex 
industrial-urban mixed pollution source environment, 
despite higher absolute errors, the model successfully 
captured pollution peaks approaching 350+ μg/m³ 
while maintaining excellent trend-tracking capability 
in complex nonlinear relationships, showing more 
significant relative improvements compared to baseline 
models. Particularly noteworthy is that the model 
demonstrated stronger relative improvement advantages 
in Shanghai’s more challenging environment, validating 

TC-MixerInformer as an adaptive framework capable 
of automatically adjusting feature learning strategies 
according to environmental complexity, providing 
reliable technical solutions for air quality prediction in 
diverse urban environments.

Several additional factors contribute to the observed 
performance disparities. First, regional transport 
contributions differ substantially: Shanghai’s PM2.5 
is significantly influenced by long-range transport 
from the Yangtze River Delta [38], resulting in higher 
background concentrations, whereas London’s pollution 
is more locally dominated. Second, pollution episode 
characteristics vary: Shanghai experiences more 
frequent extreme events (>150 μg/m³) with longer 
persistence (multi-day episodes), creating highly 
nonlinear dynamics that challenge prediction, while 
London’s events are typically shorter and less extreme 
[39]. Third, the 2013-2023 period encompasses different 
policy trajectories: Shanghai underwent rapid emission 
control changes, introducing stronger non-stationarity, 
whereas London experienced gradual improvements 
[40]. These factors collectively increase Shanghai’s 
prediction complexity, explaining higher absolute errors 
despite robust relative performance improvements.

Technical Discussion: Model Mechanisms, 
Limitations, and Future Improvements

RevIN Mechanism and Its Operational Principles

The introduction of the Reversible Instance 
Normalization (RevIN) mechanism effectively addresses 
the non-stationarity issues inherent in air quality time 
series data. By dynamically preserving and restoring 
distributional characteristics of the data, RevIN enables 
the model to better handle distributional variations 
across different time periods and abrupt pollution 
events. This mechanism demonstrates excellent 
adaptability when processing the distinctly different 
pollution patterns observed in Shanghai and London, 
providing crucial support for the model’s cross-regional 
generalization capabilities.

Innovation Value of the TCMixer Module

The Time-Channel Mixer module achieves effective 
modeling of complex temporal dependencies and feature 
interactions through its dual-branch architecture. The 
temporal mixing branch focuses on extracting variation 
patterns across different temporal scales ranging from 
hourly to multi-day intervals, while the channel mixing 
branch models the interrelationships between PM2.5 and 
other pollutants as well as meteorological variables. 
This parallel processing mechanism allows the model to 
simultaneously consider temporal evolution patterns and 
multivariate interaction effects, thereby demonstrating 
excellent adaptability when handling two cities with 
distinct pollution characteristics – Shanghai and 
London.
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Model Limitations and Challenge Analysis

Despite TC-MixerInformer’s excellent performance 
in air quality prediction, it still faces several important 
limitations when handling complex environmental 
conditions.

Root Cause Analysis of Sudden Event 
Prediction Limitations

The model’s limited capability in predicting 
sudden pollution events stems from three fundamental 
architectural constraints that are well-documented in 
time series forecasting literature.

First, training data distribution imbalance creates 
systematic bias toward common pollution patterns. 
As shown in Table 2, Shanghai’s PM2.5 concentrations 
exhibit extreme variability (range: 2-378 μg/m³,  
CV = 78.26%), with the 95th percentile (72 μg/m³) 
representing only a small fraction of observations.  
This severe class imbalance causes the model to optimize 
primarily for frequent moderate pollution patterns 
rather than rare extreme events. The loss function’s 
equal weighting across all samples means that extreme 
pollution episodes, despite their critical importance for 
public health warnings, contribute minimally to the total 
training loss due to their low frequency [39].

Second, the absence of external trigger information 
fundamentally limits the model’s ability to anticipate 
sudden events. The current input features comprise 
only historical pollution concentrations and routine 
meteorological parameters (temperature, humidity, wind 
speed, pressure), lacking critical indicators of sudden 
pollution triggers. Research has demonstrated that 
extreme pollution events are often triggered by factors 
outside the scope of conventional monitoring data, 
including industrial accidents, biomass burning, dust 
storms, and regional transport from upstream sources. 
Without access to such trigger signals, the model can 
only react to concentration increases after they manifest 
in monitoring data, resulting in delayed predictions.

Third, temporal context window limitations 
constrain the model’s ability to capture precursor signals 
of extreme events. While the current 168 h input window 
captures weekly cycles and short-term meteorological 
patterns, it may be insufficient for detecting synoptic-
scale atmospheric circulation changes that precede major 
pollution episodes. Studies have shown that extreme 
pollution events are often preceded by identifiable 
atmospheric circulation pattern shifts several days in 
advance, including weakening of cold front intensity, 
establishment of stable atmospheric stratification, and 
reduction in boundary layer height.

The model primarily relies on historical data 
patterns, which limits its predictive capability for 
sudden pollution events such as industrial accidents or 
dust storms. For extreme pollution events, including 
industrial accidents, dust storms, and forest fires, the 
model’s reliance on historical pattern learning makes it 

difficult to predict anomalies that exceed the distribution 
range of training data. Experimental data show that 
Shanghai’s PM2.5 concentrations can reach extreme 
levels of 378 μg/m³, and when facing such sudden high-
concentration pollution, the model’s prediction accuracy 
faces challenges. This limitation stems from the model’s 
dependence on historical data patterns, while historical 
data itself lacks sufficient representation of rare extreme 
events [41].

Mechanistic Analysis of Data Quality Dependence

The model’s sensitivity to input data quality 
manifests through three distinct propagation pathways 
documented in environmental monitoring literature.

Systematic sensor bias introduces persistent 
directional errors that accumulate across prediction 
horizons. Research on air quality monitoring equipment 
has shown that PM2.5 sensors typically exhibit calibration 
drift over time, with bias magnitude often correlating 
with local pollution levels. When such biased data  
enters the model’s training process, the RevIN 
normalization mechanism, designed to handle 
distribution shifts, may inadvertently learn and 
perpetuate these systematic errors. The reversible 
nature of RevIN means that any systematic bias in the 
normalized space will be faithfully restored during 
denormalization, potentially amplifying prediction 
errors in long-term forecasts.

Missing meteorological variables create critical 
information gaps that force the model to rely on 
incomplete feature representations. As demonstrated 
in Fig. 5, different meteorological variables exhibit 
varying correlations with PM2.5 across regions: wind 
speed shows a weak correlation in Shanghai (r = -0.14) 
but a stronger correlation in London (r = -0.40), while 
humidity and temperature effects differ substantially 
between subtropical and temperate climates. When 
key meteorological drivers are missing, the TCMixer 
module’s channel-mixing branch cannot properly  
model the multivariate interactions that govern  
pollution dynamics, leading to degraded prediction 
accuracy.

Temporal data gaps disrupt the model’s ability to 
track pollution evolution continuity. The TCMixer 
module’s temporal-mixing branch relies on continuous 
temporal patterns to extract meaningful features across 
different time scales. When data gaps are filled using 
simple interpolation methods (as described in “Data 
Preprocessing” Section), the interpolated values lack 
the natural variability and correlation structures present 
in actual measurements. This artificial smoothness can 
mislead the temporal pattern recognition mechanisms, 
particularly for the self-attention components in the 
Informer encoder that depend on authentic temporal 
dependencies.

The model’s performance exhibits high dependence 
on input data quality, constituting vulnerability in actual 
deployment. Missing key meteorological variables affect 
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prediction accuracy, and calibration deviations or sensor 
failures in pollution monitoring equipment may lead 
to systematic biases in model outputs, with cumulative 
effects propagating throughout the entire prediction 
time range [42]. Additionally, the dual-branch structure 
of the TCMixer module requires more computational 
resources compared to traditional single architectures, 
increasing the system’s computational burden and 
memory requirements to some extent.

Computational Resource Requirements Analysis

The computational demands of TC-MixerInformer 
stem from its dual-branch TCMixer architecture and 
the integration of multiple advanced components. As 
described in “TC-MixerInformer Model Architecture” 
Section, the model combines the Informer’s ProbSparse 
self-attention mechanism with the TCMixer’s parallel 
temporal and channel mixing branches, plus the RevIN 
normalization layers.

Architectural complexity arises from several sources. 
The dual-branch structure of TCMixer processes 
both temporal dependencies (through token-mixing 
operations) and feature interactions (through channel-
mixing operations) in parallel, effectively doubling 
the computational load compared to single-branch 
architectures. The temporal-mixing branch performs 
linear transformations across the time dimension with 
complexity O(L×dtime), while the channel-mixing branch 
operates across the feature dimension with complexity 
O(L×dchannel), where d_time and d_channel are typically 
set to 2×L and 2×D respectively as per the TSMixer 
design [22].

Memory requirements increase due to the need 
to maintain intermediate activations for both mixing 
branches throughout the forward pass, as well as storing 
gradients for both branches during backpropagation. The 
Informer encoder’s multi-head attention mechanism, 
despite using ProbSparse attention to reduce complexity 
from O(L²) to O (L log L) still requires substantial 
memory for attention score matrices, particularly when 
processing long sequences (168 h in our implementation) 
[17].

Inference latency considerations become critical 
for real-time prediction applications. While the model 
achieves superior accuracy, the sequential nature of 
the encoder-decoder architecture and the dual-branch 
processing in TCMixer introduce computational 
overhead compared to simpler recurrent architectures 
like GRU. This trade-off between accuracy and 
computational efficiency is well-documented in deep 
learning literature and represents a fundamental 
challenge in deploying sophisticated models for 
operational air quality forecasting systems [34, 42].

The model’s cross-regional transferability faces 
additional challenges, with uncertain effectiveness when 
directly applied to untrained cities. From experimental 
results, Shanghai and London show significant 
differences in PM2.5 concentration characteristics 

(Shanghai: 2-378 μg/m³, mean 28.23 μg/m³; London: 
0-121.56 μg/m³, mean 8.08 μg/m³). Differences 
in climate types, emission source structures, and 
monitoring networks among different cities all affect 
model applicability, requiring careful consideration of 
domain adaptation strategies. The current framework 
assumes relatively stable emission source characteristics 
and meteorological patterns, which may not adequately 
consider the impacts of rapid urban development or 
climate change, factors that could alter fundamental 
pollution dynamics over time.

Comprehensive Improvement Framework 
and Future Prospects

Based on the detailed root cause analysis of model 
limitations, we propose a systematic improvement 
framework comprising multiple interconnected technical 
strategies, each grounded in established methodologies 
from recent literature.

To address the challenge of sudden pollution 
event prediction, we propose a multi-component 
enhancement framework based on established deep 
learning techniques. Concentration-aware weighted loss 
functions can be implemented to assign higher weights 
to extreme pollution events, following approaches 
successfully applied in imbalanced time series 
prediction [41]. The weighted loss can be formulated 
as Lweighted = Σ w(yi ) · L(ŷi, yi), where w(yi) increases 
exponentially with concentration levels to emphasize 
rare extreme events. This approach has been shown 
to improve model sensitivity to minority classes 
without sacrificing overall performance. Additionally, 
expanding the input feature space to incorporate sudden 
event precursor signals through multi-source data fusion 
would be valuable. Research has demonstrated the 
benefits of integrating external trigger information such 
as satellite observations, industrial activity monitoring, 
meteorological warnings, and traffic flow data, which 
can provide early signals of pollution events [31, 35]. 
Technical implementation would employ heterogeneous 
feature encoders that process diverse data types before 
fusion with the main architecture, following successful 
multi-modal fusion approaches in environmental 
prediction. Furthermore, addressing temporal receptive 
field limitations through hierarchical architectures that 
process both long-range context (capturing synoptic-
scale patterns) and high-resolution recent dynamics 
would enable the model to detect atmospheric circulation 
changes that precede extreme pollution events by several 
days, inspired by multi-scale temporal modeling in 
weather forecasting [36].

To mitigate sensitivity to input data quality issues, 
several robustness enhancement strategies can be 
implemented. Meta-learning-based calibration correction 
approaches that learn to detect and compensate  
for systematic sensor biases using historical calibration 
data would involve training auxiliary networks to 
predict and correct measurement biases based on sensor 
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metadata and historical performance patterns. Replacing 
deterministic interpolation with probabilistic approaches 
(e.g., Gaussian Process regression) that preserve natural 
variability and uncertainty would improve missing 
data handling, particularly when combined with hybrid 
approaches that integrate spatial interpolation from 
nearby stations with temporal modeling for longer data 
gaps. Augmenting training with adversarial examples 
that simulate realistic data quality issues would force the 
model to learn robust features invariant to small input 
perturbations, a technique that has proven effective in 
improving model robustness across various domains.

Computational resource requirements can be 
addressed through established model compression 
techniques. Implementing city-specific model 
configurations that allocate computational resources 
proportionally to environmental complexity would 
allow cities with simpler pollution patterns (like 
London) to achieve adequate performance with reduced 
model capacity, while complex environments (like 
Shanghai) benefit from full architectural sophistication. 
Training lightweight student models that mimic full 
model predictions through knowledge distillation while 
requiring fewer computational resources has been 
successfully applied in deploying complex models for 
real-time applications [43].

Cross-regional adaptability can be enhanced through 
domain adaptation techniques. Integrating static city 
characteristics (climate type, emission source profiles, 
geographical features) as auxiliary inputs helps the model 
adapt to different urban contexts [18]. Implementing 
differentiated normalization strategies based on city 
pollution characteristics – where high-variability cities 
benefit from segmented normalization approaches 
while low-variability cities perform better with global 
normalization – would improve adaptation. Dividing 
model parameters into general layers (processing 
universal time series patterns) and city-specific layers 
(capturing local pollution characteristics) enables rapid 
adaptation to new cities by freezing general parameters 
and fine-tuning only city-specific layers with limited 
local data. Employing multi-task learning approaches 
that treat predictions for different cities as related tasks 
enables the model to learn shared representations while 
maintaining city-specific adaptations.

Beyond these immediate improvements, several 
promising research directions emerge for advancing 
urban air quality prediction capabilities. Incorporating 
satellite observations and real-time emission inventory 
data would enhance responsiveness to sudden 
environmental changes. Developing probabilistic 
prediction frameworks that provide reliable confidence 
intervals is crucial for risk-based decision-making in 
air quality management. Researching online learning 
systems that continuously update model parameters 
as new data become available would enable the model 
to adapt to evolving urban characteristics and climate 
patterns. Implementing attention visualization and 
feature importance analysis techniques would provide 

interpretable insights into model predictions, facilitating 
trust and adoption by environmental management 
agencies. These systematic improvements, grounded 
in established methodologies and recent advances in 
deep learning for environmental applications, will 
significantly enhance TC-MixerInformer’s robustness, 
efficiency, and cross-regional adaptability to meet 
diverse urban air quality prediction needs globally.

Having established the technical capabilities and 
limitations of TC-MixerInformer, we now examine how 
these advancements translate into practical applications 
for urban environmental governance and public health 
protection.

Practical Implications for Environmental 
Management and Public Health

The TC-MixerInformer model’s technical capabilities 
translate into three critical practical applications for 
urban environmental governance and public health 
protection, validated through the Shanghai and London 
case studies.

Early Warning Systems for Pollution Episodes

The model’s 24-168 h prediction horizon  
with maintained accuracy (Shanghai 168 h: RMSE  
= 8.000 μg/m³, R² = 0.894) enables authorities to issue 
pollution alerts 1-7 days in advance, providing sufficient 
lead time for implementing mitigation measures.  
For Shanghai’s extreme pollution events approaching 
350+ μg/m³ (as captured in Fig. 8 and 9), 48-72 h advance 
warnings allow implementation of emergency response 
protocols, including temporary traffic restrictions, 
industrial emission controls, and construction activity 
suspensions. In London’s context, the model’s sensitivity 
to moderate pollution peaks (20-40 μg/m³) supports 
preemptive public health advisories for vulnerable 
populations (children, elderly, individuals with 
respiratory conditions). The cross-regional validation 
demonstrates that a single model framework can serve 
cities with fundamentally different pollution regimes, 
reducing the need for city-specific model development 
[44].

Quantitative Health Impact Assessment

Accurate extreme pollution prediction directly 
supports quantitative health risk assessment and 
intervention planning. Shanghai’s frequent episodes 
exceeding 100 μg/m³ (95th percentile: 72 μg/m³,  
Table 2) are associated with acute respiratory health 
impacts. The model’s capability to predict these  
episodes 24-48 h in advance enables targeted 
interventions: (1) proactive distribution of protective 
masks to vulnerable populations in affected districts;  
(2) rescheduling of outdoor activities in schools and 
elderly care facilities; (3) pre-positioning of medical 
resources in hospitals, anticipating increased respiratory 
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emergency visits. For London, where concentrations 
remain generally lower (mean 8.08 μg/m³) but 
occasionally exceed WHO guidelines (95th percentile: 
21.98 μg/m³, Table 3), the model’s 168 h predictions 
support weekly air quality planning for outdoor 
events and urban green space management. While 
direct health outcome validation requires longitudinal 
epidemiological studies beyond this work’s scope, 
the demonstrated prediction accuracy provides the 
technical foundation for integrating air quality forecasts 
into public health early warning systems, potentially 
reducing pollution-related health burdens through timely 
preventive actions [45].

Baseline Establishment for Policy Impact Assessment

The model’s accurate representation of baseline 
pollution dynamics (evidenced by consistently high 
R² values across 24-168 h horizons in both cities,  
Figs 6 and 7) provides a critical foundation for 
evaluating emission control policy effectiveness [46]. 
By establishing expected concentration trajectories 
under business-as-usual conditions, the model enables 
post-implementation assessment of policy interventions 
through comparison of observed versus predicted 
concentrations. For example, if Shanghai implements 
emergency traffic restrictions or industrial emission 
controls during a predicted pollution episode, deviations 
between actual measurements and model forecasts can 
quantify the intervention’s immediate effectiveness. 
The model’s 24-168 h prediction window aligns with 
policy evaluation timescales, allowing assessment of 
both short-term emergency responses (24-48 h traffic 
restrictions) and sustained impacts of regulatory 
measures (weekly industrial emission adjustments). 
The cross-regional validation framework established 
in this study – Shanghai representing developing 
megacities with high pollution variability and London 
representing developed urban areas with lower baseline 
concentrations – demonstrates that consistent baseline 
modeling across different urban contexts is achievable 
[47]. This consistency enables comparative policy 
analysis, allowing cities to evaluate the transferability 
of emission control strategies across different pollution 
regimes and urban development stages. Furthermore, 
the model’s ability to maintain accuracy across extreme 
events and moderate fluctuations ensures that policy 
impact assessments remain reliable across the full 
spectrum of pollution conditions encountered in real-
world urban environments.

Conclusions

This study successfully developed TC-
MixerInformer, a novel deep learning framework 
that addresses key challenges in cross-regional urban 
air quality prediction. The integration of Reversible 
Instance Normalization (RevIN) with Temporal-

Channel Mixer (TCMixer) enables superior adaptability 
to diverse pollution characteristics across Shanghai and 
London monitoring stations. Key achievements include: 
(1) Consistent performance improvements with 8-54% 
error reductions compared to baseline models across 
all prediction horizons; (2) Effective handling of both 
Shanghai’s high-concentration pollution events (up to 
350+ μg/m³) and London’s lower-concentration patterns 
(mean 8.08 μg/m³); (3) Maintained stability from short-
term (1-12 h) to long-term (24-168 h) predictions;  
(4) Demonstrated cross-regional generalization 
capabilities across different urban pollution regimes. 

The proposed architecture provides a practical 
solution for environmental monitoring systems requiring 
both temporal stability and geographical adaptability, 
supporting more effective public health protection 
strategies in smart city frameworks. 
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