Pol. J. Environ. Stud. Vol. 24, No. 3 (2015), 1413-1422

DOL: 10.15244/pjoes/31718

Original Research

On the Climatic Uncertainty to the Environment
Extremes: a Singapore Case and Statistical
Approach

Yi Zhang*

Division of Infrastructure Systems and Maritime Studies, School of Civil and Environmental Engineering,
Nanyang Technological University, Singapore

Received: 18 August 2014
Accepted: 2 November 2014

Abstract

In recent times, increasing economic losses due to unexpected extreme environmental conditions have

been noticed. The occurrence of these extreme environmental events requires us to have a clearer under-

standing of climatic influence on our lives. This paper utilizes the case of Singapore to investigate the influ-

ence of climate extremes on a country. The environmental elements of Singapore whose extremes are most

likely to change in the future are identified. The impacts of these extremes on an entire nation’s economy and

public health are discussed. Additionally, climate-induced statistical uncertainties in the modeling of extreme

values are investigated. Based on the available knowledge of climate uncertainty information, the change of

statistical structure in the extreme value model is discussed. The impact of various types of climate uncertainty

in the extreme value modeling for a physical environmental variable is summarized at the end of this paper.

Keywords: climate change, extreme value modeling, offshore engineering, Poisson process, uncertain-

ty modeling

Introduction

It has been widely recognized that climate changes will
trigger an increase in extreme environmental events [1].
This is concluded from many discussions on the evidence
arguing about whether there is a real influence of climate
change on the environment [2]. The occurrences of extreme
weather and climate events over the past few decades have
been brought to the fore of societal concerns. Both the pri-
vate sector and governments worry about the apparent
increase in the frequency of extreme weather and climate
events. These result in negative impact on the environment
and human lives.

Great effort has been made to understand the influence
of extreme environment events. The importance of climate
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issues on human land use has been emphasized [3], and the
influence of human activities on precipitation also has
been shown [4]. Recent articles also have found that agri-
culture is sensitive to extreme climate conditions [5].
Climatic impact could be particularly amplified in some
places which are quite volatile for their high exposure to
climate extremes. Typically coastal cities, where a large
population may be concentrated, can be vulnerable to cli-
mate change impacts such as sea level rise. This, in turn,
can adversely affect water resources as a result of flooding,
coastal erosion, water scarcity, etc. The importance of
these issues have been realized by many countries and
cities. Many of the decisions relating to future urban devel-
opment regarding climate change risks are carefully con-
sidered [6].

Singapore is such an example that is particularly vul-
nerable to climate change as it is an island nation with a
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dense population in one city. Singapore is quite reliant on
surrounding countries for many essential resources. There
are various kinds of risks regarding climate change. One
typical example would be water resources. The domestic
availability of water in Singapore is quite limited. A sudden
change in the climate may immediately cause a large loss in
the economy not only within the region but the whole
world. Recent research studies have shown that Singapore
has the largest assets threatened by climate change com-
pared with other major coastal cities in Asia [7].

This study is going to investigate several climate factors
that could affect the extreme value model. These are long-
term climatic change, seasonal cyclic climatic variation,
and abrupt climatic changes [8, 9]. In order to fix these
ideas, our paper first will present the basic formulas and
theories investigated in this study. Later, the paper will dis-
cuss the influences of various degrees of climatic uncer-
tainties to the related output results. For simplicity, we
assume the investigated problem does not include any tem-
poral extreme climatic events (e.g. tsunami or earthquake).
Our current investigation focuses only on pertinent climat-
ic uncertainties.

Extreme Changes in Singapore

Singapore is an island on the southern tip of the Asian
continental plate. It is divided by the Straits of Johor from
Peninsular Malaysia to its north and by the Singapore Strait
from Indonesia's Riau Islands to its south.

In Singapore, it is observed from the past that the annu-
al mean surface temperature has risen from 26.8°C in 1948
to 27.6°C in 2011. A general plot of this changing process
is given in Fig. 1. The reason on one hand is mainly because
of its fast urbanization and development, but on the other
hand, the global warming effect also has exacerbated the
change of the environmental structure. The human factor
may also be a reason for this long-term climate change. For
example, although Singapore only produces 0.39% of total
Asian pollutant emissions [10], its per-capital contributor of
anthropogenic emissions to the atmosphere is among the
top two in Asia [11].

The seasonal effect in Singapore is also very obvious.
Unlike other places in the world, Singapore is only 1.36
degrees of latitude north of the equator. Due to its high mar-
itime exposure, the climate here is characterized by uniform
temperature and pressure throughout the year. However,
high humidity and abundant rainfall can be noticed in cer-
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Fig. 1. Annual mean surface temperature (°C).
Source: Meteorological Service Singapore.

tain wet seasons. Fig. 2 plots the maximum monthly rain-
fall, temperature, humidity, and thunderstorms in Singapore
for recent years. It can be seen that only the monthly
extreme rainfall has a very obvious seasonal cyclic change
pattern, while others are relatively less obvious. The influ-
ence of La Nifia (associated with heavy rains) and tropical
cyclones are very obvious, which could cause massive
flooding in major rivers in Singapore. Extreme events like
La Nifia and tropical cyclones have brought heavy and
intensive rainfall in Singapore, resulting in excessive runoff
and water flows to the fragile ecosystems, which lead to
massive flooding, landslides, severe erosion of river banks,
and sedimentation [12]. Together with the influence of
Asian monsoon, which is caused by the larger amplitude of
the seasonal cycle of land temperature compared to that of
nearby oceans, a prominent peak in monthly precipitation
normally occurs between November and January. Lower
precipitation is usually observed during the southwest mon-
soon period. As a result, we can see the extreme rainfall is
quite sensitive to the seasonality while the remaining fac-
tors are less sensitive.

Besides the above-mentioned changes of environmental
extremes during a long period, it is also expected that short-
term extremes (or irregular extremes) are quite critical for
human activities. One of these short-term extreme environ-
mental events is the tropical storm. Although tropical
storms are not formed within the region of Singapore, the
weather can be significantly affected. One typical case was
tropical storm/typhoon Vamei on 27 December 2001,
which was faced by Singapore for the first time. It formed
in the South China Seamand proceeded westward and
eventually landed in Singapore and te Malacca Straits.
Later, it passed over Sumatra, 100 km south of Meulaboh,
and dissipated over the Indian Ocean [13] on 1 January
2002. It brought heavy rainfall to Singapore and caused air
traffic disruptions at Singapore Changi Airport. The pas-
sage of the cyclone resulted in many downed trees and
caused $3.6 million dollars in damage and five deaths.
Meteorologist Richard Anthes, president of the University
Corporation for Atmospheric Research in Boulder,
Colorado, agreed that “this [was] quite an interesting and
rare event, both in time and in place” [14].

From an economic point of view, all these extremes
could lead to great impact on the whole nation. For exam-
ple, the protection of flood and sea level rise demands lots
of money. From 2012, PUB already released a $750 million
dollar project aimed at raising flood protection and rein-
forcing six major canals, like the Alexandra Canal and
Rochor Canal [15]. This will also be increased in the future
as growing urbanization and population is expected. The
seasonal change will also trigger a shift in the nation’s gross
productivity. For instance, changing climates may alter the
seasonal patterns of tourism (e.g. fewer people wanting to
come to Singapore in the wet season) and forms of leisure
activities [16]. Another thing that might be noted is the
influence of seasonal effect to the death rate [17]. The
change of climate structure can directly affect the function-
ality of land use (e.g. less land may lead to a rise in its
price). A recent article reported that “economics will suffer
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a loss range between 2.9 and 15.2 percent of annual gross
domestic product because of the climate change in the
Pacific by 2100” [18].

One should note that the uncertainty in the present cli-
mate model makes it difficult to predict extreme climate in
the next decades. However, Singapore has already taken
initiatives, such as some degree of protection. For example,
according to the New York Times (29 August 2007) in
“Vulnerable to rising seas, Singapore envisions a giant sea-
wall}” Singapore has built many sea walls and breakwaters
for overtopping, overturning, or breaking up to reduce its
vulnerability to rising sea levels. Currently, about 70-80%
of Singapore’s coastal areas have hard walls or stone
embankments, which help Singapore to protect against
coastal erosion. The rest are natural areas such as beaches
and mangroves.

Nevertheless, the risk is complicated by the fact that no
one knows for sure how much the extreme climate will be
and when will it happen. Estimates of climate extreme
changes can be quite different from different scenarios. For
example, the estimates of sea level rise vary from as little as
60 cm to as much as 6 m [1]. Based on this concern, some-
times the uncertainties regarding risk assessment can only
be roughly quantified. This is normally realized through a
probabilistic approach, for example when an extreme value
model is employed. However, the exact influence of cli-
mate change on an established extreme value model is still
a big question. The decision of whether to use the extreme
value model for climate analysis needs to be drawn from
the exact uncertainty analysis [19]. This is elucidated in the
following sections.
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Fig. 2. Seasonal effects on extreme weather factors.

Analysis of Climatic Changes in Environmental
Extremes — a Statistical Approach

This section presents a way to quantify the unpre-
dictable climate change uncertainties in extreme value
modeling. Here, the analysis adopts the traditional extreme
value theory as fundamental knowledge and uses it to ana-
lyze the impact resulting from climate change [20].

Classic Asymptotic Model

We shall recall the basic classic extreme value theory
developed on the modeling of the statistical behaviour of
extreme values. A concerned distribution model M, is
derived in relation to the original distribution F, which
requires a certain group of data not exceeding the same
value, z, is derived as [21]:

Pr{M <z} =Pr{Y <z,....V,<z} =

Pr{Y,<z}x..xPr{Y,<z} = {F(z)}" M

The estimation of the maxima involves the known
information of the variable distribution F. Unfortunately,
the distribution of the observed data is always unknown in
reality. One possible way is to use standard statistical tech-
niques to estimate /" from observed data, and then substitute
into Eq. (1). While the data size approaches infinity, n—oo,
the extremal type theorem provides the limit distribution for
the behaviour of F". The asymptotic distribution could be
obtained if there are sequences of constants {@,>0} and
{b,} such that:

b)
)
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Source: Data collected from the National Environment Agency Website.
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Pr{(M,-b,)a,<z}—G(z) as n— )

..where G is a non-degenerate distribution function. Then
function G could be classified into one of the following
families [22]:

|ZG(Z)—eXp{—6Xp{—(Z;bﬂ},—oo<Z<oo @

I1:G(z)= exp{_(z—b}“} L5, @)
N:G(z)= EXp{{_ Zz_ab”} 2<b )

1 z>b,

~

...where each family has parameters a and b as scale and
location, and a is the shape parameter. Three classes of dis-
tributions are termed to the extreme value distribution with
the widely known names Gumbel, Fréchet, and Weibull fam-
ilies. The feature of this result is that the three types of
extreme value distributions are the only possible limits for
the distributions of M,, regardless of distribution F for the
population. A very key issue among these three types of limit
functions is the differences in tail behaviour. The density of
G decays exponentially for Gumbel distribution and polyno-
mially for Fréchet distribution, corresponding to different
rates of decay. The differences in families could make large
differences in the estimates. Usually, the extreme value
analysis is based on a more flexible model offered by the
reformation of the families, a combination of Gumbel,
Fréchet, and Weibull families, and the Generalized Extreme
Value Distribution (GEV):

ol foof] ) e
ol () e

Defined on the set {1+&((z-1)/0)>0}, where the parame-
ters satisfy -co<u<oo, 6>0 and -oo<¢<oo. Types I, II, and III
classes correspond to =0, &0 or ¢<0, respectively.

However, the direct use of the extreme value model is a
great challenge. The use of only the extremes will discard
the other information provided by other data. This leads to
a waste of large amounts of data. It gives the incentive to
bring into use Pareto distribution or the peak over threshold
(POT) approach. The theoretical basics of POT are extend-
ed from the GEV for values that exceed a certain value. The
data concerned are a group of variables instead of the max-
ima in a block. It can be shown in a conditional probability
function expressed in Eq. (6).

G(z)=

1-F(u+z)

Pr{Y >u+z|Y>u}= R ()

, 2>0 7

If the parent distribution F' also obeys the asymptotic
rule, the cumulative probability distribution function for the
exceedances could be expressed as:

1—{1+§(2;’HU§ £#0
(] "

...where ¢ is the shape parameter, u is the threshold, and ¢ is
the scale parameter, which has a relationship with other
parameters in GEV at: 6 = o+&(u-u). This family of distrib-
utions is called the generalized Pareto family. It parallels the
use of the GEV in the modeling of maximas. The classifica-
tion of the distribution into types I, II, or III is the same as
that in GEV.

G(z)=

Peak Value and Poisson Process

An extension of the threshold model can be obtained by
a combination of Poisson process and GPD model [23]. In
that case, the Poisson property of exceedances suggests the
following model, which is called the Poisson-GPD model
[24]:

* The number, N, of exceedances of level u in any one
reference period (e.g. one year) has a Poisson distribu-
tion with mean A.

» Conditionally on N>1, the excess values y,, ,,..., vy
are identical, independently distributed from GPD.

We refer this process to an intensity function related to
the GEV distribution model. The following probability dis-
tribution function that the maximum of a process, for y>u,
is less than z can be given:

Pr{maxy, 2| =Pr{N =0} + > PrN =nY, <2,

! n
1<i<N 1

) b))

©
And the limit of Poisson process in the characterization
of extremes provides:

=e 4+ i
n=1

=Y

G=o+&(u-p), v=+Eu-mlo)"

Thus the GEV and GPD models are entirely consistent
with one another. Moreover, Eq. (10) shows exactly how
the Poisson-GPD model parameters vary with threshold .
From a mathematical point of view, this is consistent with
the modern view of extremes in stationary processes.
Exceedances over high threshold occur in clusters while the
clusters approximately follow the Poisson process.

Based on the fundamental property of a Poisson
process, for such a process Y(#) within a reference period 7,
the probability of occurrence would obey the following
equation:
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Pr{Y(t)<u,0<t<T}=exp(-AT) (11

Similarly, the upcrossing rate of a process in terms of
the observed process value Y(f) can be formulated as:

0

A(0)=[¥ (1) fy (Y (t))dY (t) (12)

0

...where Y(#) denotes the derivative of Y{?) with time, and f;y
(.) represents the joint distribution of ¥(#) and Y{(#). Hence it
can be seen that the occurrence of peak values is generally
relying on joint distribution, which could be either estab-
lished or empirically obtained from the process.

Uncertainty in Environmental Process

The use of an extreme value model requires the data set
to be stationary, independent, and identically distributed.
This assumption is quite stringent. Normally, the collected
data contain large uncertainties from the time-varying prop-
erties [25]. Here we will demonstrate some important issues
regarding environmental process modeling. We aim to give
a remarkable result in showing the influence of many com-
monly met climate change uncertainties to the extreme
value model. A typical assertion is given here as “no para-
meters are constant with time!” The real observed environ-
mental processes are physical variables dependent on the
natural climate. We may say, however not absolutely, that
every environmental process is a varying function of time.
However, climate uncertainty is elusory and can only be
quantified to a certain extent.

Long-Term Trend Uncertainty

When establishing the extreme value model, a very
common implicit assumption is that the model can be used
for a long period. However, the real environmental process
is definitely not the case. Various climatic variations can
happen with physical variables (e.g. global warming).
Recent works do believe that certain modifications should
be made to the present model. A simple “naive” approach is
to use a linear trend approach in modeling the long-term
variation [26]. A linear function to characterize the scale
parameter in a Pareto distribution for modeling the flood
damage is proposed by Katz et al. [27]. This concept of lin-
ear varying characterization is also adopted in modeling
other climate factors, such as temperature [28], precipita-
tion [29], and wave height [30].

We adopt this assumption here in the study. The follow-
ing formula is considered as a general modified extreme
value model for considering a long-term trend effect:

Pr{max Y(6)< Z} =
-1/(&(1+Bt))
—u(l
expy—A(1+ar)| 1+£(1 +ﬂt)ﬂ
o(1+ pr) 13)

...where a, f, y, and p are parameters representing the long-

Table 1. Investigated cases of long-term trend uncertainty in an
extreme value model.

z=45
Poisson rate Shape Location Scale
A parameter ¢ parameter u parameter o
10 -0.5 1 2
Case 1
a=0.2 | £=02 | =02 | =02
Case 2
=02 | f=02 | =02 | =02
Case 3
=005 | £=02 | =02 | =02
Case 4
a=0.2 | £-0.05 | 0.2 | =02
Case 5
0.2 | £=02 | 7=0.05 | =02
Case 6
=02 | £=02 | =02 | =005

term climate changes (e.g. linear pattern). One should note

that the influence of long-term climate change may give

different impacts to the parameters. These can lead to dif-

ferent estimates in the results. Generally, the parameters in

Pareto distribution model have their own mathematical

meanings:

1) the threshold generally indicates the intensity of the
extreme values,

2) scale parameter describes the size of dispersion around
the mean value,

3) shape parameter shows how the tail decays in the distri-

bution function [27].

However, it is noted that the long-term changes of these
parameters are rather small, which may not be easily
noticed. Therefore, the time unit we used here, which is
varying within [0, 1], may only represent the change in
long-term (magnitude of one would be unimportant). For a
short period of time, the sensitivity of an extreme value
model will not be so sensitive. However, it is worth giving
some remarkable results to reveal some of the points that
may be ignored within traditional statistical treatments.
Table 1 records the information of investigated cases for
long-term effect.

With reasonable considerations of the values given for a,
B, vy, and p, the results of Eq. (14) are calculated for a speci-
fied value z=4.5. These are plotted in Fig. 3. As shown in the
figure, a linear increasing pattern of parameters (Case 1)
would lead to an increasing of non-exceedance probability,
while a decreasing pattern (Case 2) shows the opposite.
From the comparison of Cases 3-6, we could see that the
long-term non-exceedance probability is quite sensitive to
the change of shape parameter (Case 4 gives the largest
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Fig. 3. Effect of long-term trend uncertainties.

value drop) and scale parameter (Case 6 gives the largest
value rise). The influence from the change of the other two
parameters (Cases 3 and 5) are generally small. However,
we should note that an increasing rate of shape parameter
would lead to large decreasing rate of non-exceedance
probability. This indicates that if shape parameter is not
very sensitive to the long-term changes, the established
extreme value model would only have small changes and
thus could still be used. However, the change of other para-
meters will make the non-exceedance probability larger.
This implies that the extreme value model may not be
robust in the long term when other parameters have
changed a lot.

In the Singapore case we will expect the climate to have
a long-term change. One particular example would be tem-
perature. It is reported that the increasing rate is around
0.1% annually for the annual maximum temperature in
Singapore [10]. We could see if this change is regarding an
average rate for all parameters, in which case the long-term
temperature change pattern will follow Case 1. However, if
unequal changes are expected, further investigations may
be required. For instance, if the variance of daily tempera-

——Cage 1
-B-Cage 2

—(aze 3
——Cage 4
——Case 5

—Cage 6

0.6 0.8 1 12
Time (t)

ture is low, which means the change of the shape parameter
in the extreme value model might be small, then the non-
exceeding probability for a specified extreme temperature
value is expected to be lower than Case 1. From the long-
term point of view, this provides people with information
about whether a climate adaptation strategy is needed to
consider different influences coming from different para-
meter changes. The detailed climate analysis could follow
the statistical analysis highlighted in the above study.

Seasonal Varying Pattern Uncertainty

Another obvious statistical changing pattern that is
commonly observed is that an environmental process could
be seasonal changes. Most previous studies have highlight-
ed this effect and several special statistical treatments could
be found in the literature [31]. Here, an artificial seasonal
uncertainty introduced by Méndez et al. [30] is introduced
in this study. The seasonal uncertainty is generally mod-
elled as a trigonometric function. This concept is now inte-
grated into the Poisson-GPD model, which can be
expressed as:

1
—(ase 1
0.8 - =(Cage 2
,\—[7\0‘6 _ Case 3
oy —Case 4
~
Z0.4 Case 5
=
0.2
0 0.2 0.4 0.6 0.8 1
Time (t)

Fig. 4. Effect of the seasonal uncertainties in different parameters.
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Table 2. Investigated cases of seasonal uncertainty in the
extreme value model.

z=3.0
Poisson rate Shape Location Scale
A parameter £ | parameteru | parameter o
10 -0.5 1 2
Case 1
a=0.5 | b=0.5 | =0.5 | a=0.5
Case 2
a=0.2 | b=0.5 | c=0.5 | d=0.5
Case 3
a=0.5 | b=0.2 | =0.5 | a=0.5
Case 4
a=0.5 | b=0.5 | =02 | d=0.5
Case 5
a=0.5 | b=0.5 | c=0.5 | d=0.2
Pr{maxY(r)<z}=
z—ucos(crt) g entben)
exp {—/1 cos(arnt) [1 + &cos(brt) W) 0 }

...where a, b, ¢, and d represent the influences of the sea-
sonal effect to parameters 4, &, u, and o, respectively. A fact
is that the values of a, b, ¢, and d are very close according
to prior researcher’s works, which were estimated based on
Fourier series [31]. But the varying of the exceedance prob-
ability over value z=3.0 along the process is quite sensitive
to these values. Here, we investigate the following cases
(Table 2).

The effect of these uncertainties can be observed at the
changes of exceedance probability of process ¥(¢) (Fig. 4).
The graph generally demonstrates the influence of the
uncertainties of different parameters to the overall extreme
value model for the process. An amazing finding is that

when the scale parameter is less sensitive to the seasonal
varying uncertainty (Case 5), the non-exceedance probabil-
ity F(Y(£)<z) of the process tends to be low. This may indi-
cate the importance of the scale parameter when we estab-
lish an extreme value model for the observed environmental
data. Another issue would be the sensitivity of the non-
exceedance probability to time. As seen in Fig. 4, the
decrease of shape parameter would lead to an increase in the
change rate of non-exceedance probability (Case 3). This
generally implies that a sudden change in the seasonal effect
for shape parameter may lead to a sudden variation in the
extreme value model. Therefore, we should pay more atten-
tion to the seasonal cyclic effect in the shape parameter.

The same problem is analyzed again while the Poisson
rate 4 is now changed to 50 (Fig. 5). As expected, the non-
exceedance probability now becomes smaller compared to
the former case. The sensitivity of the exceedance proba-
bility in terms of the seasonal changes becomes quite large
as the plot of F(¥(f)<z) is much steeper compared with the
previous study. However, the increasing of 4 does not affect
the orders of the importance of the uncertainties in the para-
meters. The amount of changes in exceedance probability is
still quite critical and very obvious through time. The estab-
lishment of a statistical model based on seasonality is an
essential procedure.

The lessons learned from this study is that we should
recognize the seasonal variations in the modelling of
extremes. In Singapore, the maximum daily rainfall shows
the most obvious seasonal varying pattern (Fig. 2). The dif-
ference between the dry and monsoon seasons is nearly
50%. The frequency of this change in Singapore is usually
observed once a year. The collected rainfall data shows that
the maximum rainfall varies significantly among the years
[13]. This means the seasonal variations in scale parameter
is large (the value of ¢). From this study, we would see this
phenomenon will give a lower non-exceeding probability
compared to the usual case (Case 1), which assumes all the
parameters undergo an equal cyclic seasonal change
process. Therefore, the value of rainfall extremes may be
underestimated if seasonal influence is ignored. This might
create some errors in urban design (e.g. the design of the
reservoir) and thus lead to unexpected economic loss.

1
——(Cage |
0.8 ~ =(Case 2
/\20‘6 Clase 3
= —(Case 4
0.4 Case 5
=
0.2
O B =R ==l e
0 0.2 0.4 0.6 0.8
Time (t)

Fig. 5. Effect of seasonal uncertainties in Poisson rate.
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Table 3. Investigated cases of noise uncertainty in the extreme
value model.

Table 4. Results of non-exceedance probability for noise uncer-
tainty in the extreme value model.

z=4.0 Case 1 | Case 2 | Case 3 | Case 4 | Case 5
Poisson rate Shape Location Scale Average
4 parameter ¢ | parameter u | parameter o non-exceedance | 0.5357 | 0.5410 | 0.5521 | 0.5331 | 0.5230
10 05 1 2 probability
Case 1 Maximum
non-exceedance | 0.6632 | 0.6482 | 0.8557 | 0.7926 1
=0.02 0=0.02 v=0.02 5=0.02 probability
Case 2
=0.10 6=0.02 v=0.02 0=0.02
Case 3 Pr{maxY()<z}=
=0.02 6=0.10 v=0.02 0=0.02 . . z—u(l+N(0,v(t)z)) “i(casn {000 ))
expi A0+ N(0,7()) 1+§N(0,€(t) )72
Case 4 o1+ N(0.5(0)°)) (15)
=0.02 6=0.02 v=0.10 5=0.02 _ , ,
...where 7, 0, v, and J are the associated noises with the
Case 5 extreme value model parameters. The noises in terms of
=0.02 0=0.02 v=0.02 5=0.10 variance would indicate an environmental condition. For

Common Instantaneous Climatic Uncertainty

Obviously, the most critical climatic uncertainty would
be induced by a temporary event, for example storms or
hurricanes. Unfortunately, natural events are usually
unpredictable and thus are quite difficult to be assessed in
a statistical model. However, instead of modeling the
changing pattern, we aim to give quantitatively answers to
this particular problem. The case considered in this study
is adopting a noisy time series to characterize the unex-
pected events. Here, we set an equal degree of uncertainty
(e.g. noise) to each of the parameters. For the sake of non-
biased purpose, the Gaussian noise is applied. The typical
case study considered would be expressed in the follow-
ing:

example, it is usually believed that an environmental haz-
ard would induce large noises in the statistical parameters.
To consider this effect, the following criteria will be used to
analyze the importance of uncertainty quantities in such a
stochastic process. A criteria defining a value H(?) for the
process Y(7) such that:

H(t)=1 forY(t)<u
=0, elseif not

(16)

Obviously, the estimates of the exceedance probability
following Eq. (15) are as follows:

17 _
E(H (1) :?.([H(t)dt =Pr{Y (t)<u;0<t<T} (19
...while the assumption of ergodicity is exploited. In order

to emphasize our problem on the parameter uncertainty, we
assume the noises to be stationary. That is, the variance

02 i “—(Case 1 =Cage?2 Cage 3
—(Cage 4 Case 5
O T | T T |
0 0.2 0.4 0.6 0.8 1
Time (t)

Fig. 6. Simulation of extreme value model for the effect of noises.
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remains constant in the analyzed stochastic process.
In order to have an accurate estimation of exceedance prob-
ability, the function value of Eq. (15) for a time step at 0.01
is calculated. For general comparing purposes, several
cases of different uncertainty intensities are considered
(Table 3).

The simulated processes (time step=0.01) are shown in
Fig. 6. The results in terms of average and maximum non-
exceedance probability are also given in Table 4. It is
observed that the average non-exceedance probability is
nearly the same in all cases. This means that the noise effect
is generally very small for the mean value of the extreme
value model. But the variations in the non-exceedance
probability are quite different among these cases. We could
see that the scale parameter in this case gives the largest
impact to the variations, which can be shown in the graph
(large fluctuations) and table (largest maximum non-
exceedance probability). The noise effect of other parame-
ters also can affect the extreme value model in the maxi-
mum non-exceedance probability. This reveals a very com-
mon mistake that we usually made in the extreme value
modeling. The collected data having the same mean value
or variance may not follow the same extreme value model
as noise conditions may be different. A change in noise con-
ditions would surely result in significant uncertainty in the
estimates. Thus, we would not suggest the use of a single
extreme value model to characterize a stochastic process
with unknown information about noise intensity.

To the author’s knowledge, in reality the intensity of
these noises have different quantities for the extreme value
model parameters (large differences in the values of 7, 6, v,
and 0). The shape parameter of an extreme environmental
model is usually observed to have the most sensitive terms
(e.g. large 0) to a harsh environmental condition. This is
thus a particularly important point that we should pay atten-
tion to. Some specific sites, for example an ocean site, may
have a different noise uncertainty due to their natural char-
acteristics. Though the situation is usually not easy to be
handled, the importance in the estimates should draw our
attention. Therefore, we put this noisy problem to the most
noteworthy place for climatic uncertainty considerations.
For the Singapore case, the short-term climatic changes are
quite common. Typical examples could be wind speed and
rainfall intensity. Fortunately, the magnitude of these unex-
pected short-term events are not severe. However, one
might need to notice that certain natural accidents might
lead to instantaneous changes in the climate system of
Singapore. The well known Southeast Asian haze, which is
caused by large-scale burning in many parts of Sumatra and
Borneo, is an example. This immediate change can signifi-
cantly affect the nation's economy [32, 33]. Most impor-
tantly, we need to know which parameters of the extreme
value model have been affected most.

Generally, the above-investigated uncertainties are only
represented by some established artificial functions. We
would not want to restrict our investigation only within the
existing forms of uncertainties. The climate-change-
induced uncertainty is rather broad, which may consist in
both long- and short-term uncertainties. It is hard to imag-

ine how much uncertainty may exist in a conventional
extreme value model. The characterization of the environ-
ment-induced uncertainty must rely on a large amount of
data. The separation of different groups of uncertainty is
critical for establishing a robust extreme value model. The
present work serves only as a preliminary theoretical foun-
dation for any further climatic uncertainty problems.

Conclusion

This paper briefly discussed the changes of environ-
mental extremes in Singapore. Based on historical records,
changes in long- and short-term climates are identified.
The risks associated with the climate change are discussed
in several cases considering different long- and short-term
scenarios. It has been shown that sea level rise can have the
greatest influence on a nation’s economy and human activ-
ities. This paper also provided a study on the influence of
climate uncertainties to the extreme value model. The study
investigated the influence of uncertainties for seasonal
cyclic varying, long-term trends, and short-term changes. It
was shown that the extreme value model is very sensitive to
the types of uncertainty existing in the time series. The pre-
sent work provides the information for people to know the
climate variability within an extreme value model.
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