Pol. J. Environ. Stud. Vol. XX, No. X (XXXX), 1-14
DOI: 10.15244/pjoes/215218 ONLINE PUBLICATION DATE: 2026-02-06

Original Research

Automated Identification of Mango Leaf Diseases
Using Deep Convolutional Neural Networks

Muhammad Igbal', Waheed Anwar’, Hina Shafique’, Ghulam Gilanie?, Adel A. Rezk**,
Othman Al-Dossary’, Hossam S El-Beltagi’, Mohammed 1. Aldaej®, Bader Alsubaie?,
Jameel M. Al-Khayri®, Maryam***, Sezai Ercisli’

"Department of Computer Science, Faculty of Computing, The Islamia University of Bahawalpur, 63100, Pakistan
2Department of Artificial Intelligence, Faculty of Computing, The Islamia University of Bahawalpur, 63100, Pakistan
P g y puting y p
3Agricultural Biotechnology Department, College of Agricultural and Food Science, King Faisal University,
Al-Ahsa, 31982, Saudi Arabia
“‘Department of Botany, The Govt. Sadiq College Women University, Bahawalpur, Pakistan
SDepartment of Horticulture, Faculty of Agriculture, Atatiirk University, Erzurum 25240, Turkey

Received: 03 October 2025
Accepted: 05 December 2025

Abstract

Mango, a widely cultivated tropical fruit, is susceptible to various foliar diseases that adversely
affect yield, quality, and market value. Early and exact disease identification is crucial for effective
crop management and sustainable production. Conventional diagnostic methods, primarily dependent
on manual visual inspection, are often inefficient and liable to error. To overcome these challenges,
the current study proposes a lightweight convolutional neural network (CNN) model for automated
detection and classification of mango leaf diseases using image data. A dataset of 4,000 images
comprising 3,500 diseased and 500 healthy samples across 8 categories, including anthracnose,
die back, bacterial canker, and powdery mildew. Comparative analyses with pretrained models
(DenseNet169, DenseNet121, and InceptionV3) showed high accuracies. Among them, DenseNet121 and
InceptionV3 reach approximately 99.92%. A custom 13-layer CNN with 55,184 trainable parameters
was developed, achieving 100% accuracy and outperforming all benchmark models in precision, recall,
and Fl-score. The proposed model demonstrates strong diagnostic effectiveness and computational
efficiency, offering a practical solution for real-time, field-level disease monitoring in mango cultivation.
The proposed approach combines high diagnostic accuracy with computational efficiency, making
it practical for real-time, field-level disease monitoring. This progress supports precision agriculture by
providing accessible and user-friendly plant health assessment tools that promote sustainable mango
production.
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Introduction

Agriculture-dependent  countries face  serious
risks and significant losses due to plant diseases.
This reduces the yield and quality of fruits and crops.
Pakistan is a country that earns a lot of income by
producing and exporting these agricultural products,
vegetables, and fruits cultivated around the nation [1].
As a result, it is necessary to use computer vision and
image processing technology to identify diseased plants
[2, 3]. Early diagnosis of plant diseases may increase
the likelihood of cure, thereby reducing crop damage.
In some circumstances, diseases have no obvious
indications and respond too late to their surroundings;
however, certain diseases have clear signs based on their
signs [4]. To preserve the agricultural product in time,
an carly disease detection system is also required [5].

Mangoes are an extensively consumed fruit that is
readily available during the summer. It is significant in
Pakistan’s agricultural industry due to its large quantity
of output [6]. The cultivation of mangoes is crucial
to the world’s agricultural industry. One of the most
well-known and extensively consumed tropical fruits,
mangoes, has a long cultural history and significance
across many locations. They are valued for their
nutritional advantages in addition to their exquisite taste.
Mango is an important part of a healthy diet because it
is a good source of vitamins, minerals, and dietary fiber
[7]. Currently, the farmers in this area are concerned
about the effects of numerous diseases on mango
plants, which are caused by climate change and other
causes. Therefore, it is essential to maintain this fruit
plant to ensure the continued availability of nutritious
and delicious mangoes for the rest of the world [§].
Several ailments afflict mango trees, including: Mango
deformity disease, bacteriological flower disease,
anthracnose, sooty mold, bacterial black spot disease,
Golmachi disease, red rust disease, Moricha disease,
apical bud necrosis, lichens, powdery mildew, root
rot disease, damping off, and ganoderma root rot
disease [9]. Powdery mildew disease is estimated to be
responsible for almost 23% damage to mango plants and
their economy worldwide. Anthracnose is responsible
for up to 39% of mango tree damage globally [7]. Image
processing techniques and strategies play an important
role in providing guidance for farmers based on leaf
image analysis for early disease detection. As a result,
the farmer can execute the necessary steps.

Researchers have proposed several new computer
methods, deep learning procedures [10-14], artificial
intelligence tools, and machine learning, as well as
optimization methods for the classification of mango
leaf diseases. These solutions offer an excellent
foundation for mango plant strengthening, care,
disease identification, and efficiency improvements
[15]. Effective results have recently been developed by
applying Deep learning (DL) approaches, especially
Convolutional Neural Networks (CNNs), for the
classification of plant diseases [16]. These methods

and purposes use images as input to classify leaves
as healthy or diseased, allowing them to detect leaf
diseases early. This approach, however, processes
detailed images captured under beneficial quality and
environmental conditions [17]. Accurate and prompt
recognition and classification of mango leaf infections
are essential to reducing their negative impacts. This is
where the use of cutting-edge technologies, like CNN
algorithms, can be extremely useful. By developing
an automated mango leaf disease classification system
using CNNs, it becomes possible to detect diseases
early, provide appropriate interventions, and effectively
manage mango tree health, ultimately safeguarding fruit
quality, yield, and the economic sustainability of mango
production [18].

The study [19] presented a novel categorization
approach for mango leaf diseases. The suggested
system consists of 4 stages: data preparation, feature
selection, learning and categorization, and performance
assessment. We found 1,536 photos in both the healthy
and diseased categories. The open Kaggle database was
used to obtain the dataset for this study. Accuracy and
sensitivity are evaluation measures that help discover
the best-performing design. A few extra performance
metrics were also used. The top model has a sensitivity
of 96.2 and an accuracy of 97.9.

This research [20] provides a deep learning-based
strategy for categorizing disorders of mango leaves. Deep
learning-based categorizing algorithms, such as Support
Vector Machines (SVM), categorize multiple image
datasets and provide the greatest classification results. In
this paper, we suggested a technique for extracting deep
characteristics from images by enhancing the SVM and
then using the SVM and Stochastic Gradient Descent
(SGD) hybrid method. This study looks at the uses of
the primary Harumanis Mango Leaves 2021 Dataset.
These experimental findings illustrate that the proposed
method has a 97.7% precision.

In this work [21], three ML algorithms are used
to detect mango diseases. A dataset with pictures of
diseased and healthy mango fruits and leaves in 20
different classifications has been developed. We obtained
our dataset from various websites, including Krishi
Batayon. We generated 20 categories for our raw data,
11 of which feature images of diseased mango leaves
and 7 of which include shots of miserable mango fruit.
The other additional classes show images of healthy
mangoes and healthy fruits. DenseNetl69 achieves the
greatest accuracy rate of 97.81% across various machine
Learning techniques, with precision, recall, and FI-
scores of 97%, 96%, and 96%, respectively.

Manual detection systems for mango leaf discases
face challenges such as a shortage of experts, high
costs, and diverse symptomatology [22]. They present
an automated approach in which input pictures are
collected from standardized supplies, using contrast
enhancement, and segmented using optimal Fuzzy
C Means (FCM). The Deviation-based Updated
Dingo Optimizer (D-UDOX) is used for improving
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parameters. D-UDOX handles a balanced choice of
features. The balanced data are fed into the Optimized
Recurrent Neural Network (WO-RNN) classifier. Deep
features are also extracted from a divided image using
ResNet-150. WO-RNN performs the classification using
the obtained deep characteristics. D-UDOX is used
to modify the parameters of RNN and ResNet-150.
The suggested method obtains 96% accuracy and 93%
F1 score.

This study [23] focuses on the classification of
typical mango leaf disorders in Bangladesh using image
processing and a deep neural network. In this article, we
presented a Lightweight Convolutional Neural Network
(LCNN) to perfectly categorize healthy mango leaves
and seven different mango leaf diseases very accurately.
This study makes use of the Mango Leaf BD dataset.
It is Bangladesh’s first complete mango leaf infection
dataset. The results of the proposed LCNN model are
contrasted with those of many pre-trained models,
including VGGI16, Resnet50, Resnetl01, and Xception,
and it is discovered that LCNN obtains the highest
testing accuracy of 98%.

In this study [5], the researchers use an Artificial
Neural Network (ANN) approach to identify signs
of disease on the surface of plants with microscopic
disease chunks that can only be seen with better-
resolution pictures. Their data collection contains
450 photos of mango leaves of 4 different types (three
unhealthy and one healthy): Gall Midge, Powdery
Mildew, Anthracnose, and Healthy. They evaluate the
results produced with our approaches to those achieved
with a different approach that employs prominent CNN
models (AlexNet, VGGI16, and ResNet-50), improved
with the use of transfer learning. The findings of the
ANN outperform those of CNNs with a smaller network
structure  (89.41%, 78.64%, 79.92%, and 84.88%,
respectively).

This study [24] describes a unique deep learning
CNN design for identifying mango Anthracnose
sickness. Validation is based on a real-time dataset
gathered from farms in Karnataka, Maharashtra, and

Table 1. Summary of reviewed literature.

New Delhi. It contains 2 types of photos of mango plant
leaves (healthy and damaged leaves). The 2 datasets of
mango leaf pictures are presented in this research work.
A 3500 photo dataset was utilized (with 80% for training
and 20% for validation). Compared to other cutting-edge
algorithms, the suggested method achieves a recognition
accuracy of approximately 96.16%.

Convolutional Neural Networks are used in the
study to identify and recognize mango leaf disorders
efficiently and reliably, boosting their applications
in image identification, object classification, and
segmentation. In the suggested research [25], they
construct a Convolutional Neural Network-based model
for timely classification and identification of mango leaf
diseases. SKUAST-J provides a dataset of 980 pictures.
The information collected is divided into 4 categories:
normal, anthracnose, red rust, and powdery mildew.
A developed convolutional neural network algorithm
is being used on greater data to recognize and classify
diseased mango leaves. The suggested CNN-based
model achieves 90.36% precision.

This research [6] presents a novel recognition
approach based on the leaf’s blood vessel structure,
which is proposed to identify the sick area. The leaf vein
pattern is segmented using this leaf vein-seg method.
The data set utilized for this research was assembled
for self-collected photographs taken with various sorts
of image-capturing devices. The RGB photos were
obtained from various mango-farming districts in
Pakistan, including Multan, Lahore, and Faisalabad.
Then, characteristics are identified and merged using
Canonical Correlation Analysis (CCA). The cubic
support vector machine (SVM) is used to validate
the results obtained from the classification phases.
The suggested model’s obtained accuracy is 95.5%,
proving its great value to growers of mango plants for
the prompt detection and recognition of disease. Table 1
describes the summary of the existing literature review.

The current study focuses on developing an
efficient and applied protocol for identifying mango
leaf diseases using a lightweight convolutional neural

Reference Method Dataset Accuracy
[19] DNN Mango leaf species 97.9%
[20] SVM and SGD Harumanis Mango Leaves 2021 97.7%
[21] DenseNet169 Mango leaf disease dataset 97.81%
[22] RNN Customized dataset 96%
[23] LCNN MangoLeafBD 98%

[5] CNN Plant village dataset 89.41%,
[24] CNN Customized dataset 96.16%
[25] CNN Customized dataset 90.36%

[6] SVM Customized dataset 95.5%
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network (CNN). Key objectives include standardizing
CNN architecture, applying transfer learning strategies,
and evaluating potential through standard metrics.
A customized model was compared with advanced
architectures like DenseNetl2]l, DenseNetl69, and
InceptionV3, displaying high accuracy in categorizing
multiple disease types. The suggested system provides a
practical solution in the field for early disease diagnosis
to reduce dependence on manual inspection and support
improved crop health management in mango production
on a sustainable basis.

Materials and Methods

The mango leaf disease dataset is a publicly
available collection of mango leaf images sourced from
the Kaggle website (https:/www.kaggle.com/datasets).
This dataset comprises a total of 4,000 images, covering
8 distinct diseases (Anthracnose, Bacterial canker,
cutting weevil, Die back, Gall midge, Healthy, Powdery
mildew, and Sooty mould) found in mango trees. Fig. 1
illustrates the representative samples of mango diseases.
Each of the eight categories in the dataset comprises
500 images, making it a valuable resource for research
and applications related to mango leaf disease detection
and classification. The dataset is highly balanced, with
an equal distribution of 500 images for each of the §
distinct disecase categories.

Image Preprocessing

Preprocessing was conducted to enhance image
quality, standardize inputs, and improve model
performance. All images were originally sized at
240%320 pixels and were resized to 224x224 pixels to
conform to the input requirements of convolutional

Bacterial
canker

Anthracnose

Gall midge

) -

Fig. 1. Sample images from the dataset.

neural networks (CNNs). This dimension is widely
adopted in deep learning applications due to its
computational efficiency while retaining essential
features [26].

Pixel values were normalized to the range [0,1]
by dividing each pixel’s intensity value by 255.
Normalization ensures consistent feature scaling across
inputs, accelerates convergence, and prevents numerical
instability during training [27].

To reduce overfitting and improve generalization,
data augmentation was applied to the training
set. Random rotations, horizontal flips, and zoom
transformations were performed to artificially expand
dataset variability. Such augmentation techniques
have been demonstrated to significantly improve CNN
robustness in image classification [28].

Finally, the dataset was partitioned into training
(80%) and testing (20%) subsets, ensuring unbiased
model evaluation on unseen samples. The overall
preprocessing and methodological pipeline are
illustrated in Fig. 2.

CNN Architecture

Convolutional neural networks (CNNs) were
employed to automatically learn discriminative features
from mango leaf images. CNNs have been extensively
applied in plant disease recognition due to their ability
to capture complex spatial and texture patterns [26, 29,
30]. A standard CNN typically comprises convolutional,
activation, pooling, and fully connected layers, which
together enable hierarchical feature extraction and
classification. In this study, we adopted a custom deep
CNN architecture tailored for mango leaf disease
classification.

The proposed architecture (Fig. 3) consists of seven
convolutional layers activated by the rectified linear unit

Cutting
weevil

Die back

-—

Powdery
mildew

Sooty mould
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Fig. 2. Block diagram of the proposed methodology.

(ReLU) [31], interleaved with 4 max-pooling layers to
progressively reduce spatial dimensions while retaining
salient features. A flattening layer transforms the feature
maps into a one-dimensional vector, which is then
processed by a fully connected dense layer. The final
output layer applies a Softmax activation function to
predict the probability distribution across the 8 disease
categories. Detailed configurations of the architecture
are summarized in Table 2.

Proposed Deep CNN Architecture

In this research, we provide a deep CNN architecture
for classifying mango leaf disorders. The simulation
parameters of the proposed deep CNN architecture
are shown in Table 2, while the parameters and
their tuned values are shown in Table 3. The model
comprises 7 convolutional layers with RELU activation,
4 max-pooling layers, and 1 dense layer with Softmax
activation. To improve deep CNN efficiency, a hidden
layer called flatten is utilized, which generates a 1D
array using the image as input, making it easier to
deal with huge amounts of input. The model presented
features an API architecture containing multiple
hierarchical layers that extract and process features
from the input image. The first layer consists of eight
convolution layers, which follow RELU activation.
The max pooling layer is the second layer with a pool
dimension of 2x2, which decreases the dimension of

the image that is provided in it. Convolution layers with
16 and 32 filters are used in the third and fourth layers,
which are subsequently followed by RELU functions.

The following layer is another maximum pooling
layer with a similar pool size. As shown in Fig. 3,
another layer is added called flatten, which flattens the
outcomes from the previous layers and returns features
from each input it receives. The class label presented is
the layer’s output, which is used to assess the overall
correctness of the model being suggested.

Evaluation Measures

Equation (1) demonstrates how different performance
metrics, including recall, accuracy, precision, confusion
matrix, and F1 score, are utilized to validate the
expected output of mango leaf disease detection.

Accuracy

True positive + True negative
" True positive + True negative + False positive + False nagative

(1

Where accuracy is the fraction of correctly classified
instances in the test set.

The instances that are truly positive in the test set
yet are accurately classified as such by the classifier
are known as true positives (TP). Cases that are truly
negative in the test set yet are accurately classified



6 Muhammad Igbal, et al.
Table 2. Parameter details of the proposed CNN architecture.
Layer (type) Output Shape Param # Kernel Size/Stride

Input Layer (224, 224, 3) 0 -

Rescaling (1/255) (224,224, 3) 0 -
Conv2D (222,222, 8) 224 3x3/1
MaxPooling2D (111, 111, 8) 0 2x2/2
Conv2D (109, 109, 16) 1,168 3x3/1
Conv2D (107, 107, 32) 4,640 3x3/1
MaxPooling2D (53, 53,32) 0 2x2/2
Conv2D (51,51, 64) 18,496 3x3/1
Conv2D (49, 49, 32) 18,464 3x3/1
MaxPooling2D (24, 24, 32) 0 2x2/2
Conv2D (22,22, 16) 4,624 3x3/1
Conv2D (20, 20, 8) 1,160 3x3/1
MaxPooling2D (10, 10, 8) 0 2x2/2

Flatten (800) 0 -

Dropout (0.5) (800) 0 -

Dense ®) 6,408 -

Total 55,184

as such by the classifier are called true negatives
(TN). Cases that are truly negative in the test set but
are mistakenly classified as positive by the classifier
are called false positives (FP). False negatives (FN)
are examples that are positive in the test set but are
incorrectly labeled as negative by the classifier.

As a result, the positive or healthy mango leaf
samples are P, whereas the negative or unhealthy mango
leaf samples are N, as shown in Equations (2) and (3).
The specificity and sensitivity formula are as follows:

True positive
True positive+False negative (2)

Specificity =

s it True negative
ensitivity =
Y True negative + False positive (3)

Table 3. Parameters and their tuned values.

Parameters Values
Convolutional layer 7 (3*3)
Pooling layer 4 (2*%2)
Optimizer Root Mean( rSrg;l;;spl;'ropagation
Epochs 100
Batch size 32
Learning rate 0.001

The percentage of actual positive examples among all
occurrences that the classifier predicts to be positive is
known as precision, as shown in Equation (4). Dividing
the actual number of successes by the classifier’s
predicted number of successes, one can assess precision.

True positive

Precision = — —
True positive + False positive 4)

The percentage of genuine positive cases in the test
set that truly are positive is known as recall, as shown in
Equation (5).

True positive

Recall = — ;
True positive + False negative (5)

Equation (6) demonstrates that the F1 score, which
provides a combined measure of precision and recall; is
the harmonic mean of precision and recall.

Precision * Recall
Precision + Recall (6)

F1 score = 2 %

Experiment Setup

The efficiency of the proposed mango leaf disease
classification framework is validated using several
types of evaluation criteria and comparisons with other
models. TensorFlow and Python programming are
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Fig. 3. The proposed deep CNN architecture.

utilized to carry out the model mentioned in the present
research. The complete experimental setup was done in
Python using Anaconda. For constructing, compiling,
and testing the Model, the Keras libraries are used. to
build, compile, and test the model. TensorFlow was
used to develop models as a backend, as Python 3.12 on
a computing environment was used in these experiments
with a 2.20GHz Intel(R) Core (TM) 19-13950HX CPU,
NVIDIA GeForce RTX 4060 GPU, and 64GB of RAM.

Results and Discussion

The dataset contained a total of 4000 images, and
the instance images are separated into 2 sections, with
one portion used for training and the second for testing.
The dataset is divided into 2800 images for training and
1200 images for testing to obtain results, i.e., randomly
split into an 80% training set and a 20% held-out test
set.

Table 4 presents a comparative performance
analysis between the proposed Deep CNN and other
well-established pretrained models, i.c., DenseNetl21,
DenseNetl69, and InceptionV3, for the multi-class
classification of mango leaf diseases. To ensure a robust
comparison, identical training strategies were applied to
all pre-trained models. All layers were unfrozen and set
to trainable to allow for full fine-tuning on the mango
leaf dataset. The models were compiled with the Adam
optimizer with a learning rate of le-4 and trained using
early stopping with a patience of 10 epochs, monitoring
the validation loss. The analysis is based on standard
evaluation metrics, i.e., precision, recall, Fl-score, and
overall accuracy across eight disease classes. The model
achieved an accuracy of 100% on the held-out test set.
To further evaluate robustness, 5-fold cross-validation
was also performed.

In comparison, DenseNetl21, the best-performing
pretrained model, achieved near-perfect performance
with an overall accuracy of 99.92%, but still exhibited
minor reductions in recall for Die Back (0.9933) and
in precision for Powdery Mildew (0.9934), resulting in
slightly diminished Fl-scores (0.9967) for these classes.
Similarly, DenseNetl69 and InceptionV3 demonstrated
strong but slightly inconsistent results, with recall

dropping as low as 0.90 for Gall Midge in the case of
InceptionV3, indicating potential sensitivity to intra-
class variability or overlapping visual features in certain
categories.

The proposed Deep CNN model demonstrates
clear superiority in classifying mango leaf diseases,
achieving perfect performance across all 8 disease
categories with precision, recall, and Fl-score values of
1.00 and an overall accuracy of 100%. This exceptional
performance significantly surpasses that of competitive
pretrained models such as DenseNet121, DenseNetl169,
and InceptionV3, establishing the proposed model’s
supremacy in disease-specific feature extraction.
Notably, the model is designed with a streamlined
architecture comprising only 13 layers and a total of
55,184 trainable parameters, substantially fewer than
most pretrained architectures, yet it outperforms them
in both generalization and precision. This achievement
is attributed to the model’s end-to-end training on
domain-specific data, allowing it to learn finely
grained morphological and textural features critical for
distinguishing between both visually distinct and subtly
varying disease symptoms [32]. Furthermore, its ability
to maintain class-wise balance, even in the presence
of overlapping symptoms and intra-class variability,
underlines its robustness against class imbalance
and environmental noise. The lightweight yet highly
expressive architecture ensures computational efficiency,
making it suitable for real-time field deployment in
precision agriculture and disease monitoring systems
[33].

Fig. 4 provides a comprehensive visualization of the
training and validation performance of DenseNetl2l,
DenseNetl69, InceptionV3, and the proposed Deep
CNN model through accuracy and loss plots. Fig. 4a)
displays the training and validation accuracy curves for
DenseNetl21, showing a steady rise and convergence
towards high accuracy with minimal variance,
indicating effective learning. Fig. 4b) illustrates the
corresponding loss curves, where both training and
validation losses decrease consistently, albeit with slight
fluctuations, suggesting a well-trained yet marginally
overfitted model. Fig. 4c) presents the DenseNet169
accuracy curves, reflecting strong learning behavior
with high final accuracy, although the slightly wider
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Table 4. Results obtained through the proposed deep CNN and other pretrained models.

Pre-trained models Disease class Precision Recall Fl-score Accuracy | Parameters (M)
Anthracnose 1.0 1.0 1.0
Bacterial Canker 1.0 1.0 1.0
Cutting Weevil 1.0 1.0 1.0
Die Back 1.0 1.0 1.0
DenseNet121 3 99.92% 8.1IM
Gall Midge 1.0 1.0 1.0
Healthy 1.0 1.0 1.0
Powdery mildew 0.9934 1.0000 0.9967
Sooty Mould 1.0 1.0 1.0
Anthracnose 1.0 1.0 1.0
Bacterial Canker 1.0 0.9933 0.9967
Cutting Weevil 1.0 1.0 1.0
DenseNet169 Die B?Ck 0.9934 L0 0.9967 99.75% 14.3M
Gall Midge 1.0 1.0 1.0
Healthy 1.0 1.0 1.0
Powdery mildew 1.00 0.9867 0.9933
Sooty Mould 0.9868 1.0000 0.9934
Anthracnose 1.0 0.9933 0.9967
Bacterial Canker 1.0 1.0 1.0
Cutting Weevil 1.0 1.0 1.0
) Die Back 1.0 1.0 1.0
InceptionV3 ) 99.92% 23.9M
Gall Midge 0.9934 1.00 0.9967
Healthy 1.0 1.0 1.0
Powdery mildew 1.0 1.0 1.0
Sooty Mould 1.0 1.0 1.0
Anthracnose 1.0 1.0 1.0
Bacterial Canker 1.0 1.0 1.0
Cutting Weevil 1.0 1.0 1.0
The Proposed Deep Die Bz.mk 1.0 1.0 1.0 100% 5 5M
CNN Gall Midge 1.0 1.0 1.0
Healthy 1.0 1.0 1.0
Powdery mildew 1.0 1.0 1.0
Sooty Mould 1.0 1.0 1.0

gap between training and validation accuracy hints
at potential overfitting. The loss trajectory in Fig. 4d)
further supports this, with a sharp decline in training
loss and relatively stable validation loss, indicating
effective convergence but room for improvement in
generalization. Fig. 4e) illustrates the accuracy plot of
InceptionV3, where both curves closely follow each
other and improve rapidly, highlighting the model’s
strong learning and generalization capabilities. Fig.
4f) shows the loss curves for InceptionV3, depicting
a consistent decline in both training and validation
losses, although a minor divergence near convergence
suggests mild overfitting. Fig. 4g) showcases the
training and validation accuracy curves of the proposed
Deep CNN model, which exhibits a nearly perfect and
synchronized rise, achieving perfect accuracy from the

early epochs, while Fig. 4h) shows that both training and
validation losses reach near-zero values in a smooth and
synchronized manner [34]. These observations clearly
indicate the proposed model’s stability, robustness,
and optimal parameter learning, further validating
its superior performance compared to the pretrained
counterparts.

Fig. 5 presents the confusion matrices of
DenseNetl121, DenseNetl69, InceptionV3, and the
proposed Deep CNN model, offering insights into their
classification performance across all mango leaf disease
classes. Fig. 5a) shows that DenseNetl121 achieves near-
perfect predictions, with minor misclassifications in a
few categories. Fig. 5b) illustrates DenseNet169’s strong
overall performance but reveals slightly more confusion
between visually similar classes. Fig. 5c) indicates
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Fig. 5. Confusion matrices of the pretrained models, i.e., DenseNet121, DenseNet169, InceptionV 3, and the proposed deep CNN model.
a) Confusion matrix of the DenseNet121, b) Confusion matrix of the DenseNet169, ¢) Confusion matrix of the InceptionV3, and d)

Confusion matrix of the proposed deep CNN model.

that InceptionV3 also performs well, though a few off-
diagonal elements suggest occasional mislabeling. In
contrast, Fig. 5d) demonstrates the proposed Deep
CNN’s perfect classification with zero misclassifications,
reaffirming its superiority in recognizing all disease
classes with complete precision [35].

Fig. 6 illustrates the ROC-AUC curves with 95%
confidence intervals for DenseNetl21, DenseNetl69,
InceptionV3, and the proposed Deep CNN model,
offering a robust evaluation of each model’s diagnostic
reliability. Fig. 6a) reveals that DenseNetl121 attains high
AUC values across all classes, with narrow confidence
intervals indicating consistent model behavior. Fig.
6b) shows similar trends for DenseNetl69, although
a slightly broader confidence band in certain classes
points to marginal variability. Fig. 6c) presents the
ROC-AUC curves for InceptionV3, which maintains
strong discriminative performance but exhibits slightly
wider intervals in a few cases, suggesting less stability
under class-specific perturbations. In contrast, Fig. 6d)
highlights the proposed Deep CNN model’s exemplary
performance, achieving AUC values approaching 1.0

across all classes with uniformly narrow confidence
intervals. This underscores the model’s exceptional
ability to distinguish between healthy and diseased
categories with high confidence and minimal
uncertainty, making it a highly dependable tool for
practical disease detection scenarios [36].

Comparison with Recently Published Studies

The suggested CNN model for mango leaf detection
exhibits superior accuracy when compared to existing
models. Leveraging advanced convolutional layers, the
proposed model excels in capturing intricate features
crucial for precise classification, outperforming
traditional methods, as shown in Table 5. This enhanced
accuracy underscores the potential of the proposed CNN
model as a more reliable and effective tool for automated
mango leaf detection [38].

A variety of machine [37] learning algorithms were
applied to identify and categorize mango leaf illnesses
[8], including a CNN that achieved 96% accuracy in
diagnosing leaf diseases. The study [32] used VGG-Net
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Fig. 6. ROC-AUC curves with 95% confidence intervals of the pretrained models, i.e., DenseNet121, DenseNet169, InceptionV3, and
the proposed deep CNN model. a) ROC-AUC curves with 95% confidence intervals of the DenseNet121, b) ROC-AUC curves with 95%
confidence intervals of the DenseNet169, ¢) ROC-AUC curves with 95% confidence intervals of the InceptionV3, and d) ROC-AUC
curves with 95% confidence intervals of the proposed deep CNN model.

for the classification of the infected mango leaves dataset
with 92% accuracy. The CNN model demonstrated
exceptional performance in identifying mango leaves,
attaining a 98% accuracy rate [33]. Mango leaf disease
categorization and detection using a CNN-based
approach showed a 90.36% accuracy rate [25]. The study
[20] used SVM and SGD for the classification of mango
leaf disease, achieving 97.7% accuracy. The study [21]

utilized the DenseNet169-based CNN to detect mango
leaf disease with 97.81% accuracy. [23, 39, 40] proposed
a lightweight convolutional neural network for detecting
mango leaf diseases, achieving 98% accuracy [41]. The
proposed CNN model in this study outperformed all
other methods, achieving an impressive 100% accuracy.

The perfect accuracy on the test set, while
promising, may raise concerns of overfitting; however,

Table 5. Comparison of the results obtained with the proposed model and the published studies.

References Technique Description Accuracy

[8] CNN Identify leaf disease 96%
[32] CNN (VGGNet) Classification of infected mango leaves 92%
[33] CNN Recognition of mango leaves 98%
[25] CNN Classification and detection of mango leaves 90.36%
[20] SVM and SGD Classification of mango leaf diseases 97.7%
[21] CNN Detection of mango leaf diseases 97.81%
[23] CNN Detection of mango leaf diseases 98%

Proposed model CNN Classification and detection of mango leaf diseases 100%
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the consistently high performance achieved through
5-fold cross-validation (mean accuracy: 99.98%+0.02%)
helps mitigate this concern and highlights the model’s
robustness.

Practical Deployment and Real-World
Application

The proposed model’s high accuracy and
computational efficiency make it a prime candidate
for real-world deployment of resource-constrained
hardware. Two primary pathways are envisaged:
integration into a mobile application, for instance,
in-field farmer diagnosis, and deployment on edge
devices coupled with drones for automated, large-scale
crop monitoring. Future work will address practical
challenges like varying field conditions and focus on
developing a functional prototype to validate the model’s
efficacy in real-world scenarios.

Limitations and Future Work

Despite strong performance, this study has
limitations. The model was trained in curated datasets,
and its generalizability to the full variability of real-
world field conditions requires further validation. Future
work will focus on external validation with more diverse
data, practical deployment via a mobile application
prototype, architectural refinement to enhance
robustness, and expanding the model’s scope to include
disease severity estimation.

Conclusions

This study successfully developed a lightweight
deep convolutional neural network for the automated
classification of mango leaf diseases. The model
demonstrated exceptional performance, achieving
high accuracy on a balanced, multi-class dataset,
while maintaining significantly lower computational
complexity than advanced pre-trained architectures.
The primary contribution of this work is a highly
accurate, yet resource-efficient model specifically
designed for practical deployment. Its compact design
makes it a viable candidate for integration into mobile
or edge-computing devices, directly supporting
the goals of precision agriculture by providing a tool
for rapid, in-field disease diagnosis. This capability
is crucial for enabling timely interventions, reducing
crop losses, and promoting more sustainable orchard
management practices, moving beyond theoretical
applications to offer tangible benefits for mango
cultivation. The lightweight CNN model is highly
accurate, computationally efficient, and scalable,
making it suitable for integration into mobile-based
diagnostic systems for real-time mango leaf disease
detection in the field.
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