
Introduction

Water quality is becoming an increasing concern. 
The experience of the last decades has shown that 
controlling point sources only failed to achieve acceptable 
basin-wide water quality. NPS pollution is increasingly 

responsible for bad water quality [1-4]. Environmental 
factors have a substantial effect on the formation of 
NPS pollution, the relationship between environmental 
factors and water quality provides important theoretical 
and practical significance for effectively addressing NPS 
pollution management problems and the optimization of 
water quality. However, the relationship between water 
quality and environmental controls is complex and area-
specific [5-6]. Improvement of our understanding of the 
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Abstract

Non-point source (NPS) pollution contributes greatly to the contamination of surface water quality 
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model in China’s Fan River watershed. A new method, boosted regression tree (BRT), was proposed to 
study the relationship of impact factors on NPS pollution. We analyzed the effects of elevation, land use, 
soil, and slope on the patterns of sediment transport, total nitrogen (TN), and total phosphorus (TP). The 
results showed that R2 values were higher than 0.76, and NSE was higher than 0.67. The SWAT model can 
estimate NPS pollution effectively in a study area. Although the spatial pattern of sediment and TP was 
quite consistent, the relationship between sediment and TN was weak. The contribution of impact factors 
for sediment TN and TP were different. Slope is the most important impact factor for sediment and TP load. 
Land use is the most important impact factor for TN load. The BRT model can reduce barriers to factor 
complexity and promote understanding of the NPS pollution formation mechanism. We proposed control 
strategies of pollution sources, and our research has proven to be useful for the explanation of impact factors 
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quantitative relationship between sediment, NPS pollution 
loads, and their origins at the watershed scale is frequently 
restricted by lack of both data and applicable techniques 
[7-8].

Models are powerful tools for simulating the effect 
of watershed processes and management on soil and 
water resources [9]. Computer-based watershed models 
are efficient and cost-effective because of their ability to 
perform long-term simulation of the effects of watershed 
processes and management activities on water quantity 
and water quality [10]. SWAT is one of the most commonly 
used and well supported water quality modeling systems 
available [11-13]. The strengths of SWAT are that it is 
computationally efficient and uses readily available input 
data and its process based on nutrient biogeochemistry 
sub-models [14-16].

NPS pollution research has been a hot topic in recent 
years, with most of the studies mainly focusing on three 
aspects: 1) modelling the quantity and spatial variability 
of NPS pollution [17-19], 2) evaluating the efficiency of 
NPS pollution management [20-21], 3) and improving 
method performance of modelling/assessing [22-23]. 
However, there is a paucity of research that discussed the 
quantification relationship between environmental factors 
and NPS pollution despite the importance in addressing 
the problem. 

The nonlinearities and interactions in NPS pollution 
need techniques that are flexible enough to express typical 
features of the data for both explanation and prediction. 
The BRT algorithm can be summarized in ways that 
give powerful ecological insight to the relationship  
[24]. Four obvious advantages that make the BRT model 
differ fundamentally from traditional regression methods 
are:

1.	 	 Simplified preparation of candidate predictors 
because predictor variables can be of any type 
(numeric, binary, categorical, etc.), and there is no 
need for prior data transformation [25].

2.	 	 Insensitive to outliers, BRT can accommodate  
missing data in predictor variables by using surrogates 
[26].

3.	 	 The ability to fit a large number of weak relationships 
in a predictive model and automatically handle 
interaction effects between predictors [27].

4.	 	 The information is represented in a powerful 
ecological way that is intuitive and easy to visualize. 

Given the source-complicated nature of the formation 
mechanism and the large number of weak and contingent 
relationships between NPS pollution and influencing 
factors, BRT would seem to be an ideal tool for NPS 
pollution characterization. 

The objectives of this research are to determine: 1) 
if it is possible to obtain NPS pollution data and their 
related environmental characteristics that can fit the 
reality spatially and temporally effective and 2) if the 
BRT is strong enough to explain the relationship between 
pollution data and their influencing factors. 

Materials and Methods

Study Area 

The Fan River watershed was chosen as the study case, 
the area is 1,037.66 km2 (123.62-124.55°E, 42.00-42.30°N; 
Fig. 1) within the Liao River basin in northeastern China. 
The Fan, which is 118 km long, is a typical semi-arid and 
semi-humid seasonal river, with annual precipitation over 

Fig. 1. Map of the Fan River watershed.
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the 2003-12 study period ranging from 480 to 1,036 mm 
(mainly concentrated in 4-9 months). The primary land 
use categories include forestland (57%), farmland (33%), 
and settlement area (7%) in 2013. The population is about 
22,000 people. This watershed was selected due to its lack 
of large-scale sewage treatment facilities and the fact that 
NPS pollution comes mainly from agricultural production 
and rural living. 

Data Collection

Landsat Thematic Mapper and Enhanced Thematic 
Mapper images in 2010 were used to derive thematic land-
use maps, including seven categories: forestland, farmland, 
settlement area, paddy, shrub, grassland, and water area. 
The research also used 1:50,000 topographic maps of the 
study area. A total of 325 evenly distributed field-survey 
points containing land use information were sampled in 
field surveys. A 1:50,000 digital elevation model (DEM) 
of the study area was collected from Liaoning surveying 
and mapping bureau. Slope and aspect maps were derived 
from the DEM using ARCGIS (Fig. 2).

Data from four years of statistical yearbooks for 
Liaoning Province and 1:250,000 soil maps derived from 
the Liaoning soil map were also used. Daily precipitation 
data monitored by 7 precipitation stations in the watershed 
were collected from 1998-2012. 

The streamflow and sediment record data used to 
calibrate and validate the utility of the SWAT model were 
continuous data from January 1976 to December 1981. 

Zhangjialouzi (123.51°E, 42.12°N), the only stream and 
sediment monitor spot in the watershed, was cancelled 
after five years of service (1976-81). Data are available 
from the Chinese Hydrological Yearbook.

Model Calibration and Validation

Hydrological techniques are often used for modelling 
watershed hydrology and water quality. ArcSWAT, version 
2012 (the graphical user interface for the SWAT model) 
was used to predict streamflow, sediment transport, and 
nutrient loss. SWAT is a physically based, continuous 
time, long-term simulation river basin model that has 
been widely used to model the hydrology of different 
hydrological, geological, and climatic conditions on 
various watershed sizes. Previous studies have already 
proven that the SWAT model can successfully predict the 
flow, sediment yield, and nutrient outputs of watersheds 
located in the immediate vicinity [28].

Sequential Uncertainty Fitting ver. 2 (SUFI-2) 
integrated into the SWAT Calibration Uncertainty 
Procedures (SWAT-CUP) platform, was used to perform 
calibration and validation analysis [29]. In SUFI-
2, parameter uncertainty accounts for all sources of 
uncertainties such as uncertainty in driving variables (e.g., 
rainfall intensity), conceptual model, parameters, and 
measured data (SWAT-CUP User Manual). Ideal model 
calibration should consist of three to five years of data that 
include average, wet, and dry years to emulate significant 
hydrological events that will trigger model constituent 

Fig. 2. Land use, digital elevation model, soil, and slope map of the study area; the unit of digital elevation model and slope are meter 
and degree, respectively.
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processes during calibration. For this study, streamflow 
and sediment measured data for the warm-up, calibration, 
and validation periods were 1976, 1977-79, and 1980-81, 
respectively. The performance of the model was evaluated 
by coefficient of determination (R2) and the Nash-Sutcliffe 
coefficient (NSE). 

Boosted Regression Tree

Boosted regression tree (BRT) built with R platform 
(Team, 2012) was used to quantify the relative importance 
and marginal effects of environmental influences and their 
characteristics in affecting NPS loads. The BRT model 
combines two algorithms: regression tree (the model that 
relates a response to their predictors by recursive binary 
splits) and boosting (an adaptive method for combining 
many simple models to give improved predictive 
performance) [26]. 

There are three inter-dependent input settings for 
the BRT model: the number of trees, learning rate, 
and tree complexity. The most effective settings were  
0.001-0.005 for learning rate and 0.5-0.7 for bag fraction. 
The learning rate was set to 0.005, bag fraction to 0.5, and 
tree complexity (the number of nodes in a tree) to 5. 

Dependent variables include sediment, TN, and TP. 
Four independent variables were selected, including 
elevation, land use, soil, and slope. The Fan watershed 
was delineated into 53 sub-basins with defining  
1,200 hectares to the upstream drainage area, and five 
gradients (i.e., ≤2°, 2-6°, 6-15°, 15-25°, >25°) of slope 
subdivision based on the rule established by the Ministry 
of Land and Resources of PRC. The sub-basins were 
further divided into 1,366 hydrological response units 
(HRUs) with the default setting, each possessing unique 
land use/soil attributes/elevation/slope gradient, and  
NPS yield is predicted separately for each HRU. 
Accordingly, a data set of 1,366 sites (each correspon- 
ded to one HRU) were used for detecting the relation-
ships.

Results and Discussion

Validation of SWAT Model

The measured and simulated monthly discharge at 
the outlet of the Fan watershed is shown in Table 1. R2 
coefficient and the Nash-Sutcliffe coefficient (NES) 
were chosen for accuracy estimation. The R2 coefficient 
describes the proportion of the variance in measured data 
explained by the model. R2 ranges between 0 and 1 – the 
higher the value the better the fit – and values greater than 
0.6 are considered satisfactory [9]. NSE is a normalized 
statistic that determines the relative magnitude of the 
residual variance compared to the measured data variance, 
which ranges from -∞ to 1, and performance rating is 
“very good” if values are higher than 0.75 [9, 30-31]. The 
statistical results indicated a good consistency between the 
simulated and the observed data both in the calibration and 

validation process, with the R2 values higher than 0.76 and 
NSE higher than 0.67 (Fig. 3).

NPS Pollution

NPS pollution was estimated from 2003 to 2012. The 
average yearly load of NPS pollution varies greatly. TN 
output had the greatest spatial variation with a standard 
deviation of 26.20, followed by sediment and TP at 
9.87 and 7.71, respectively. The largest load values for 
sediment, TN, and TP were 62.1 t/ha, 67.6 kg/ha, and 35.0 
kg/ha, respectively (Fig. 4). 

The mean value of TN output was 19.12 kg/ha, which 
was much higher than TP (3.85 kg/ha). The spatial pattern 
of sediment and TP was quite consistent, and Fig. 5 shows 
the linear fit results of sediments with both TN and TP, 
and the value of R2 (which amounted to 0.93, indicating 
a strong similarity between sediment and TP). The 
relationship between sediment and TN was weak, and the 
fitting performance accounted for only 26%.

Relationship of Impact Factors 
on NPS Pollution

Relative contribution results in the BRT method 
displayed in descending order (Fig. 6a). Referring to the 

Table 1. Goodness-of-fit indicator scores between observed 
and predicted streamflow and sediment for the calibration and 
validation periods in SWAT modeling. 

Period
Streamflow Sediment
R2 NSE R2 NSE

Calibration (January 1977 
to December 1979) 0.72 0.67 0.85 0.83 

Validation (January 1980 
to December 1981) 0.82 0.82 0.93 0.89 

Fig. 3. Time-series of observed and predicted data of monthly 
streamflow a) and sediment b) during the calibration and 
validation periods.
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information provided, sediment transport had the strongest 
correlation with slope gradient, which was 46.16%, 
followed by land use (27.50%), elevation (19.21%), and 
soil type (7.13%). Partial dependencies from the fitted 
model indicated that, when other variables were held 
constant, high sediment output was most likely to be found 
in places with steep slope, medium gradient with field, and 
soil type of meadow or cinnamon (Fig. 6). 

For the TN load, land use had a proportion of 64.15%, 
far ahead of elevation, soil type, and slope, with 16.53%, 
11.52%, and 7.80%, respectively. Partial dependency 
plots indicated that agricultural land – including fields 
and paddies – were far more vulnerable to TN loss than 
others (Fig. 7b). Cinnamon soil was markedly higher  
than the meadow soil, which ranked second among all  
soil types (Fig. 7c); the main trend in relevance increased 
with increasing slope (Fig. 7d). However, a downward 

trend was shown following an elevation increase in Fig. 
7e. 

The contribution percentage of TP in descending 
order was slope (38.81%), land use (34.52%), elevation 
(19.10%), and soil (7.55%) (Fig. 8). The partial responses 
for TP yield of these four variables indicated TP loss most 
likely occurring in field or paddy land with meadow or 
cinnamon soil that have steep slope and elevation of about 
290 m. 

Effectiveness of BRT Model

This paper combined the SWAT model with the 
BRT method to investigate the factor complexity of 
environmental factors on NPS pollutants, including 
sediment, TN, and TP output. NPS pollution collectively 
describes the presence of a diverse and complex mixture 
of environmental factors. The results emphasize that one 
single pollutant in the study area had different production 
features closely related to land use, slope, elevation, 
and soil type in different locations. NPS pollutants are 
controlled by many factors, and the controlling of one 
factor may exert a negative effect on another, which made 
NPS pollution difficult to manage, how to find the best 
combinations of environmental factors is necessary, more 
thorough work should be done in a future study. More 
influencing factors (e.g., precipitation) may be included in 
the following research. 

The study demonstrated the advantages of the BRT 
model, including no need for variables transformation or 
merging categories; the explanatory ability to account for 
nonlinear relationships of several explanatory variables, 
and to provide satisfactory classification performance with 
legible quantitative results. Therefore, the BRT method 
was useful for exploring the relationships between NPS 
pollution loads and influential factors.

Controls of NPS Pollution Load

The formation of NPS pollution is a joint effort of 
natural processes and human activities. Sediment and TP 
production were more likely related to natural processes, 
while TN loss was bound up with human activity. NPS 
pollution can be generated by human activities, and can 
also be controlled through reasonable arrangement of 
human activities. Therefore, an attempt to control pollution 
sources may consider the following strategies:
1)	 Reducing the amount of anthropogenic N in the 

environment.
2) 	 Improving farmland cultivation measures and reducing 

farmland area on steep slopes.
3) 	Protective measures should be set in riparian zones. 

TN load comes mainly from farmland. Nitrogen is 
a key limiting nutrient for most crops and many aquatic 
and terrestrial ecosystems [32]. The massive increase 
in anthropogenic N introduced into the environment, 
largely via N fertilizers, has had significant negative 
environmental consequences [33]. Studies showed that a 
reduction in N fertilizer application with no loss to yields 

Fig. 4. Spatial distribution of average yearly sediment transport 
and TN and TP outputs during 2003-12.

Fig. 5. Linear fit of both sediment with TN and sediment with TP.
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Fig. 6. Relative influence and partial dependency plots for four variables in the BRT model predicting sediment output. 

Fig. 7. Relative influence and partial dependency plots for four variables in the BRT model predicting TN output.  
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[34], using directed nutrient management strategies, can 
gain both economic and environmental benefits. 

The NPS pollution load varies in different land use 
types. Cropland with steep slope greatly increase the 
amount of NPS pollution load with the sediment erosion 
process. Therefore, reducing farmland area on a steep 
slope can reduce NPS pollution effectively, especially 
slope higher than 27°. 

Protective measures should be set in riparian zones. 
Vegetative riparian buffers have been commonly regarded 
as one of the most effective measures for mitigating the 
impact of NPS pollution on water quality in rivers [35-
37], Riparian buffers transform and remove nutrients via 
a variety of physical, chemical, and biotic processes in the 
soil and vegetation [10]. 

Conclusions

The accuracy of NPS pollution estimation with the 
SWAT model were estimated with R2 and Nash-Sutcliffe 
coefficient (NES), which showed that the model is suitable  
in the study area. The average yearly load of NPS pollution 
varies greatly from 2003 to 2012. The spatial pattern of 
sediment and TP was quite consistent, but the relationship 
between sediment and TN was weak. 

The study combined a SWAT model with the 
BRT method to investigate the factor complexity of 
environmental factors on NPS pollutants. Slope has the 
most important influence on both sediment transport and 
TP loss. Land use is the leading variable in terms of TN 

load, the relative influence was nearly three times higher 
than elevation, which ranked second. Paddy and field are 
the main source types of TN load, and residential area 
took third place. Elevation, the second most important 
impact factor, had a strong negative relationship with TN 
output in the study area. Soil is the least important factor 
in sediment transport and TP output. 

NPS pollutants are controlled by many factors, and 
the BRT is an effective method to investigate the factor 
complexity of environmental factors on NPS pollutants. 
The study demonstrated the advantages of the BRT 
model, including no need for variable transformation, 
the explanatory ability to the nonlinear relationships 
of variables, and providing satisfactory classification 
performance with legible quantitative results.

The control strategies of pollution sources were 
proposed, including reducing anthropogenic N input, 
reducing farmland area on a steep slope, and setting 
protective measures in riparian zones.

NPS pollutants are controlled by many factors that 
make NPS pollution difficult to manage. How to find the 
best combination of environmental factors is necessary, 
and more thorough work should be done in the future. 
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