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Abstract

Mango, a widely cultivated tropical fruit, is susceptible to various foliar diseases that adversely 
affect yield, quality, and market value. Early and exact disease identification is crucial for effective 
crop management and sustainable production. Conventional diagnostic methods, primarily dependent 
on manual visual inspection, are often inefficient and liable to error. To overcome these challenges, 
the current study proposes a lightweight convolutional neural network (CNN) model for automated 
detection and classification of mango leaf diseases using image data. A dataset of 4,000 images 
comprising 3,500 diseased and 500 healthy samples across 8 categories, including anthracnose, 
die back, bacterial canker, and powdery mildew. Comparative analyses with pretrained models 
(DenseNet169, DenseNet121, and InceptionV3) showed high accuracies. Among them, DenseNet121 and 
InceptionV3 reach approximately 99.92%. A custom 13-layer CNN with 55,184 trainable parameters 
was developed, achieving 100% accuracy and outperforming all benchmark models in precision, recall, 
and F1-score. The proposed model demonstrates strong diagnostic effectiveness and computational 
efficiency, offering a practical solution for real-time, field-level disease monitoring in mango cultivation. 
The proposed approach combines high diagnostic accuracy with computational efficiency, making 
it practical for real-time, field-level disease monitoring. This progress supports precision agriculture by 
providing accessible and user-friendly plant health assessment tools that promote sustainable mango 
production. 
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Introduction

Agriculture-dependent countries face serious 
risks and significant losses due to plant diseases. 
This  reduces  the yield and quality  of  fruits  and crops. 
Pakistan is a country that earns a lot of income by 
producing and exporting these agricultural products, 
vegetables, and fruits cultivated around the nation [1]. 
As a result, it is necessary to use computer vision and 
image processing technology to identify diseased plants 
[2, 3]. Early diagnosis of plant diseases may increase 
the likelihood of cure, thereby reducing crop damage. 
In some circumstances, diseases have no obvious 
indications and respond too late to their surroundings; 
however, certain diseases have clear signs based on their 
signs [4]. To preserve the agricultural  product in time, 
an early disease detection system is also required [5]. 

Mangoes are an extensively consumed fruit that is 
readily available during the summer. It is significant in 
Pakistan’s agricultural industry due to its large quantity 
of output [6]. The cultivation of mangoes is crucial 
to the world’s agricultural industry. One of the most 
well-known and extensively consumed tropical fruits, 
mangoes, has a long cultural history and significance 
across many locations. They are valued for their 
nutritional advantages in addition to their exquisite taste. 
Mango is an important part of a healthy diet because it 
is a good source of vitamins, minerals, and dietary fiber 
[7]. Currently, the farmers in this area are concerned 
about the effects of numerous diseases on mango 
plants, which are caused by climate change and other 
causes. Therefore, it is essential to maintain this fruit 
plant to ensure the continued availability of nutritious 
and delicious mangoes for the rest of the world [8]. 
Several ailments afflict mango trees, including:  Mango 
deformity disease, bacteriological flower disease, 
anthracnose, sooty mold, bacterial black spot disease, 
Golmachi disease, red rust disease, Moricha disease, 
apical bud necrosis, lichens, powdery mildew, root 
rot disease, damping off, and ganoderma root rot 
disease [9]. Powdery mildew disease is estimated to be 
responsible for almost 23% damage to mango plants and 
their economy worldwide. Anthracnose is responsible 
for up to 39% of mango tree damage globally [7]. Image 
processing techniques and strategies play an important 
role in providing guidance for farmers based on leaf 
image analysis for early disease detection. As a result, 
the farmer can execute the necessary steps.

Researchers have proposed several new computer 
methods, deep learning procedures [10-14], artificial 
intelligence tools, and machine learning, as well as 
optimization methods for the classification of mango 
leaf diseases. These solutions offer an excellent 
foundation for mango plant strengthening, care, 
disease identification, and efficiency improvements 
[15]. Effective results have recently been developed by 
applying Deep learning (DL) approaches, especially 
Convolutional Neural Networks (CNNs), for the 
classification of plant diseases [16]. These methods 

and purposes use images as input to classify leaves 
as healthy or diseased, allowing them to detect leaf 
diseases early. This approach, however, processes 
detailed images captured under beneficial quality and 
environmental conditions [17]. Accurate and prompt 
recognition and classification of mango leaf infections 
are essential to reducing their negative impacts. This is 
where the use of cutting-edge technologies, like CNN 
algorithms, can be extremely useful. By developing 
an automated mango leaf disease classification system 
using CNNs, it becomes possible to detect diseases 
early, provide appropriate interventions, and effectively 
manage mango tree health, ultimately safeguarding fruit 
quality, yield, and the economic sustainability of mango 
production [18].

The study [19] presented a novel categorization 
approach for mango leaf diseases. The suggested 
system consists of 4 stages: data preparation, feature 
selection, learning and categorization, and performance 
assessment. We found 1,536 photos in both the healthy 
and diseased categories. The open Kaggle database was 
used to obtain the dataset for this study. Accuracy and 
sensitivity are evaluation measures that help discover 
the best-performing design. A few extra performance 
metrics were also used. The top model has a sensitivity 
of 96.2 and an accuracy of 97.9.

This research [20] provides a deep learning-based 
strategy for categorizing disorders of mango leaves. Deep 
learning-based categorizing algorithms, such as Support 
Vector Machines (SVM), categorize multiple image 
datasets and provide the greatest classification results. In 
this paper, we suggested a technique for extracting deep 
characteristics from images by enhancing the SVM and 
then using the SVM and Stochastic Gradient Descent 
(SGD) hybrid method. This study looks at the uses of 
the primary Harumanis Mango Leaves 2021 Dataset. 
These experimental findings illustrate that the proposed 
method has a 97.7% precision.

In this work [21], three ML algorithms are used 
to detect mango diseases. A dataset with pictures of 
diseased and healthy mango fruits and leaves in 20 
different classifications has been developed. We obtained 
our dataset  from various websites, including Krishi 
Batayon. We generated 20 categories for our raw data, 
11 of which feature images of diseased mango leaves 
and 7 of which include shots of miserable mango fruit. 
The other additional classes  show images of healthy 
mangoes and healthy fruits. DenseNet169 achieves the 
greatest accuracy rate of 97.81% across various machine 
Learning techniques, with precision, recall, and F1-
scores of 97%, 96%, and 96%, respectively.

Manual detection systems for mango leaf diseases 
face challenges such as a shortage of experts, high 
costs, and diverse symptomatology [22]. They present 
an automated approach in which input pictures are 
collected from standardized supplies, using contrast 
enhancement, and segmented using optimal Fuzzy 
C Means (FCM). The Deviation-based Updated 
Dingo Optimizer (D-UDOX) is used for improving 
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parameters. D-UDOX handles a balanced choice of 
features. The balanced data are fed into the Optimized 
Recurrent Neural Network (WO-RNN) classifier. Deep 
features are also extracted from a divided image using 
ResNet-150. WO-RNN performs the classification using 
the obtained deep characteristics. D-UDOX is used 
to modify the parameters of RNN and ResNet-150.  
The suggested method obtains 96% accuracy and 93% 
F1 score.

This study [23] focuses on the classification of 
typical mango leaf disorders in Bangladesh using image 
processing and a deep neural network. In this article, we 
presented a Lightweight Convolutional Neural Network 
(LCNN) to perfectly categorize healthy mango leaves 
and seven different mango leaf diseases very accurately. 
This study makes use of the Mango Leaf BD dataset. 
It is Bangladesh’s first complete mango leaf infection 
dataset. The results of the proposed LCNN model are 
contrasted with those of many pre-trained models, 
including VGG16, Resnet50, Resnet101, and Xception, 
and it is discovered that LCNN obtains the highest 
testing accuracy of 98%.

In this study [5], the researchers use an Artificial 
Neural Network (ANN) approach to identify signs 
of disease on the surface of plants with microscopic 
disease chunks that can only be seen with better-
resolution  pictures. Their data collection contains 
450 photos of mango leaves of 4 different types (three 
unhealthy and one healthy): Gall Midge, Powdery 
Mildew, Anthracnose, and Healthy. They evaluate the 
results produced with our approaches to those achieved 
with a different approach that employs prominent CNN 
models (AlexNet, VGG16, and ResNet-50), improved 
with the use of transfer learning. The findings of the 
ANN outperform those of CNNs with a smaller network 
structure (89.41%, 78.64%, 79.92%, and 84.88%, 
respectively).

This study [24] describes a unique deep learning 
CNN design for identifying mango Anthracnose 
sickness. Validation is based on a real-time dataset 
gathered from farms in Karnataka, Maharashtra, and 

New Delhi. It contains 2 types of photos of mango plant 
leaves (healthy and damaged leaves). The 2 datasets of 
mango leaf pictures are presented in this research work. 
A 3500 photo dataset was utilized (with 80% for training 
and 20% for validation). Compared to other cutting-edge 
algorithms, the suggested method achieves a recognition 
accuracy of approximately 96.16%.

Convolutional Neural Networks are used in the 
study to identify and recognize mango leaf disorders 
efficiently and reliably, boosting their applications 
in image identification, object classification, and 
segmentation. In the suggested research [25], they 
construct a Convolutional Neural Network-based model 
for timely classification and identification of mango leaf 
diseases. SKUAST-J provides a dataset of 980 pictures. 
The information collected is divided into 4 categories: 
normal, anthracnose, red rust, and powdery mildew. 
A developed convolutional neural network algorithm 
is being used on greater data to recognize and classify 
diseased mango leaves. The suggested CNN-based 
model achieves 90.36% precision.

This research [6] presents a novel recognition 
approach based on the leaf’s blood vessel structure, 
which is proposed to identify the sick area. The leaf vein 
pattern is segmented using this leaf vein-seg method. 
The data set utilized for this research was assembled 
for self-collected photographs taken with various sorts 
of image-capturing  devices. The RGB photos were 
obtained from various mango-farming  districts in 
Pakistan, including Multan, Lahore, and Faisalabad. 
Then, characteristics are identified and merged using 
Canonical Correlation Analysis (CCA). The cubic 
support vector machine (SVM) is used to validate  
the results obtained from the classification phases.  
The suggested model’s obtained accuracy is 95.5%, 
proving its great value to growers of mango plants for 
the prompt detection and recognition of disease. Table 1 
describes the summary of the existing literature review.

The current study focuses on developing an 
efficient and applied protocol for identifying mango 
leaf diseases using a lightweight convolutional neural 

Table 1. Summary of reviewed literature. 

Reference Method Dataset Accuracy

[19] DNN Mango leaf species 97.9%

[20] SVM and SGD Harumanis Mango Leaves 2021 97.7%

[21] DenseNet169 Mango leaf disease dataset 97.81%

[22] RNN Customized dataset 96%

[23] LCNN MangoLeafBD 98%

[5] CNN Plant village dataset 89.41%,

[24] CNN Customized dataset 96.16%

[25] CNN Customized dataset 90.36%

[6] SVM Customized dataset 95.5%
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network (CNN). Key objectives include standardizing 
CNN architecture, applying transfer learning strategies, 
and evaluating potential through standard metrics. 
A customized model was compared with advanced 
architectures like DenseNet121, DenseNet169, and 
InceptionV3, displaying high accuracy in categorizing 
multiple disease types. The suggested system provides a 
practical solution in the field for early disease diagnosis 
to reduce dependence on manual inspection and support 
improved crop health management in mango production 
on a sustainable basis.

Materials and Methods

The mango leaf disease dataset is a publicly 
available collection of mango leaf images sourced from 
the Kaggle website (https://www.kaggle.com/datasets). 
This dataset comprises a total of 4,000 images, covering 
8 distinct diseases (Anthracnose, Bacterial canker, 
cutting weevil, Die back, Gall midge, Healthy, Powdery 
mildew, and Sooty mould) found in mango trees. Fig. 1 
illustrates the representative samples of mango diseases. 
Each of the eight categories in the dataset comprises 
500 images, making it a valuable resource for research 
and applications related to mango leaf disease detection 
and classification. The dataset is highly balanced, with 
an equal distribution of 500 images for each of the 8 
distinct disease categories.

Image Preprocessing

Preprocessing was conducted to enhance image 
quality, standardize inputs, and improve model 
performance. All images were originally sized at 
240×320 pixels and were resized to 224×224 pixels to 
conform to the input requirements of convolutional 

neural networks (CNNs). This dimension is widely 
adopted in deep learning applications due to its 
computational efficiency while retaining essential 
features [26].

Pixel values were normalized to the range [0,1] 
by dividing each pixel’s intensity value by 255. 
Normalization ensures consistent feature scaling across 
inputs, accelerates convergence, and prevents numerical 
instability during training [27].

To reduce overfitting and improve generalization, 
data augmentation was applied to the training 
set. Random rotations, horizontal flips, and zoom 
transformations were performed to artificially expand 
dataset variability. Such augmentation techniques 
have been demonstrated to significantly improve CNN 
robustness in image classification [28]. 

Finally, the dataset was partitioned into training 
(80%) and testing (20%) subsets, ensuring unbiased 
model evaluation on unseen samples. The overall 
preprocessing and methodological pipeline are 
illustrated in Fig. 2.

CNN Architecture

Convolutional neural networks (CNNs) were 
employed to automatically learn discriminative features 
from mango leaf images. CNNs have been extensively 
applied in plant disease recognition due to their ability 
to capture complex spatial and texture patterns [26, 29, 
30]. A standard CNN typically comprises convolutional, 
activation, pooling, and fully connected layers, which 
together enable hierarchical feature extraction and 
classification. In this study, we adopted a custom deep 
CNN architecture tailored for mango leaf disease 
classification.

The proposed architecture (Fig. 3) consists of seven 
convolutional layers activated by the rectified linear unit 

Fig. 1. Sample images from the dataset.
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the image that is provided in it. Convolution layers with 
16 and 32 filters are used in the third and fourth layers, 
which are subsequently followed by RELU functions.

The following layer is another maximum pooling 
layer with a similar pool size. As shown in Fig. 3, 
another layer is added called flatten, which flattens the 
outcomes from the previous layers and returns features 
from each input it receives. The class label presented is 
the layer’s output, which is used to assess the overall 
correctness of the model being suggested.

Evaluation Measures

Equation (1) demonstrates how different performance 
metrics, including recall, accuracy, precision, confusion 
matrix, and F1 score, are utilized to validate the 
expected output of mango leaf disease detection.

	
(1)

Where accuracy is the fraction of correctly classified 
instances in the test set.

The instances that are truly positive in the test set 
yet are accurately classified as such by the classifier 
are known as true positives (TP). Cases that are truly 
negative in the test set yet are accurately classified  

(ReLU) [31], interleaved with 4 max-pooling layers to 
progressively reduce spatial dimensions while retaining 
salient features. A flattening layer transforms the feature 
maps into a one-dimensional vector, which is then 
processed by a fully connected dense layer. The final 
output layer applies a Softmax activation function to 
predict the probability distribution across the 8 disease 
categories. Detailed configurations of the architecture 
are summarized in Table 2.

Proposed Deep CNN Architecture

In this research, we provide a deep CNN architecture 
for classifying mango leaf disorders. The simulation 
parameters of the proposed deep CNN architecture 
are shown in Table 2, while the parameters and 
their tuned values are shown in Table 3. The model 
comprises 7 convolutional layers with RELU activation, 
4 max-pooling layers, and 1  dense layer  with Softmax 
activation. To improve deep CNN efficiency, a hidden 
layer called flatten is utilized, which generates a 1D 
array using the image as input, making it easier to 
deal with huge amounts of input. The model presented 
features an API architecture containing multiple 
hierarchical layers that extract and process features 
from the input image. The first layer consists of eight 
convolution layers, which follow  RELU activation. 
The max pooling layer is the second layer with a pool 
dimension of 2×2, which  decreases the dimension of 

Fig. 2. Block diagram of the proposed methodology.
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as such by the classifier are called true negatives 
(TN). Cases that are truly negative in the test set but 
are mistakenly classified as positive by the classifier 
are called false positives (FP). False negatives (FN) 
are examples that are positive in the test set but are 
incorrectly labeled as negative by the classifier.

As a result, the positive or healthy mango leaf 
samples are P, whereas the negative or unhealthy mango 
leaf samples are N, as shown in Equations (2) and (3). 
The specificity and sensitivity formula are as follows:

	 	 (2)

	 	 (3)

The percentage of actual positive examples among all 
occurrences that the classifier predicts to be positive is 
known as precision, as shown in Equation (4). Dividing 
the actual number of successes by the classifier’s 
predicted number of successes, one can assess precision.

	 	 (4)

The percentage of genuine positive cases in the test 
set that truly are positive is known as recall, as shown in 
Equation (5).

	 	 (5)

Equation (6) demonstrates that the F1 score, which 
provides a combined measure of precision and recall; is 
the harmonic mean of precision and recall.

	 	 (6)

Experiment Setup

The efficiency of the proposed mango leaf disease 
classification framework is validated using several 
types of evaluation criteria and comparisons with other 
models. TensorFlow and Python programming are 

Layer (type) Output Shape Param # Kernel Size/Stride

Input Layer (224, 224, 3) 0 -

Rescaling (1/255) (224, 224, 3) 0 -

Conv2D (222, 222, 8) 224 3×3 / 1

MaxPooling2D (111, 111, 8) 0 2×2 / 2

Conv2D (109, 109, 16) 1,168 3×3 / 1

Conv2D (107, 107, 32) 4,640 3×3 / 1

MaxPooling2D (53, 53, 32) 0 2×2 / 2

Conv2D (51, 51, 64) 18,496 3×3 / 1

Conv2D (49, 49, 32) 18,464 3×3 / 1

MaxPooling2D (24, 24, 32) 0 2×2 / 2

Conv2D (22, 22, 16) 4,624 3×3 / 1

Conv2D (20, 20, 8) 1,160 3×3 / 1

MaxPooling2D (10, 10, 8) 0 2×2 / 2

Flatten (800) 0 -

Dropout (0.5) (800) 0 -

Dense (8) 6,408 -

Total 55,184

Table 2. Parameter details of the proposed CNN architecture.

Table 3. Parameters and their tuned values.

Parameters Values

Convolutional layer 7 (3*3)

Pooling layer 4 (2*2)

Optimizer Root Mean Square Propagation 
(rmsprop)

Epochs 100

Batch size 32

Learning rate 0.001
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utilized to carry out the model mentioned in the present 
research. The complete experimental setup was done in 
Python using Anaconda. For constructing, compiling, 
and testing the Model, the Keras  libraries are used. to 
build, compile, and test the model. TensorFlow was 
used to develop models as a backend, as Python 3.12 on  
a computing environment was used in these experiments 
with a 2.20GHz Intel(R) Core (TM) i9-13950HX CPU, 
NVIDIA GeForce RTX 4060 GPU, and 64GB of RAM.

Results and Discussion

The dataset contained a total of 4000 images, and 
the instance images are separated into 2 sections, with 
one portion used for training and the second for testing. 
The dataset is divided into 2800 images for training and 
1200 images for testing to obtain results, i.e., randomly 
split into an 80% training set and a 20% held-out test 
set.

Table 4 presents a comparative performance 
analysis between the proposed Deep CNN and other 
well-established pretrained models, i.e., DenseNet121, 
DenseNet169, and InceptionV3, for the multi-class 
classification of mango leaf diseases. To ensure a robust 
comparison, identical training strategies were applied to 
all pre-trained models. All layers were unfrozen and set 
to trainable to allow for full fine-tuning on the mango 
leaf dataset. The models were compiled with the Adam 
optimizer with a learning rate of 1e-4 and trained using 
early stopping with a patience of 10 epochs, monitoring 
the validation loss. The analysis is based on standard 
evaluation metrics, i.e., precision, recall, F1-score, and 
overall accuracy across eight disease classes. The model 
achieved an accuracy of 100% on the held-out test set. 
To further evaluate robustness, 5-fold cross-validation 
was also performed.

In comparison, DenseNet121, the best-performing 
pretrained model, achieved near-perfect performance 
with an overall accuracy of 99.92%, but still exhibited 
minor reductions in recall for Die Back (0.9933) and 
in precision for Powdery Mildew (0.9934), resulting in 
slightly diminished F1-scores (0.9967) for these classes. 
Similarly, DenseNet169 and InceptionV3 demonstrated 
strong but slightly inconsistent results, with recall 

dropping as low as 0.90 for Gall Midge in the case of 
InceptionV3, indicating potential sensitivity to intra-
class variability or overlapping visual features in certain 
categories.

The proposed Deep CNN model demonstrates 
clear superiority in classifying mango leaf diseases, 
achieving perfect performance across all 8 disease 
categories with precision, recall, and F1-score values of 
1.00 and an overall accuracy of 100%. This exceptional 
performance significantly surpasses that of competitive 
pretrained models such as DenseNet121, DenseNet169, 
and InceptionV3, establishing the proposed model’s 
supremacy in disease-specific feature extraction. 
Notably, the model is designed with a streamlined 
architecture comprising only 13 layers and a total of 
55,184 trainable parameters, substantially fewer than 
most pretrained architectures, yet it outperforms them 
in both generalization and precision. This achievement 
is attributed to the model’s end-to-end training on 
domain-specific data, allowing it to learn finely 
grained morphological and textural features critical for 
distinguishing between both visually distinct and subtly 
varying disease symptoms [32]. Furthermore, its ability 
to maintain class-wise balance, even in the presence 
of overlapping symptoms and intra-class variability, 
underlines its robustness against class imbalance 
and environmental noise. The lightweight yet highly 
expressive architecture ensures computational efficiency, 
making it suitable for real-time field deployment in 
precision agriculture and disease monitoring systems 
[33].

Fig. 4 provides a comprehensive visualization of the 
training and validation performance of DenseNet121, 
DenseNet169, InceptionV3, and the proposed Deep 
CNN model through accuracy and loss plots. Fig. 4a) 
displays the training and validation accuracy curves for 
DenseNet121, showing a steady rise and convergence 
towards high accuracy with minimal variance, 
indicating effective learning. Fig. 4b) illustrates the 
corresponding loss curves, where both training and 
validation losses decrease consistently, albeit with slight 
fluctuations, suggesting a well-trained yet marginally 
overfitted model. Fig. 4c) presents the DenseNet169 
accuracy curves, reflecting strong learning behavior 
with high final accuracy, although the slightly wider 

Fig. 3. The proposed deep CNN architecture.
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gap between training and validation accuracy hints 
at potential overfitting. The loss trajectory in Fig. 4d) 
further supports this, with a sharp decline in training 
loss and relatively stable validation loss, indicating 
effective convergence but room for improvement in 
generalization. Fig. 4e) illustrates the accuracy plot of 
InceptionV3, where both curves closely follow each 
other and improve rapidly, highlighting the model’s 
strong learning and generalization capabilities. Fig. 
4f) shows the loss curves for InceptionV3, depicting 
a consistent decline in both training and validation 
losses, although a minor divergence near convergence 
suggests mild overfitting. Fig. 4g) showcases the 
training and validation accuracy curves of the proposed 
Deep CNN model, which exhibits a nearly perfect and 
synchronized rise, achieving perfect accuracy from the 

early epochs, while Fig. 4h) shows that both training and 
validation losses reach near-zero values in a smooth and 
synchronized manner [34]. These observations clearly 
indicate the proposed model’s stability, robustness, 
and optimal parameter learning, further validating 
its superior performance compared to the pretrained 
counterparts.

Fig. 5 presents the confusion matrices of 
DenseNet121, DenseNet169, InceptionV3, and the 
proposed Deep CNN model, offering insights into their 
classification performance across all mango leaf disease 
classes. Fig. 5a) shows that DenseNet121 achieves near-
perfect predictions, with minor misclassifications in a 
few categories. Fig. 5b) illustrates DenseNet169’s strong 
overall performance but reveals slightly more confusion 
between visually similar classes. Fig. 5c) indicates 

Table 4. Results obtained through the proposed deep CNN and other pretrained models.

Pre-trained models Disease class Precision Recall F1-score Accuracy Parameters (M)

DenseNet121

Anthracnose 1.0 1.0 1.0

99.92% 8.1M

Bacterial Canker 1.0 1.0 1.0
Cutting Weevil 1.0 1.0 1.0

Die Back 1.0 1.0 1.0
Gall Midge 1.0 1.0 1.0

Healthy 1.0 1.0 1.0
Powdery mildew 0.9934 1.0000 0.9967

Sooty Mould 1.0 1.0 1.0

DenseNet169

Anthracnose 1.0 1.0 1.0

99.75% 14.3M

Bacterial Canker 1.0 0.9933 0.9967
Cutting Weevil 1.0 1.0 1.0

Die Back 0.9934 1.0 0.9967
Gall Midge 1.0 1.0 1.0

Healthy 1.0 1.0 1.0
Powdery mildew 1.00 0.9867 0.9933

Sooty Mould 0.9868 1.0000 0.9934

InceptionV3

Anthracnose 1.0 0.9933 0.9967

99.92% 23.9M

Bacterial Canker 1.0 1.0 1.0
Cutting Weevil 1.0 1.0 1.0

Die Back 1.0 1.0 1.0
Gall Midge 0.9934 1.00 0.9967

Healthy 1.0 1.0 1.0
Powdery mildew 1.0 1.0 1.0

Sooty Mould 1.0 1.0 1.0

The Proposed Deep 
CNN

Anthracnose 1.0 1.0 1.0

100% 5.5M

Bacterial Canker 1.0 1.0 1.0
Cutting Weevil 1.0 1.0 1.0

Die Back 1.0 1.0 1.0
Gall Midge 1.0 1.0 1.0

Healthy 1.0 1.0 1.0
Powdery mildew 1.0 1.0 1.0

Sooty Mould 1.0 1.0 1.0
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a)

 

b) 

c) d) 

e) f) 

g) h) 

Fig. 4. Accuracy and loss plots of DenseNet121, DenseNet169, InceptionV3, and the proposed deep CNN model. a) Training and 
validation accuracy plot of the DenseNet121, b) Training and validation loss plot of DenseNet121, c) Training and validation accuracy 
plot of the DenseNet169, d) Training and validation loss plot of DenseNet169, e) Training and validation accuracy plot of the InceptionV3,  
f) Training and validation loss plot of InceptionV3, g) Training and validation accuracy plot of the proposed deep CNN Model,  
h) Training and validation loss plot of the proposed deep CNN Model.
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that InceptionV3 also performs well, though a few off-
diagonal elements suggest occasional mislabeling. In 
contrast, Fig. 5d) demonstrates the proposed Deep 
CNN’s perfect classification with zero misclassifications, 
reaffirming its superiority in recognizing all disease 
classes with complete precision [35].

Fig. 6 illustrates the ROC-AUC curves with 95% 
confidence intervals for DenseNet121, DenseNet169, 
InceptionV3, and the proposed Deep CNN model, 
offering a robust evaluation of each model’s diagnostic 
reliability. Fig. 6a) reveals that DenseNet121 attains high 
AUC values across all classes, with narrow confidence 
intervals indicating consistent model behavior. Fig. 
6b) shows similar trends for DenseNet169, although 
a slightly broader confidence band in certain classes 
points to marginal variability. Fig. 6c) presents the 
ROC-AUC curves for InceptionV3, which maintains 
strong discriminative performance but exhibits slightly 
wider intervals in a few cases, suggesting less stability 
under class-specific perturbations. In contrast, Fig. 6d) 
highlights the proposed Deep CNN model’s exemplary 
performance, achieving AUC values approaching 1.0 

across all classes with uniformly narrow confidence 
intervals. This underscores the model’s exceptional 
ability to distinguish between healthy and diseased 
categories with high confidence and minimal 
uncertainty, making it a highly dependable tool for 
practical disease detection scenarios [36].

Comparison with Recently Published Studies

The suggested CNN model for mango leaf detection 
exhibits superior accuracy when compared to existing 
models. Leveraging advanced convolutional layers, the 
proposed model excels in capturing intricate features 
crucial for precise classification, outperforming 
traditional methods, as shown in Table 5. This enhanced 
accuracy underscores the potential of the proposed CNN 
model as a more reliable and effective tool for automated 
mango leaf detection [38].

A variety of machine [37] learning algorithms were 
applied to identify and categorize mango leaf illnesses 
[8], including a CNN that achieved 96% accuracy in 
diagnosing leaf diseases. The study [32] used VGG-Net 

Fig. 5. Confusion matrices of the pretrained models, i.e., DenseNet121, DenseNet169, InceptionV3, and the proposed deep CNN model. 
a) Confusion matrix of the DenseNet121, b) Confusion matrix of the DenseNet169, c) Confusion matrix of the InceptionV3, and d) 
Confusion matrix of the proposed deep CNN model.

a) b) 

c)

 

d) 
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for the classification of the infected mango leaves dataset 
with 92% accuracy. The CNN model demonstrated 
exceptional performance in identifying mango leaves, 
attaining a 98% accuracy rate [33]. Mango leaf disease 
categorization and detection using a CNN-based 
approach showed a 90.36% accuracy rate [25]. The study 
[20] used SVM and SGD for the classification of mango 
leaf disease, achieving 97.7% accuracy. The study [21] 

utilized the DenseNet169-based CNN to detect mango 
leaf disease with 97.81% accuracy. [23, 39, 40] proposed 
a lightweight convolutional neural network for detecting 
mango leaf diseases, achieving 98% accuracy [41]. The 
proposed CNN model in this study outperformed all 
other methods, achieving an impressive 100% accuracy.

The perfect accuracy on the test set, while 
promising, may raise concerns of overfitting; however, 

Fig. 6. ROC-AUC curves with 95% confidence intervals of the pretrained models, i.e., DenseNet121, DenseNet169, InceptionV3, and 
the proposed deep CNN model. a) ROC-AUC curves with 95% confidence intervals of the DenseNet121, b) ROC-AUC curves with 95% 
confidence intervals of the DenseNet169, c) ROC-AUC curves with 95% confidence intervals of the InceptionV3, and d) ROC-AUC 
curves with 95% confidence intervals of the proposed deep CNN model.

a)
 b) 

c) 
d) 

Table 5. Comparison of the results obtained with the proposed model and the published studies.

References Technique Description Accuracy

[8] CNN Identify leaf disease 96%

[32] CNN (VGGNet) Classification of infected mango leaves 92%

[33] CNN Recognition of mango leaves 98%

[25] CNN Classification and detection of mango leaves 90.36%

[20] SVM and SGD Classification of mango leaf diseases 97.7%

[21] CNN Detection of mango leaf diseases 97.81%

[23] CNN Detection of mango leaf diseases 98%

Proposed model CNN Classification and detection of mango leaf diseases 100%
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the consistently high performance achieved through 
5-fold cross-validation (mean accuracy: 99.98%±0.02%) 
helps mitigate this concern and highlights the model’s 
robustness.

Practical Deployment and Real-World  
Application

The proposed model’s high accuracy and 
computational efficiency make it a prime candidate 
for real-world deployment of resource-constrained 
hardware. Two primary pathways are envisaged: 
integration into a  mobile application, for instance, 
in-field farmer diagnosis, and deployment on  edge 
devices  coupled with drones for automated, large-scale 
crop monitoring. Future work will address practical 
challenges like varying field conditions and focus on 
developing a functional prototype to validate the model’s 
efficacy in real-world scenarios.

Limitations and Future Work

Despite strong performance, this study has 
limitations. The model was trained in curated datasets, 
and its generalizability to the full variability of real-
world field conditions requires further validation. Future 
work will focus on external validation with more diverse 
data, practical deployment via a mobile application 
prototype, architectural refinement to enhance 
robustness, and expanding the model’s scope to include 
disease severity estimation.

Conclusions

This study successfully developed a lightweight 
deep convolutional neural network for the automated 
classification of mango leaf diseases. The model 
demonstrated exceptional performance, achieving 
high accuracy on a balanced, multi-class dataset, 
while maintaining significantly lower computational 
complexity than advanced pre-trained architectures.  
The primary contribution of this work is a highly 
accurate, yet resource-efficient model specifically 
designed for practical deployment. Its compact design 
makes it a viable candidate for integration into mobile 
or edge-computing devices, directly supporting  
the goals of precision agriculture by providing a tool 
for rapid, in-field disease diagnosis. This capability 
is crucial for enabling timely interventions, reducing 
crop losses, and promoting more sustainable orchard 
management practices, moving beyond theoretical 
applications to offer tangible benefits for mango 
cultivation. The lightweight CNN model is highly 
accurate, computationally efficient, and scalable, 
making it suitable for integration into mobile-based 
diagnostic systems for real-time mango leaf disease 
detection in the field.
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