
Introduction

Cyclone separators have been widely used for more 
than 100 years for separating particulate matter (PM) from 
industrial gas streams. Currently, the most common use 
of cyclones concentrates on flue gas control while they 
are also employed for recovering materials in powdered 

production facilities [1]. Cyclones for both purposes offer 
the advantages of simple construction and installation. 
Since they do not include any moving parts, they require 
less maintenance. Besides, cyclones can adapt to extreme 
operating conditions such as high temperatures and 
pressures, high PM loads, and corrosive gases [2-3].

Cyclones employ centrifugal force for removing  
PM from gas streams. The gas stream enters the cyclone at 
a high velocity from the top, usually through a rectangular 
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tangential inlet structure. Various ranges of inlet velocities 
have been reported between 6-15 m/sn and 15-25 m/sn 
[4]. The cyclindirical body of the cyclone forces the gas 
stream into a rotating motion, resulting in the creation 
of a centrifugal force. Being heavier than the gaseous 
molecules, particulate matter moves outward to the cyclone 
wall, where they are collected, and moves downward in a 
cyclone wall-gas stream boundary. A conical part attached 
to the bottom of the cylinder is responsible for diverting 
gas stream upward to the vortex finder tube, through which 
clean gas leaves the cyclone. The particulate matter, on 
the other hand, does not change direction and falls to the 
bottom of the conical part, where a dust bin is employed to 
collect particulate matter.

Cyclone performance is defined by two operating 
parameters, namely pressure drop and collection efficiency. 
These parameters are intimately related to each other, and 
usually collection efficiency increases with increasing 
pressure drop until such a point where re-entrainment of 
particles occurs. Being the most widely used particulate 
collection device, a great number of attempts have been 
made to accurately estimate pressure drop and collection 
efficiencies, examples of which include Starimand [5], 
Casal and Martinez-Benet [6], Chen and Shi [7], and 
Demir [8]. Most of the previous studies have focused on 
developing some regression curves to estimate cyclone 
pressure drop. Since pressure drop is directly related to 
operating cost of the cyclone and is mainly a function of 
cyclone geometry, a great number of researchers have 
focused on optimizing cyclone geometry for reducing the 
pressure drop, and several standard cyclone geometries 
are currently available – one of which is the well-known 
Stairmand high-efficiency type.

Although computational fluid dynamics (CFD) 
applications have become very popular for simulating 
pressure and velocity fields in cyclone separators [2-3, 
9-16], these models require high computational capacity 
and time for accurate estimations of operating parameters. 
In contrast to these deterministic models that are capable of 
explaining compex phenomena taking place in cyclones, 
another approach for modeling complex phenomena is a 
stochastic modeling tool called artificial neural networks 
(ANN).

A neural network is a modeling tool for highly 
complicated and nonlinear systems without understanding 
the nature of the phenomenon [17-18]. A neural network is 
a group of processing elements called neurons. Neurons are 
arranged in successive layers that are connected together 
by linear combinations of weights. Each neuron is defined 
by an activation function that converts the input signal into 
an output signal. The most commonly used type of ANN 
is backpropagation neural networks (BPNNs). Although 
ANNs have become very popular in recent years, their use 
for cyclone modeling is limited.

The aim of this study is to apply a neural network 
approach with backpropagation to estimate cyclone 
pressure drop. The neural network is used along with 
several activation functions to determine the best function 
for representing cyclone pressure drop.

Material and Methods

Experimental Setup 

An experimental setup was built in the Air Pollution 
Research Laboratory of Yıldız Technical University 
for investiging pressure drop in cyclones. The setup 
was composed of an air blower, an inlet channel, and  
a cyclone separator [19] (a schematic representation of the 
experimental setup is shown in Fig. 1). The air flow was 
produced by a variable-speed radial fan with a maximum 
flowrate of 1,500 m3/h and a maximum pressure of 
1 m water column. The inlet channel is equipped with an 
orifice meter (ISO 5167-2:2003), a flow-control valve, 
and a differential pressure transmitter (Honeywell DPTM 
1000D) to measure and control the air flowrate. QA/QC 
procedures for flowrate measurement using an orifice 
meter are given in detail in related standard documentation.

The experimental setup allows for cyclones of various 
geometries and dimensions. A total of 162 cyclones were 
used in the experiments. All of the cyclones had a body 
diameter of 290 mm. The cyclone dimensions are given in 
Table 1. Since the cyclones discharged to the atmosphere, 
the pressure drop was measured as the static pressure at 
the inlet. Pressure measurements were also performed at 
the extended part of the vortex finder and no significant 
differences were observed.

The pressure drop in cyclones is usually estimated as 
a fraction of the number of velocity heads (NH), which is 
also called pressure drop coefficient of the cyclone. The 
pressure drop in a cyclone is calculated as follows:

Hig NVP 2

2
1 ρ=∆

                           (1)

...where ΔP is the pressure drop in Pa, ρg is the gas density 
in kg/m3, Vi is the inlet gas velocity in m/s, and NH is the 
pressure drop coefficient. Extensive research has shown 
that the pressure drop coefficient is mainly a function of 
cyclone geometry, although several papers have reported 
that pressure drop is also a function of other parameters 
such as solid loading [20-21], and that pressure drop 

Fig. 1. Schematic representation of a) experimental setup, b) 
cyclone geometry.
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coefficient decreases with increasing solids loading, 
which leads to reduced pressure drop. But none of these 
parameters were considered in this study; thus excluding 
these parameters from the model provides a safe approach 
to calculate pressure drop.

Artificial Neural Network

An Excel Visual Basic for Applications (VBA) code 
was implemented for BPNN. The input layer consists of 
five neurons, respectively, for a/D, hb/D,  hc/D, S/D, and 
De/D. Pressure drop coefficient (NH) is the only neuron in 
the output layer. The number of hidden layers, the number 

of neurons in each hidden layer, and the activation function 
of each layer are user-defined parameters. Fig. 2 shows the 
general structure of the implemented ANN structure and 
Table 2 shows ANN global options.

Activation Functions

Activation function is a property of each neuron in 
hidden layers and the output layer. It determines how the 
neuron behaves, depending on the total input to the neuron. 
In this study, a number of well-known activation functions 
as well as some of those reported in Sibi et al. [22] were 
separately employed to determine their effects on ANN 
performance. The activation functions used are given in 
Table 3 along with their signal span and behaviour.

Results and Discussion

Each of 162 cyclones of distinct geometry and 
dimensions were run at six different inlet velocities 
between 10 and 24 m/s. Pressure drop ranged from 84 
to 2,045 Pa. For each cyclone geometry, pressure drop 
coefficient was calculated as the average of six values 
using Eq. (1). Pressure drop coefficients for each cyclone 
ranged between 1.09±0.19 and 9.07±0.42, with mean and 
median values of 3.76±2.14 and 3.36, respectively.

The pressure drop coefficients were normalized 
prior to ANN run in accordance with the interval of 
span of activation function (Table 3). No normalizations 
were performed for linear and rectified linear activation 
functions. Normalized values of pressure drop coefficients 
were given to the implemented ANN software as 
target outputs. After each run, the ANN outputs were 
denormalized and compared with the measured values of 
pressure drop coefficient.

ANN software randomly selected 70% of the data set 
(113 data points) for each run. Thus, there was always 
the possibility of over- or under-learning. To avoid these 
extreme learning conditions, ANN software was run  
25 times for each activation function and mean square  
error (MSE) for each were averaged for healthy  
comparison of the effects of activation function on ANN 
performance. 

Geometry Notation Dimension (mm) Ratio

Body diameter D 290 –

Inlet height a 116 0.40

145 0.50

Inlet width b 58 0.20

Cylinder height hb 435 1.50

580 2.00

725 2.50

Cone height hc 580 2.00

725 2.50

870 3.00

Vortex finder length S 145 0.50

174 0.60

203 0.70

Vortex finder diameter De 116 0.40

145 0.50

174 0.60

Cone-tip diameter B 109 0.38

Table 1. Cyclone dimensions. Table 2. Global options for ANN.

Fig. 2. Artificial neural network structure.

Parameter Value

Number of input neurons 5

Number of hidden layers 1

Number of neurons in hidden layer 10

Number of output neurons 1

Percent of training data set (%) 70

Learning Rate 0.75

Number of epochs 5000
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Fig. 3 shows the changes in MSEs during the epochs 
for each activation function. MSEs are given as respective 
averages of calculated values in 25 ANN runs with the 
given activation function. 

MSEs clearly show that hyperbolic tangent (Fig. 3d), 
arctangent (Fig. 3e), Gaussian (Fig. 3f), and sinusoid (Fig. 
3h) activation functions were insuffi cient for effectively 
learning the training set pattern. The fi nal values of 
MSEs at the end of 5,000 epochs were calculated as 
0.86445, 2.00878, 0.08589, and 0.91277, respectively, for 
hyperbolic tangent, arctangent, Gaussian, and sinusoid 
activation functions. On the other hand, linear (Fig. 3a) 
and rectifi ed linear (Fig. 3b) activation functions showed 
similar learning trends with fi nal values of MSEs equal 
to 0.32125 and 0.12020, respectively. Results were more 
representative compared to hyperbolic tangent, arctangent, 
Gaussian, and sinusoid when these functions were used as 
activation functions.

Mean square errors for sigmoid (Fig. 3c), Elliot (Fig. 
3g), and sinc (Fig. 3i) functions were more satisfactory 
when compared to the others. Final MSEs were calculated 

as 0.00085, 0.00213, and 0.01129, respectively, meaning 
that ANN with these functions can explain the nonlinear 
relationship between the cyclone geometry (a, hb, hc, De, 
and S) and pressure drop coeffi cient (NH). Among these, 
the sigmoid function seems to be the one that explains 
the nonlinear relationship between input and output of 
the ANN (which are cyclone geometry and pressure drop 
coeffi cient, respectively).

Fig. 4 shows plots of measured pressure drop 
coeffi cients versus those calculated by BPNN. In the 
fi gure, the red diagonal line represents one-to-one values 
of measured and calculated pressure drop coeffi cients. 
The fi gure shows distribution of measured and calculated 
values (blue dots) and the regression line (black line) 
between these values with the regression equations. 
Clearly, hyperbolic tangent (Fig. 4d), arctangent (Fig. 
4e), Gaussian (Fig. 4f), and sinusoid (Fig. 4h) activation 
functions were not suitable in their current form to explain 
the complex relationship between cyclone geometry and 
pressure drop coeffi cient. This was also evident with 
their calculated MSEs greater than 0.085. The coeffi cient 

Function Name Mathematical Expression Derivative Behaviour

Linear* y = 0.01x
Span: -∞ ≤ y < ∞

Rectifi ed linear*

Span: 0 ≤ y < ∞

Logistic xe
y −+

=
1

1

Span: 0 < y < 1

Hyperbolic tangent xx

xx

ee
eey −

−

+
−

=

Span: -1 < y < 1

Arctangent ( )xy 1tan−=

Span: -½π < y < ½π

Gaussian
2xey −=

Span: 0 < y ≤ 1

Elliot
5.0

1
5.0 +

+
=

x
xy

Span: 0 < y < 1

Sinusoid
( )xy sin=

Span: -1 ≤ y ≤ 1

Sinc
( )







≠⇔
=⇔

= 0sin
01

x
x

x
x

y

Span: -0.2172 ≤ y ≤ 1

( ) ( )






≠⇔−
=⇔

= 0
00

2 x
x

xSin
x

xCos
x

y

* These functions were used with a coeffi cient of 0.01 to prevent overfl ow in runtime.

Table 3. Behaviour of activation functions used. 
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of determinations between measured and calculated 
pressure drop coefficients for these functions were  
R2 = 0.0412, R2 = 0.0595, R2 = 0.1024, and R2 = 0.0000, 
respectively, pointing out that there are no linear 
relationships between measured pressure drop coefficients 
and those calculated by ANN with these function — at all. 

On the other hand, linear (Fig. 4a) and rectified linear 
(Fig. 4b) activation functions exhibited high determination 
coefficients with values R2 = 0.9300 and R2 = 0.9758, 
respectively. However, it is obvious from Figs. 4a and 4b 
that these linear functions were insufficient to produce 
values in good agreement with the measured pressure 
drop coefficients. For good agreement, the slope and 
intercept of the regression line must be as close as 1 and 
0, respectively. 

Elliot function, which resembles the shape of the curve 
y = x-1 mirrored around the axis of x = 0, better explains 
the complex relationship between cyclone geometry 
and pressure drop coefficient (Fig. 4g). The coefficient 
of determination was calculated as R2 = 0.9839 for this 
function. Despite its high determination coefficient, on 
the other hand, the slope of the regression line (0.9394) is 
not close to unity very much, and visual inspection of Fig. 
4g clearly states that the results are not perfect. One good 

approximation to the measured pressure drop coefficients 
is from the sinc function (Fig. 4i). The coefficient  
of determination for this function was calculated as  
R2 = 0.9963, while the slope of the regression line (0.9022) 
was even worse than that obtained with the Elliot function. 

Fig. 4c clearly shows that sigmoid activation function 
was the best among the group for explaining the complex 
relationship between cyclone geometry and pressure drop 
coefficient. The coefficient of determination for sigmoid 
function was calculated as R2 = 0.9940. Besides, the 
slope of the regression line was very close to unity, with a 
value of 0.9817, while the intercept was 0.1354. A closer 
look at Fig. 4 clearly reveals that ANN with sigmoid 
activation function was capable of explaining the complex 
relationship between cyclone geometry and pressure drop 
coefficient.

Frequency of occurences of percent residuals averaging 
more than 25 runs for each activation function as well as 
normal probability distributions of percent residuals are 
shown in Fig. 5. The column plots in the figure represent 
averages of frequencies of percent residuals over 25 
runs, while the red curves represent normal probability 
distributions of percent residuals to be expected when the 
respective activation function is used. 

Fig. 3. Learning pattern of BPNN with a) linear, b) rectified linear, c) sigmoid, d) hyperbolic tangent, e) arctangent, f) Gaussian, g) Elliot, 
h) sinusoid, and i) sinc activation functions.
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Normal probabilities of percent residuals for hyperbolic 
tangent (Fig. 5d), arctangent (Fig. 5e), Gaussian (Fig. 5f), 
and sinusoid (Fig. 5h) functions clearly show that, with 
these functions’ current forms, percent residuals between 
the predicted and measured values of pressure drop 
coefficients could reach 100% depending on the function 
used. The percent residuals observed for linear (Fig. 5a) 
and rectified linear (Fig. 5b) activation functions seem 
more-or-less normally distributed around the mean of zero. 
However, greater negative fluctuations were observed 
for linear activation function. Besides, Figs 4a and 4b 
clearly show that these functions were unable to explain 
the nonlinear relationship between cyclone geometry and 
pressure drop coefficient. Elliot activation function (Fig. 
5g), on the other hand, clearly caused a positive skewness 
in percent residuals. Besides, ±40% fluctuation from the 

measured pressure drop coefficient was probable with this 
function. Another activation function, the sinc function 
(Fig. 5i), seems like a very good predictor of pressure 
drop coefficients. However, Fig. 4i clearly shows that 
the slope of the regression line between measured and 
predicted pressure drop coefficients was not as close to 
unity as that calculated for the sigmoid function. Percent 
residuals calculated with the sigmoid function (Fig. 5c) 
seems normally distributed around the mean value of zero. 
Besides, the expected frequency of ±5.0% residuals was 
as high as 0.5, meaning that most of the predicted values 
of pressure drop coefficient will fall in this range. The 
percent residuals shown in Fig. 5 support the discussion 
related with the findings in Fig. 4, and there is sufficient 
evidence to conclude that the sigmoid function is the one 
activation function for a BPNN that explains the complex 

Fig. 4. Measured versus calculated pressure drop coefficients by BPNN with a) linear, b) rectified linear, c) sigmoid, d) hyperbolic 
tangent, e) arctangent, f) Gaussian, g) Elliot, h) sinusoid, and i) sinc activation functions.
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nonlinear relationship between cyclone geometry and 
pressure drop coefficient.

A total of 162 cyclones were used in this study. For 
each cyclone, pressure drop coefficient was calculated as 
the average of six measurement results. Twenty-five runs 
were performed during the ANN simulation, and Figs 3 
and 4 are based on the averages of the results calculated 
in those runs. Thus, the measurement and simulation data 
formed two matrices. The former was six by 162 and 
the latter was 25 by 162. One-way analysis of variance 
(ANOVA) was performed for each column of these two 
matrices to check whether the simulation results were 
in good agreement with the measurement results. The 
tests were performed at a confidence level of 95%, with 
degrees of freedom v1 = 1 and v2 = 29 (six observations 

for measured and 25 for calculated values of pressure drop 
coefficient), and with the null hypothesis that the means of 
the measured and calculated pressure drop coefficients in 
each pair in the data set were equal. The critical value of 
F was 4.18. The one-way ANOVA tests on 162 cyclones 
suggested accepting the null hypothesis in 106 out 162, 
corresponding to 65.4% of the calculated pressure drop 
coefficients agreeing with the measured values.

Conclusions

A total of 162 cyclones of various geometries, all of 
them having the same body diameter of 290 mm, were 
run at six different inlet velocities between 10 and 24 m/s. 

Fig. 5. Percent residuals and probability distributions by BPNN with a) linear, b) rectified linear, c) sigmoid, d) hyperbolic tangent, e) 
arctangent, f) Gaussian, g) Elliot, h) sinusoid, and i) sinc activation functions.
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Maximum and minimum pressure drop were measured 
as 84 and 2,045 Pa. Since most of the pressure drop 
models for cyclones were calculated using a pressure 
drop coefficient (NH, also called total number of velocity 
heads), six pressure drop coefficients for each cyclone 
were calculated and averaged. 

It is well known that the pressure drop coefficient of 
a cyclone is a function of it geometry. Thus a cyclones’ 
geomety (namely a/D, hb/D, hc/D, De/D, and S/D, along 
with average values of pressure drop coefficients) were 
used as input data set in a BPNN. A VBA code was 
implemented for the neural network algorithm. Cyclone 
geometry was used as independent variables and the 
pressure drop coefficient as the dependent variable. Nine 
activation functions were used with the neural network to 
test the performance of the most commonly used activation 
functions. A randomly selected 70% of the data set was 
used as the training data set. For each function, 25 runs 
were performed and results were averaged. The neural-
network-calculated pressure drop coefficients were 
compared with measured values for assessing activation 
function performances. Also, one-way ANOVA tests were 
performed between each measured and neural-network-
calculated results to numerically check whether calculated 
results are in good agreement with the measurements or 
not. 

The following conclusions can be drawn from this 
study:
–– Trigonometric functions (sinusoid and arctangent) as 

well as hyperbolic tangent and Gaussian activation 
functions were not suitable in their current forms for 
explaining the complex relationship between cyclone 
geometry and pressure drop coefficient.

–– Although linear functions (linear and rectified linear) 
produced good results compared to trigonometric 
functions, their inefficiency for representing a nonlinear 
relationship limits their widespread use for cyclones.

–– Nonlinear activation functions were better for 
explaining the relationship between cyclone geometry 
and pressure drop coefficient. 

–– The sigmoid activation function was capable of 
explaining the complex relationship for cyclones with 
coefficients of determination between measured and 
predicted pressure drop coefficients greater than 0.99. 

–– It is the authors’ belief that some of the activation 
functions such as hyperbolic tangent were insufficient 
for the purpose of modeling the cyclone pressure drop 
due only to their steep slopes when their inputs were 
close to zero. The performance of these functions must 
be further investigated by incorporating steepness 
coefficients to reduce the absolute value of their slopes 
and improve their suitability for cyclone pressure drop.

Abbreviations

a = Inlet height of cyclone (mm) 
b = Inlet width of cyclone (mm) 
B =Cone-tip diameter of cyclone (mm) 

BPNN = Back propagation neural network 
D = Cyclone body diameter (mm) 
De = Vortex finder diameter of cyclone (mm) 
NH = Number of velocity heads (dimensionless) 
hb = Cylinder (body) height of cyclone (mm) 
hc = Cone height of cyclone (mm) 
MSE = Mean square error 
SL = Vortex finder length of cyclone (mm) 
Vin = Inlet velocity to the cyclone (m/s)
ΔP = Pressure drop in cyclone (Pa)
ρ = Gas density (kg/m.s.)
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