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Abstract

Hainan Tropical Rainforest National Park (HTNP) and its surrounding areas face the dual
challenges of ecological fragmentation and environmental degradation, yet few studies have
quantitatively integrated Ecological Environment Quality (EEQ) and Landscape Ecological Risk
(LER) to guide spatial governance. This study aims to construct a multi-level Ecological Security
Pattern (ESP) that integrates EEQ and LER, providing a scientific basis for balancing conservation
and development. Using multi-source remote sensing data from 2002 to 2022, GIS spatial analysis, and
the Least Cumulative Resistance (LCR) model, we identified ecological source areas, corridors, and
buffer zones, and validated connectivity through Ecological Risk Index (ERI) and patch aggregation
indices. Results indicate a pronounced distance-decay gradient and corridors in the ERI. The 2022 ERI
increased from 0.149 at 2,500 m to 0.163 at 10,000 m, whereas the 12 ecological corridor networks
significantly enhanced landscape connectivity in the park’s peripheral areas. The core area maintained
high ecological integrity and stability, while coastal zones still exhibited high-risk fragmentation
clusters associated with human expansion. Accordingly, integrating EEQ and LER coupling into ESP
construction can effectively enhance ecological resilience and provide decision-making support for
adaptive spatial governance of HTNP.

Keywords: Hainan Tropical Rainforest National Park, ecological security pattern, landscape ecological
risk, spatial governance, buffer zone construction
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Introduction

HTNP serves as the core area of China’s
tropical rainforest conservation system. Ecological
fragmentation [1] and land-use conflicts are increasingly
threatening the stability of ecosystems surrounding
the park [2]. While national parks play a pivotal role
in biodiversity conservation, ecological security, and
advancing ecological civilization [3], maintaining
ecological resilience in both core zones and surrounding
areas remains a significant challenge.

Existing research emphasizes the need to establish
a gradient-based, networked ESP [4] to connect core
and peripheral zones. This study aims to quantitatively
couple EEQ with LER to guide the construction of ESPs
in tropical rainforest parks, effectively addressing the
cumulative effects of ecological vulnerability [5].

Research confirms that the three-tiered chain
of effects — “land use type combinations-landscape
spatial configurations-ecological process responses”
— directly influences the stability of the ecological
barrier functions of national parks [6]. Therefore,
elucidating the intrinsic mechanisms underlying the
evolution of multi-scale EEQ and formulating adaptive
spatial governance strategies have become scientific
imperatives for balancing ecological conservation and
regional development.

The spatial differentiation of LER provides a
direct reflection of the pressures exerted by human
activities on ecosystem stability. Habitat fragmentation,
impervious surface expansion, and corridor disruption
reduce landscape connectivity and trigger cascading
ecological responses: impeded species dispersal leads
to biodiversity decline [7], ecosystem services such as
surface runoff regulation are impaired [8], and the spatial
propagation of ecological vulnerability is intensified [9].

Current research paradigms are shifting from
single-factor sensitivity assessments to integrated,
multidimensional evaluations  that  encompass
biodiversity maintenance, ecosystem service provision,
and disturbance resistance. For example, Li et al.
(2019) demonstrated that urban landscape patterns
and PM, ; pollution exhibit significant scale-dependent
spatiotemporal coupling [10]; Leuven et al. (2021)
revealed cascading impacts of watershed-scale landscape
configuration on water quality degradation [11], and
Xu et al. (2022) used GIS-based spatial modeling to
quantify threshold effects of landscape fragmentation
caused by mining activities [12].

Recent breakthroughs in multi-source remote sensing
technologies have transformed the dynamic assessment
of regional EEQ. By integrating hyperspectral, thermal
infrared, and radar data, researchers have developed
multidimensional evaluation frameworks combining
vegetation coverage, disturbance intensity, and
ecosystem functional integrity. For instance, Ding et al.
(2021) proposed the EQI model, which couples NDVI,
land-use intensity, and ecosystem service equivalents to
characterize spatiotemporal heterogeneity of ecological

health. Its application in the Fuzhou metropolitan
area demonstrated high spatial resolution advantages
[13]. Such remote-sensing-based multidimensional
evaluations not only quantify habitat suitability [14] but
also diagnose ecosystem resilience thresholds via the
disturbance-recovery indices [15]. In Hainan, although
the tropical monsoon climate fosters high biodiversity,
the expansion of monoculture rubber plantations
increased forest fragmentation by 17.3% from 2000 to
2020, reducing the ecological connectivity index below
the warning threshold of 0.58. In this study, we apply
the EQI model to develop an EEQ assessment system
tailored to HTNP, aiming to identify ecologically
sensitive degradation zones and establish spatial
priorities for rainforest restoration.

Analyzing the spatiotemporal evolution of landscape
fragmentation patterns and EQI in HTNP and its
surrounding areas is essential for guiding ecological
restoration and buffer zone establishment. Using GIS
and Fragstats 4.2, we quantified the spatial distribution
of landscape patterns and EEQ from 2002 to 2022.
Building on traditional approaches, our innovation lies
in integrating multi-source remote sensing data with
the LER index to construct the ESP of HTNP and its
periphery. The LCR model developed from these
datasets provides a robust framework for identifying
ecological corridors, buffer zones, and priority
restoration areas. Specifically, this study aims to:
(1) evaluate spatiotemporal changes in environmental
responsiveness within the park and its adjacent
regions from 2002 to 2022; (2) characterize the spatial
configuration of geomorphological patterns and their
ecological implications; (3) assess the correlation
between topographic arrangement and environmental
responsiveness  over the past two decades;
and (4) provide a scientific basis for building a multi-
level ESP around national-level protected areas. By
coupling LER with EEQ, this research offers practical
insights for enhancing ecological security and promoting
sustainable spatial management.

Materials and Methods
Research Area

Hainan Province, located at the southernmost
tip of China, contains the HTNP (108°44'-110°04'E,
18°33'-19°14'N) in its central mountainous region.
The park covers approximately 12.1% of Hainan Island’s
land area and represents the island’s ecological apex,
with the most abundant forest resources [16]. Within
the national park, vegetation and fauna exhibit a well-
preserved vertical zonation along the elevation gradient,
while tropical natural habitats maintain a high degree
of authenticity, forming a critical barrier for the island’s
ecological security [17]. The ecological connectivity of
HTNP is essential for linking multiple protected areas
— such as Bawangling, Parrot Ridge, Jianfengling,
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and Wuzhishan — thereby enhancing the structural
and functional integrity of the regional ecosystem [18,
19]. This connectivity supports the free migration and
reproduction of rare species and enables sustainable
development strategies that align with local economic
activities, including water-cycle regulation, forest
restoration, and sustainable agriculture. Consequently,
HTNP serves as a key research area for understanding
tropical ecosystem dynamics, biodiversity conservation,
and sustainable development, providing valuable data
to strengthen habitat-based ESPs, improve climate
adaptation capacity, and advance sustainable resource
management.

Data Sources

In this study, a new ESP was developed using multiple
datasets, including the Chinese land-use dataset, HTNP
DEM, SLOPE, ASPECT, WATERS, NDVI, LUCC, and
the LER index system [20]. To ensure data consistency
and accuracy, all land-use data were validated, and all
datasets were uniformly projected to the Krasovsky
1940 Albers coordinate system, resampled to a spatial
resolution of 30 m x 30 m, and standardized through
data clipping, scale conversion, and index normalization.
These steps ensured that all datasets shared the same
spatial resolution and coordinate system, meeting the
requirements for spatial analysis and research standards
[21]. Twenty years of relevant data were processed, and
EEQ was evaluated to construct an ecological quality
assessment system for HTNP by refining the EQI model.

The EEQ model proposed in this study systematically
quantifies regional ecological conditions through
the integration of multi-source remote sensing data.
The formula is defined as:

PC1 — PC1ppin
PClpnax — PClimin 0

EEQ =

PC1 = PCA(NDVI, NDBSI, LST, WET, Al) ©)

where PCl represents the first principal component
derived from PCA of five core ecological indicators.
NDVI: Derived from the MODI3A2 product to
characterize  vegetation  photosynthetic  activity.
Normalized Difference Built-Up Index (NDBSI):
Calculated using MODO09A1 bands to quantify
impervious surface distribution (accessed on 5 January
2025). Land Surface Temperature (LST): Retrieved
from the MODI11A1 product to reflect thermal dynamics
(accessed on 5 January 2025). WET Index: Computed
based on MODO09A1 spectral bands to assess surface
moisture (accessed on 5 January 2025). Abundance
Index (AI): Incorporated from China’s Technical
Criterion for Ecosystem Status Evaluation (Ministry
of Ecology and Environment, https://www.mee.gov.cn/,
accessed on 5 January 2025) to measure biodiversity
maintenance capacity.

Methods
LER Index Construction

Using ArcGIS to construct grids of the same spatial
range and referencing the “Geographic Grid” along
with relevant scholarly research, this study determines
an appropriate grid size based on an average patch area
of 2 to 5 times the original scale [22]. The ecological
risk evaluation unit is defined as a 2 km x 2 km cell,
resulting in a total of 2,626 units. The ecological risk of
each unit is assessed by extracting data from the center
point of each grid cell. Using FRAGSTATS 4.2 software,
key landscape metrics — including the landscape
fragmentation index, landscape dominance index, and
landscape separation index — are calculated to evaluate
landscape disturbance and loss (Table 1). The landscape
vulnerability index is derived from previous research
findings and, after normalization, is used to compute the
final LER index.

The ERI values for each evaluation unit in Hainan
Province were derived using ArcGIS geostatistical
analysis. These values were assigned to the centers of
the risk evaluation units, and the spatial distribution
of ERI across the study area was determined through
Kriging interpolation. The LER was classified into five
levels using the natural breakpoint method: low-risk area
(ERIZS), medium-low-risk area (5<ERI<4), medium-
risk area (4<ERI<3), medium-high-risk area (3<ERI<2),
and high-risk area (ERI>1).

To systematically investigate the spatial gradient
changes in ecological risk, this study delineated multi-
level buffer zones (2,500 m, 5,000 m, 7,500 m, and
10,000 m) based on the boundaries of the core areas
of national parks and calculated the average landscape
ecological risk index (ERI) for each buffer zone
between 2002 and 2022 (Table 2). Statistical analysis
revealed that ERI values exhibited a significant linear
increasing trend with increasing distance from the
core zone, confirming the spatial pattern of decreasing
human activity disturbance intensity with distance. By
analyzing time-series data, it was found that the average
ERI values for all buffer zones showed an upward
trend from 2002 to 2022, reaching a peak in 2022,
indicating that ecological risks in the surrounding areas
have continued to intensify over the past two decades.
This result provides critical quantitative evidence for
identifying risk hotspots and developing differentiated
spatial governance strategies in the future.

Resistance Surface Construction

The selection of resistance factors in HTNP should
consider the area’s unique landscape characteristics
and ecological processes, ensuring the chosen factors
are representative. As a result, this research establishes
a holistic index framework to evaluate landscape
permeability in the park’s surrounding regions,
structured around three primary categories: topographic
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Table 1. Methodology for calculating ecological risk data.

Exponents Notation Landscape Ecology Implications Calculation method Note
Landscape This value ranges from (0.1) and A M B is the number Of patches in
. . . . i landscape category , is the total area
Separation F. quantifies how spatially discrete Fi=— [— .
i L 2A:\ A of landscape , and is the total area of
Index individual landscape patches are. 1
landscape.
Indicates the magnitude of the
influence of patches on the formation .
Landscape and change of landscape patterns; the A A relafijscclleenzrif ﬂ:)ef twhzlilﬁcsls(iﬂ;ean d
dominance DOI larger the value, the more dominant |DOI = d - —te — S P
. . A A the relative area of the landscape,
index the landscape type is, and the more respectively. which are 0.6. 0.4
important the dominance of patches p ¥ B
is in the landscape pattern.
Landscape Quantifying the degree‘of m ternal ) n. is the number of patches in
. landscape fragmentation in the 1y i .
fragmentation C e Ci=— landscape and is the area of
. i study area after demobilization from A
index . landscape.
external disturbance.
Landscape Quantifying the extent of cortr)ezngnc d?trle tiltlle(:iiwf(;ggisl:l)rfc;?cea .
Intrusiveness E. anthropogenic disturbance to E;_aC; + bF; +cDOI | 7 ponCIng mavicu P
Index i landscape patterns indices, which in this study are 0.5,
’ 0.3, and 0.2, respectively.
It can reflect the degree of sensitivity
Landscape of each landscape' type when .
o affected by changes in the external Expert ratings
Vulnerability V. . . .
Index i environment, and the larger the normalized to obtain
index, the higher the regional
ecological risk value.
Refers to the degree of loss of natural
Landscane attributes of ecosystems represented
Scap R by different landscape types within a Ry =E;-V;
loss index i . NG
region when the region is disturbed
by anthropogenic or natural factors.
ERI represents the ecological risk
index of landscape ; n denotes the
Landscape Indicates the magnitude of ecological n Ay number of landscape types; is the
ecological risk ERI loss when different landscape types ERI = . R; area of landscape type within the kth
index are disturbed. o1k risk plot in the study area; and FFF is
the total area of the kth risk plot in the
study area.

features, natural landscape attributes, and human-
induced disturbances. Seven key resistance factors —
DEM (m), slope (°), aspect, waters, NDVI, LUCC, and
LER — were selected to construct this index system.
The Analytic Hierarchy Process (AHP) was employed to
calculate the weightings for these factors. This involved
creating a judgment matrix to subjectively evaluate each
factor’s impedance effect on ecological flows on a scale
from 1 to 5, with 1 being equal impedance and 5 being
of utmost impedance. Subsequently, the geometric mean
of each row in the judgment matrix was calculated,
summed, and normalized to derive the weight for each
factor. Finally, consistency testing was conducted
to validate the derived weight values. The specific
calculation steps are outlined below:

Construct the relevant judgment matrix.

di1 dio dip
_ _ 321 322 aZn
dn1  an2 dnm 3)

Let a, a, (1,j =1, 2, ..., n) represent the element, given
that matrix A is an inverse matrix that is both positive

T
and reciprocal, dij > 0-ij = 1,25 = ay’ (i)=12,...,n)

Weighting calculation. Based on the judgment
matrix, the geometric mean of the product of the scales
of each layer is determined

ai=“{/I\Ti(i=1,...,n) (4)
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Table 2. Interannual changes in the average ecological risk index (ERI) at different buffer distances from the core area of the park between

2002 and 2022.
Year Distance 2500 Distance 5000 Distance 7500 Distance 10000
2002 0.1435 0.14933 0.15432 0.15763
2007 0.14407 0.15009 0.15538 0.15853
2012 0.14351 0.14923 0.15468 0.15792
2017 0.14812 0.15447 0.15939 0.16221
2022 0.14852 0.15536 0.16044 0.16332

The computation results undergo normalization to
derive the average value for each weight w, and the
weight vector W

aj

IEa )

Wi =

Calculate the maximum characteristic root (Amax)

)\ 1¢n AWi
max — i=1Wi (6)
Amax—D
CI= n-1 )
CI
CR = o ®)

Verify its average coherence indicator CI as shown
in Equation (7):

In this study: where RI denotes the consistency
index, CI represents the consistency ratio, and n
corresponds to the judgment moment evaluation
scale [23], a coherence test is essential to validate
the precision and dependability of the outcomes.
For the judgment matrix A, if the consistency index (CI)
is 0.1 or less, or exactly 0, the test is deemed successful.
A CI value exceeding 0.1 indicates a failed test. In our
calculations, the obtained consistency index was 0.0774,
meeting the criterion for success [24]. These results
affirm the appropriateness of the assigned weights for
the ecological sensitivity evaluation factors, validating
their use in subsequent assessments.

Additionally, resistance values were categorized
into five levels based on existing literature and assigned
numerical values ranging from 1 to 5, detailed in Table 2.
The calculation of the MCR surface revealed variations
in units, attributes, and value ranges among the selected
resistance factors, necessitating standardization for
accurate calculation. A resistance surface was generated
by weighted integration of seven resistance factors

(Table 3):
7
Riotal = Z wj X Ry
i=1 ©)

Where w, denotes AHP-derived weights, and R,
represents normalized resistance values (1-5 scale)
for each factor. Resistance values were standardized
using fuzzy membership functions based on ecological
process thresholds (e.g., slope >45° assigned maximum
resistance).

Ecological Corridor Identification Based
on MCR Model

In this study, an ecological corridor identification
system for tropical islands was developed based on the
minimum cumulative resistance (MCR) model, denoted
as AAA in the equation [25, 26]. The core process
involved three key steps: identifying ecological sources,
constructing resistance surfaces, and simulating
corridors. First, using the EQI, the ecological quality
of the study area was classified into five grades
through the natural breakpoint (Jenks) classification
method. The highest-quality ecological zones, with
EQI>0.85, were designated as ecological sources.
These areas, characterized by intact vegetation cover,
high biodiversity, and minimal human interference,
accounted for 23.6% of the study area. The integrated
resistance surface was calculated and denoted as BBB.
The MCR model was then applied to extract ecological
corridors connecting the source areas. The fundamental
Equation is as follows.

Ryvc = fmin 320 (Dy; X R;) (10)

Where R,,. represents the minimum cumulative
resistance value, D, is the spatial distance of a species
from the source site j to the landscape unit i, and R,
denotes the resistance coefficient of landscape unit i to
species movement. f indicates the positive correlation
between minimum cumulative resistance and ecological
processes. Potential ecological corridors between source
sites were identified using the minimum cumulative
resistance surfaces generated in the Linkage Mapper
tool, characterized by dPC_ values.

Global Spatial Autocorrelation

This study employs bivariate Moran’s I to investigate
the spatial correlation mechanisms between ecological
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risk indices and EEQ within HTNP. Unlike univariate
Moran’s I, which solely examines spatial clustering of
single variables, bivariate Moran’s 1 quantifies the co-
variation relationships between paired variables in
adjacent spatial units (e.g., coupling the distribution
of high-risk zones with low environmental quality).
Through global and local spatial autocorrelation
analyses [27], we systematically reveal the impact
intensity and spatial spillover effects of ecological
risk differentiation on environmental quality [28].
The computational formula is expressed as:

L NI W Z27f
eu (N - 1) 2{1 }1¢1Wi' (11)
n
1L, = zgz W;; Z§
j=1 (12)

In this study: I and I' ~denote the global and
local bivariate Moran indices for the landscape pattern
index and ecological sensitivity index, respectively.
W, represents the spatial connectivity matrix using
the queen-neighbour relationship approach, while
7¢ and Z® denote the average values of the local
landscape pattern index and ecological sensitivity
index, respectively. i and j refer to distinct study units.
Moran’s I value ranges from -1 to 1, where 0 denotes
no spatial correlation, and values greater than 0 indicate
geographic correlation. The local Moran’s 1 assesses
local spatial autocorrelation, revealing correlations
between attribute values in neighboring geographic
regions [29]. The spatial relationships of ecological
sensitivity in the study area were categorized into “high-
high”, “high-low”, “low-high”, “low-low”, and non-
significant using local Moran’s I values for analysis [30].

Results

LER Identification in HTNP
and its Surrounding Areas

Fig. 1 presents the spatial distribution of LER
surrounding HTNP from 2002 to 2022 and reveals
significant trends in ecological degradation and
recovery, with implications for long-term conservation
planning. The maps presented in this study illustrate
the shifting risk patterns in the region, based on the
classification of areas into five risk categories: “Lowest
Risk”, “Lower Risk”, “Medium Risk”, “Higher Risk”,
and “Highest Risk™.

The series of maps from 2002 to 2022 demonstrates
the evolution of LER, with marked shifts occurring
in both the extent and intensity of risk across the
study area. In 2002, a substantial portion of the area
was classified as “Higher Risk” and “Highest Risk,”
particularly in the coastal and heavily developed
regions, reflecting the pressures of urbanization, land-
use change, and industrialization. Over the following
two decades, the ecological risks in these regions
intensified, with the “Highest Risk” zones expanding in
line with increasing human activities. In contrast, some
inland areas experienced a decrease in ecological risk,
with “Lowest Risk” and “Lower Risk” zones becoming
more prominent, suggesting the positive effects of
conservation and restoration efforts.

Notably, the “Highest Risk” zones in the coastal areas
have expanded over time, reflecting the intensification
of human activities such as urbanization, agricultural
expansion, and infrastructure development. These areas,
characterized by high population density and land use
intensity, face significant ecological pressures, including
habitat loss, fragmentation, and reduced connectivity
between natural habitats. In contrast, the interior regions
of the national park and its surrounding buffer zones
have shown a steady decline in ecological risk, with

Table 3. Evaluation System and Weighting of Ecological Sensitivity in the Surrounding Areas of HTNP.

' Evaluation Ecological sensitivity classification
Normative layer
factor (1 (2) (3) (4) (5)
DEM (m) 0-20 20-40 40-60 60-80 >80
Geological feature Slope (°) 45-90 30-45 25-30 15-25 0-15
Aspect Due North Northeast, Due east, Due Southeast, Due south, Flat
northwest west southwest land
Underground water |y 0o 0-200 200-500 500-800 800-1000 >1000
system
Surface vegetation NDVI 0.75-1 0.65-0.75 0.5-0.65 0.35-0.5 0-0.35
Human activity lucc Wetlands, water bodies Shrubs, grass cropland other
forests
LER LER Level 1 risk Secondary risks Medium risk high risk Ultra-high risk
Value 1 2 3 4 5
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areas shifting towards “Lower Risk” categories, which
could be attributed to effective conservation practices,
including the establishment of protected areas and
ecological restoration programs.

The “Change in 2002-2022” map provides a
comparative analysis of the spatiotemporal shifts in
ecological risk across the region. The results highlight
areas of increasing and decreasing ecological risk,

2002 N
I Lowestrisk

B Lower sk

[ Medium risk

I Higher risk
[ Highest risk

2017

I Lovest sk
I Lower risk
[ medium risk
[ Higher risk.
I Highest risk
[ wational park

>z

which are pivotal for understanding the long-term
sustainability of the region’s ecosystems. The “Highest
Risk Increase Zones” are primarily concentrated along
the coast and in regions with intense human activity,
whereas “Lowest Risk Reduction Zones” are more
common in the inner buffers and areas subject to active
conservation measures. These findings suggest that the
conservation policies implemented within the national

2007 N 2012

I Lowest risk A I Lowest risk
I Lower risk I Lower ritk
[ Medium risk [ medium risk
I ioher risk I Higher isk
I Hignest riskc [ ighest risk
[ Nationai park [ Nationai park
[ study area [ studyarea

Change in 2002-2022

2022 N

B Lowest risk B Lowest risk reduction zone

[ Lower risk [T Lower risk recuction zone
Medium risk =] :o ?m?x

[ Higner risk [ Higher risk increase zone:

— i [ Highest rsk increase zone

[ vational park

[ study area

Fig. 1. Temporal changes in LER in HTNP and surrounding areas (2002-2022). This figure presents the spatial distribution of ecological
risk levels in the study area from 2002 to 2022, with risk levels classified into five categories: “Lowest Risk”, “Lower Risk”, “Medium

Risk”, “Higher Risk”, and “Highest Risk”.

. (a) EEQ 2002 |,

, (d) EEQ_2017  J,
. 1.0
.0.3

>z

 (b) EEQ_2007  f,

. (e) EEQ_2022

. (c) EEQ_2012
. 1.0

.1.0

. 1.0

Fig. 2. Spatiotemporal dynamics of EEQ in HTNP and surrounding areas (2002-2022).
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park’s core and its immediate buffer zones have been
relatively successful in mitigating ecological risk, but
more attention is needed in the periphery to counteract
growing anthropogenic pressures.

The findings of this study underscore the need
for adaptive conservation strategies tailored to the
spatial and temporal dynamics of ecological risk. The
expanding “Highest Risk” zones necessitate immediate
action to address urban sprawl, unsustainable land use,
and habitat fragmentation. Conversely, the positive
trends observed in the inland and core park areas should
be maintained and expanded. Expanding buffer zones,
improving landscape connectivity, and enhancing
ecological corridors between the park’s core and its
surroundings are essential strategies to ensure the
long-term viability of the Hainan Tropical Rainforest
ecosystem.

Analysis of EEQ in HTNP
and its Surrounding Areas

Fig. 2 presents the spatial distribution of EEQ in
HTNP and its surrounding buffer zones for the years
2002, 2007, 2012, 2017, and 2022, as shown in panels (a)
through (e). The maps use a color gradient, where blue
represents the lowest risk, yellow denotes medium risk,
and red indicates the highest risk.

From 2002 to 2022, a notable improvement in the
overall ecological quality was observed, especially
within the national park’s core areas. In 2002 (panel
a), large sections of the study area exhibited medium-
to-high ecological risk, with much of the landscape
in the higher risk categories. By 2007 (panel b), there

(a) 2002 _’_,r’i--\,x&z [0 Ecological sources

{ oo —— Potential corridors
o
o

L {"\—-. —— Ecological corridors;
o

/ National park
’ 2

@2017 o (o] (602022 :
S % —— Potential corridors i & *LJ
}ﬁ 1\«, —— Ecological corridors’ ’J‘ '\\ﬁr
Ve 7 National park "o i | National park
A i A T
7 \,.\ %

were signs of improvement in the central region,
with an expansion of lower-risk areas. The trend
continued through 2012 and 2017 (panels ¢ and d), with
a significant shift towards improved ecological
conditions, particularly in the core area of the park. By
2022 (panel e), the central zone largely falls into the
“Lowest Risk” category, reflecting substantial ecological
recovery.

Panel (f) illustrates the trend of change in EEQ from
2002 to 2022. This trend map highlights areas with
significant increases in EEQ (marked in red and orange)
and those with stagnation or decline (indicated in blue).
The trend analysis shows that while the core national
park area has benefited from successful conservation
efforts, the outer buffer zones show mixed trends, with
some areas continuing to experience ecological stress,
possibly due to human-induced factors such as land use
change and development activities.

These findings wunderscore the importance of
ongoing, targeted conservation measures, particularly in
the buffer zones, to ensure the sustainability of ecological
improvements and to mitigate further degradation in
vulnerable areas surrounding the national park.

Construction of ESPs in HTNP
and its Surrounding Areas

Fig. 3 illustrates the evolution of ESPs, specifically
ecological corridors, around HTNP for the years
2002, 2007, 2012, 2017, and 2022, as shown in panels
(@) to (¢). The ecological sources, identified through
the highest quality ecological environments based on
a natural breaks classification, are shown in green.

[ Ecological sources
—— Potential corridors
—— Ecological corridors
National park

[ Ecological sources

Potential corridors
—— Ecological corridors

Fig. 3. Evolution of ESPs in HTNP and surrounding areas (2002-2022): spatial distribution changes of primary ecological corridors (Red)

and potential ecological corridors (Blue).
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These ecological sources represent the most important
areas for biodiversity preservation. The ecological
corridors, depicted in red, indicate established pathways
that connect ecological sources, ensuring ecological
connectivity across the landscape. Additionally, the
potential corridors, represented in blue, show areas that
could serve as potential connectivity routes if landscape
management strategies are enhanced.

The methodology for the identification of ecological
sources involved evaluating various resistance factors,
including Digital Elevation Models (DEM), slope,
aspect, water availability, Normalized Difference
Vegetation Index (NDVI), land use/land cover (LUCC)
data, and LER, all of which were processed using the
natural breaks method. These resistance factors play
a crucial role in determining the cost of movement
for species and the permeability of the landscape. The
Maximum Connectivity Risk (MCR) model was applied
to assess ecological corridor connectivity and to derive
the final security pattern.

The temporal evolution of ESPs surrounding HTNP
(2002-2022) demonstrates a marked improvement
in landscape connectivity and ecological integrity.
Over the two decades, the establishment of ecological
corridors and sources, as well as the expansion of
potential corridors, reflects the increasing effectiveness
of conservation strategies. The primary ecological
corridors, indicated in red, have progressively extended
from the park’s core, forming an interconnected network
that enhances ecological resilience across the landscape.
The potential corridors (blue) also show significant
growth, further strengthening connectivity between
fragmented habitats and providing future opportunities
for biodiversity movement.

Throughout the study period, the network of
ecological sources (green) has expanded, particularly
within areas adjacent to the national park, signifying
successful  habitat restoration and conservation
initiatives. The strategic development of these sources,
along with the increased density of both primary and
potential corridors, highlights the positive impact of
long-term ecological planning and restoration efforts.
However, the changes also reveal that some peripheral
areas, particularly in the northeast, still face challenges
in connectivity, pointing to the need for continued
conservation efforts in these zones.

Notably, the period from 2007 to 2017 saw the
most significant increase in ecological connectivity,
with large portions of the landscape transitioning
to higher connectivity levels. This phase marks the
critical expansion of primary corridors, which have
linked previously isolated ecosystems, thus enhancing
the overall health and functionality of the landscape.
The 2022 map shows a well-integrated network of
corridors, establishing a robust ecological framework
for maintaining biodiversity and ecosystem services.

The change map for 2002-2022 further highlights
these improvements, illustrating the shift from lower
to higher connectivity zones, especially in areas with

low human disturbance. These findings underscore
the importance of ecological corridors in mitigating
fragmentation, promoting biodiversity conservation,
and ensuring the long-term sustainability of the Hainan
Tropical Rainforest ecosystem. While substantial
progress has been made, there is a continued need for
targeted conservation efforts, particularly in the less-
connected regions, to fully integrate the landscape and
protect its ecological function.

Discussion
Policy Implications

In the context of an intensifying global ecological
crisis, ecological security and sustainable development
have become core concerns of the international
community [31]. As a national pilot zone for
ecological civilization, the protection of Hainan’s
tropical rainforests has been given high priority and
comprehensively advanced by the Chinese government.
In January 2019, China approved the Hainan Provincial
Tropical Rainforest National Park System Pioneer Area
Program [32], which provided clear guidance for the
program’s construction. In the same year, a dedicated
management authority was established, and strict
land-use control and ecological restoration policies
were implemented [33]. These measures included
delineating ecological redlines, adjusting land-use
zoning, and reforming the forest property rights system,
with the aims of restricting development, curbing
the expansion of impervious surfaces, reducing
agricultural encroachment, restoring degraded land,
enhancing landscape connectivity, and mitigating
ecological risks.

However, a comparison of the spatial distributions
of the EEQ Index and the LER Index indicates that
some high-risk areas, despite being under policy
control, have shown limited ecological improvement
[34]. For instance, the agricultural reclamation area in
the northeast and the coastal construction expansion
zone in the southeast [35] have experienced below-
average improvements in ecological quality alongside
continuous increases in ecological risk. This reflects the
heightened vulnerability of local ecosystems and reveals
a significant time lag between policy implementation
and ecological feedback, underscoring the urgent need
for high-precision spatial monitoring and risk early-
warning systems.

Ecological corridor identification and connectivity
analysis [36] indicate that a structural network has
begun to form among ecological source areas within the
national park, with major corridors extending around
the core zone and effectively supporting the continuity
of ecological processes. Nevertheless, corridors in
peripheral regions — particularly those with diverse
land-use types and high development intensity —
display a “fragment-island” pattern and low ecological
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connectivity. This suggests that the current ESP lacks
spatial balance and systematic integration, especially
across administrative boundaries and in high-resistance
zones, where the stability and accessibility of ecological
networks require further improvement.

Empirical evidence shows that inadequate
supervision and enforcement in certain townships have
reduced ecological corridor stability and exacerbated
fragmentation [37], highlighting the need to optimize
policy design. It is therefore recommended that, building
on existing ecological protection policies, the ESP
evolve into a multi-level system of “core protection—
transition coordination—peripheral buffering”. Priority
should be given to ecological restoration and functional
reconstruction in high-risk patches and potential
corridors, based on ecological connectivity assessments,
to enhance the integrity of the ecological network.
For areas with high ecological risk, a differentiated
management mechanism based on spatial sensitivity
should be introduced [38], along with targeted, time-
sensitive  ecological compensation and land-use
adjustment strategies in zones where special forest
land and construction land are interspersed, in order to
alleviate the obstructive effects of land-use conflicts on
ecological connectivity.

Furthermore, the use of high-frequency remote
sensing imagery and GIS-based dynamic analysis can
establish a “policy—ecological response” feedback
mechanism to quantify the strength and lag time of
different policy interventions across ecological units.
Although national and regional ecological policies have
provided a foundational framework for the ESP of HTNP,
a shift toward a spatially differentiated governance
system — featuring rigid ecological controls, flexible
restoration mechanisms, and dynamic coordination
strategies — is necessary. Such a system, supported by
adaptive adjustments based on multi-source spatial data,
is essential to fully enhance ecosystem resilience and
the capacity for regional sustainable development.

Limitations and Future Prospects

Although this study constructed a multi-level
ESP for HTNP and its surrounding areas using multi-
source remote sensing data [39], GIS analysis [40], and
landscape ecology theory [41, 42], several limitations
remain. First, the remote sensing imagery spans
2002-2022; however, the limited spatial and temporal
resolution of the earlier data may fail to capture
short-term drastic changes or small-scale ecological
disturbances, particularly in areas with frequent
agricultural activities or abrupt land-use transitions.
This limitation may affect the precision of the data and
the temporal accuracy of ecological risk assessments.
Second, in constructing the LER index [43], although
key structural indicators — such as fragmentation,
dominance, and separation — were included, non-
structural ecological variables, including the intensity
of anthropogenic disturbance and the degradation

of ecosystem services, were not fully considered.
Furthermore, in ecological corridor identification
[44], the MCR model assumes that species migration
paths are determined solely by resistance surfaces,
without accounting for behavioral heterogeneity, habitat
preferences, or functional compensation relationships
among ecosystems.

Future studies could address these limitations in
several ways:

(1) Enhance and diversify quantitative analysis
methods to evaluate the impacts of relevant policies,
socio-economic indicators, and anthropogenic trajectory
data on local ecosystems, assess the coordinating effects
and extent of these impacts, and improve the sensitivity
of risk indices to human disturbances.

(2) Strengthen human—land system analysis by
increasing the spatial and temporal resolution of multi-
source remote sensing data and integrating multi-scale
datasets for dynamic monitoring.

(3) Improve the spatial availability of policy
implementation data and advance the quantitative
modeling of ecological and land-source policies to
establish an ESP assessment framework with greater
universality, precision, and dynamic adaptability.

Conclusions

This study conducts a correlation analysis between
ecological sensitivity and landscape patterns, integrating
ecological quality assessment, LER analysis, and
minimum cumulative resistance (MCR) modeling to
systematically construct a multilevel ESP for HTNP
and its surrounding areas. Using multi-source remote
sensing data, GIS technology, and ecological sensitivity
assessment, we comprehensively examined the spatial
and temporal evolution of landscape fragmentation,
ecological vulnerability, and environmental quality
from 2002 to 2022.

The results indicate that:

(1) Spatially, the core area of HTNP has maintained
gradual and stable ecological conditions, largely due
to strict ecological protection policies. In contrast,
surrounding areas exhibit elevated ecological risks
and pronounced spatial heterogeneity as a result of
land-use change, agricultural expansion, and human
disturbance. These findings confirm the effectiveness
of current conservation measures within the park, while
highlighting the urgent need to extend protection efforts
beyond park boundaries to maintain regional ecological
integrity and ensure the long-term sustainability of
ecosystem services.

(2) Temporally, the ecological safety network of
HTNP expanded outward from the core area over the
20-year period, forming an interconnected structure
that facilitated the identification and optimization of
ecological corridors through the MCR model. This
expansion significantly improved landscape connectivity,
enhanced ecological mobility, and increased species
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migration potential, thereby fostering a more resilient
ESP. Nevertheless, persistent fragmentation in high-risk
zones underscores the necessity for targeted corridor
restoration and habitat rehabilitation.

In conclusion, the ecological security system
developed in this study — combining strict control
measures, adaptive restoration mechanisms, and
dynamic coordination strategies — plays a critical role
in ensuring the long-term ecological sustainability of
HTNP. The proposed framework not only supports the
sustainable management of HTNP but is also applicable
to other national parks with similar ecological sensitivity.
By integrating scientific approaches, this system makes
an important contribution to global discussions on
biodiversity conservation and the enhancement of
ecological resilience.
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