
Introduction

Bioethanol is a liquid fuel obtained from the process 
of alcoholic fermentation of biomass or biodegradable 
municipal waste (e.g., paper or wood). Year after year 
a significant increase in the share of this type of energy 

source is observed in the economies of many countries. 
Bioethanol is mainly used in transport as a fuel mixture 
with gasoline at concentrations of 10%, 20%, and 85% 
(labelled as E10, E20, and E85, respectively) [1-2]. This 
solution allows for a significant reduction of greenhouse 
gases released into the atmosphere during combustion of 
fuel in car engines [3].

Bioethanol is divided into three types based on the 
material used for its production [4-5]:
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Abstract

Bioethanol is a liquid fuel for which a significant increase in the share of energy sources has been 
observed in the economies of many countries. The most significant factor in popularizing bioethanol is 
the profitability of investments in construction of facilities producing this energy source, as well as the 
profitability of its supply chain. With the market filled with a large amount of equipment used in the 
bioethanol production process, it is often difficult to make an optimal decision regarding the investment. 
Another issue is the location of the plant itself. Economic benefits are strongly associated with costs  
of equipment and materials, the amount of revenue from sales, and transportation costs. This article presents 
an attempt to solve this problem by using several swarm algorithms – new and fast-growing optimisation 
techniques. By employing ant colony optimization, river formation dynamics, particle swarm optimization, 
and cuckoo search algorithms in the task of bioethanol plant investment planning, the overall suitability  
of this type of technique has been tested. Moreover, the results allow us to determine which of the preceding 
algorithms is the most efficient in the given task.
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•	 	 First generation: sugar beets, wheat, corn, sugar cane, 
etc.

•	 	 Second generation: waste, residues, and lignocellulose 
biomass

•	 	 Third generation: algae and seaweed
Only the first generation of bioethanol is currently 

produced and used on a large scale [4]. The second 
generation of bioethanol is being implemented for 
widespread use in several years, while the third generation 
is still under development.

Bioethanol has gained in popularity in recent years, 
especially in European countries. This gain is related 
to the current policy of the European Union regarding 
renewable sources of energy, as well as to the eco-
efficiency of bioethanol-based fuels [6]. Increased demand 
for bioethanol and other renewable energy sources is due 
to several international regulations, which pays increasing 
attention on the growing share of renewable energy and 
the environmental impact of technology [7-11].

However, a major factor in popularizing bioethanol is 
the profitability of investing in the construction of facilities 
producing this energy source, as well as the profitability of 
its supply chain. A number of factors affect the price of 
bioethanol: the current economic and political situation of 
a country, the size of taxes and subsidies, current demand 
for biofuels, and production and operating expenses [4, 
12]. Therefore, in the initial phases of an investment, 
the selection of appropriate equipment, technology of 
production, and the location of the plant itself is crucial 
[12].

Currently, the market is filled with a large number of 
producers of equipment used in bioethanol production. 
The equipment varies not only by price, but also by total 
capacity, power, and efficiency. The multitude of choices 
of equipment and a wide range of power, performance, 
and capacity make the issue of bioethanol production 
line design non-trivial. During the design, one should 
first determine the required minimum capacity of devices 
based on expected annual production of bioethanol. 
By using devices with high energy efficiencies, a direct 
reduction in annual emission of harmful substances into 
the atmosphere is noticed. This is also crucial for annual 
expenditure on energy consumption. In addition, taking 
into account a limited budget, the role of the designer of 
a production line is highly responsible, and any errors are 
associated with prolonged payback time.

The literature mostly presents examples of bioethanol 
or biogas production optimisation. Most of the works 
concentrate on optimising variables associated with 
chemical processes that occur during bioethanol or biogas 
production. There are diverse examples of finding an 
optimal operating point that satisfies various constraints, 
determining an optimal control strategy, or finding a 
constant substrate mixture – all of which lead to optimal 
and stable operation of the plant. Examples of such work 
follow. Optimising an anaerobic sequencing batch reactor 
with the use of artificial neural networks and genetic 
algorithms demonstrated a clear improvement in biogas 
production [13]. Using Particle Swarm Optimization 

in optimising substrate feed mix resulted in a 20% 
improvement in biogas production [14]. Another use 
of particle swarm optimization for optimising values 
of certain biogas production process variables (e.g., 
temperature, pH value) in a multi-layer perceptron neural 
network model resulted in a 20.8% increase in biogas 
production [15].

Another aspect that should be included in the decision 
process regarding bioethanol plant investments is plant 
location. Economic benefits are strongly associated with 
costs of materials, amount of revenue from sales, and 
transportation costs. In general, production costs of biofuel 
are associated with the facility size and location [16]. 
Therefore, the location of the plant should be optimised to 
maximise profit. Celli et al. presented a system based on 
genetic algorithms, which enable optimal biomass power 
plant distribution [17]. Another example used a mixed-
integer linear programming model to optimise supply and 
delivery of ethanol [18]. Mixed-integer linear programming 
was also used to optimise the design and planning of 
biomass-based fuel supply networks according to financial 
criteria [19]. A mathematical model for optimising cost of 
a switchgrass-based biofuel supply chain was developed 
likewise using mixed integer linear programming [20]. 
Biorefinery location was based on the transportation 
cost of biomass and biofuel. An example of performance 
optimisation of a biofuel supply chain was carried out by 
a two-stage stochastic mixed-integer linear programming 
model with the sample average approximation algorithm 
[21]. There are several other examples of mixed-integer 
linear programming optimisation of biofuel supply chains 
[22-24], which appears to be the most used method at 
present.

A limited number of sources present an actual system 
for biogas or bioethanol plant design assistance. One is 
a piece of software developed by M. Samer to plan and 
design biogas plants and their concrete structures [25]. 
However, despite its capability to specify many details 
of the plant (such as dimensions of tanks or the amount 
of construction materials), it is incapable of performing 
any higher-level optimisation. Optimised results from a 
mixed integer non-linear programming model were used 
to incorporate structural enhancements in distillation 
columns and heat integration inside a bioethanol plant 
to reduce steam consumption [26]. Problems regarding 
capacity expansions of production and storage facilities of 
supply network over time, along with associated planning 
decisions, were successfully solved using the sample 
average approximation algorithm [27]. There is also a 
number of articles that present examples of optimisation 
of biofuel production processes by selecting appropriate 
technologies used in a refinery [28].

As is apparent from the foregoing description, some 
of the work uses natural-inspired algorithms, especially 
swarm algorithms (particle swarm optimization in 
particular) to solve relevant problems. Swarm algorithms 
are a set of stochastic metaheuristics used in various 
optimisation tasks. An inspiration for their development 
was the behaviour of social animals and various natural 
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phenomena. Their effectiveness in solving complicated, 
multidimensional problems has been extensively proven, 
and suggests that this will also be the case for the presented 
problem. In fact, the effectiveness of swarm algorithms in 
optimising biofuel plant supply chains has been proven 
[29].

Almost all of the foregoing examples of literature 
describe optimisation of biofuel supply chains and 
their major constituents, such as feedstock availability, 
harvesting capacity, and site locations, transportation 
network, storage, or regional economic structure, and 
policy. A more technical side of bioethanol plant planning 
seems to be omitted, i.e., selection of particular pieces of 
equipment that constitute a plant.

This article tries to answer two questions: is it possible 
to develop a versatile tool for bioethanol investment 
planning, and whether and what swarm algorithms 
are effective in solving the presented problem. That 
is the problem of planning first-generation bioethanol 
plant construction with minimisation of equipment and 
operating costs. Therefore, an optimisation system based 
on selected swarm algorithms has been developed. The 
following swarm algorithms were tested: ant colony 
optimization (ACO), river formation dynamics (RFD), 
particle swarm optimization (PSO), and cuckoo search 
(CS). The system was developed with its simplicity and 
flexibility in mind, so that simultaneous optimisation of 
plant equipment and location could be done by a single 
algorithm. In this respect, the article presents a new 
approach to the described problem.

The obtained results allow us to conclude that this 
type of methodology can find a use in making investment 
decisions for investors and developers.

Overview of the Bioethanol Plant 
Model Used

This article incorporates as its model a first-generation 
bioethanol plant. The first-generation bioethanol 
production process consists of a number of different 
minor processes such as washing, cutting, extracting, 
carbonation, alcoholic fermentation, and distillation.  
Fig. 1 presents in detail the process of bioethanol pro-
duction from sugar beet to the final product: bioethanol 
[10, 30]. The model presented is a simplified one that 
considers only the main production process. Whether the 
addition of more factors (e.g., power or water processing) 
would significantly affect the model remains an open 
question.

The sugar beet production process stands as follows. 
Transported in autumn and before further treatment, sugar 
beets first must be washed thoroughly. Barrel washers 
clean the beets and separate them from stones, sand, and 
weeds. Then sugar beets are cut into what is called slice. 
Slice is flooded with suitably prepared warm water to 
extract sucrose from the beets. As a result of extraction, 
a raw juice containing 13-14.5% sugar is obtained. In 
order to purify the raw juice from pollutants, lime milk 

is added and then the mixture undergoes the process of 
carbonation. After filtering off impurities from the raw 
juice, a thin juice is obtained (approximately 15% sugar 
content). The next step in the production of bioethanol 
is thickening the thin juice to increase its sugar content. 
Thin juice is repeatedly passed through evaporators. 
At the end of the evaporation process a thick juice, 
containing 68-71% sugar, is obtained. Then, using yeast 
in the fermentation process, carbon dioxide and ethanol is 
produced (5-7% concentration of pure ethanol). The final 
stage of the production of bioethanol is its distillation to 
increase the concentration of pure alcohol in the finished 
product. Distillation is repeated two or three times  
(95-96% ethyl alcohol concentration).

As is apparent from the foregoing description, the 
complexity of the production process of bioethanol enforces 
the use of a large amount of specialized equipment, such 
as: barrel washers, cutting machines, carbonators, filters, 
centrifuges, mixing tanks, evaporators, and distillers. 
All mentioned equipment, in addition to its costs, has 
characteristics that highly affect the production process 
and its efficiency (such as capacity or energy efficiency). 
Depending on the expected results, the selection of 
particular pieces of equipment is not an easy task.

Methods

Problem Formulation

The problem presented in the introduction requires 
the selection of successive elements of the technological 
process of bioethanol production. As shown in Fig. 1, the 
production process can be separated into different stages 
in which particular pieces of equipment sequentially 
process the beet juice. For each stage, a list of potential 
instruments and their characteristics (price, power, 
efficiency) can be created. Furthermore, the plant must be 

Fig. 1. Considered bioethanol production process.
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placed in a suitable location, on which all raw material 
and transportation costs are dependent (after selecting 
appropriate buyers and sellers).

Therefore, a combinatorial problem with one objective 
function can be formulated. The objective function is to 
minimise expenditures calculated on the basis of initial 
plant equipment costs, as well as operation costs and 
sum of revenue throughout the first year. The presented 
problem can be written in the following form:

 (1)

…where F(eq,s,b,l) is the objective function being the 
total costs C incurred by the first year (2) dependent on 
chosen equipment eq, plant location l, sugar beet sellers 
s, and bioethanol buyers b. The limitation h(eq,s,b) is the 
annual production of bioethanol, which should be greater 
or equal to intended minimum production pa. Additionally, 
all chosen equipment must form a complete bioethanol 
production line Lp, comprised of p production stages (as 
in Fig. 1).

 (2)

The total costs are dependent, among other things, on 
purchase costs for equipment (3) and energy expenses 
(4) – all of which depend on characteristics of particular 
chosen pieces of equipment.

      (3)

                       (4)

…where:

    (5)

Therefore, to support the given equations, a list of 
equipment for each type used in the production process 
(i.e., barrel washers, cutting machines, carbonators, filters, 
centrifuges, mixing tanks, evaporators, and distillers) has 
been established (Appendix a). Their price, efficiency, 
and capacity were loosely based on existing equipment, 
and assigned randomly for purposes of the tests. These 
characteristics stand for the basis for determining the value 
of objective functions. During the investment simulation it 
is crucial to not only choose a particular machine, but to 
choose their number as well – as it dictates whether overall 
device capacity fits the expected annual production.

In addition, the plant is designed to provide a certain 
amount of bioethanol per year. This imposes the use of 
constraints to filter out incorrect solutions. This is used 
mainly to verify whether all tanks provide adequate 
capacity, and whether all beet sellers can provide the 
appropriate amount of raw material.

The second part of the presented issue is plant location 
optimisation. In contrast to a more sophisticated plant 
location model developed by Zhang et al. [20], a simple 
model for the purpose of location optimisation has been 
prepared. Fig. 2 presents a map of potential locations 
for the bioethanol plant. In addition to the free fields for 
the plant, the map includes locations of eight sugar beet 
suppliers (marked grey) and 10 buyers of fuel (marked 
black). The choice of a particular field is dictated by the 
cost of purchase (6) and transportation (8) of sugar beets, 
and selling (7) and transport (9) costs of bioethanol. All 
sugar beet providers and fuel stations have been assigned 
with appropriate purchase prices, randomly distributed 
to simulate diverse yet levelled economic circumstances 
(Appendix b). Sugar beets are purchased once a year from 
chosen sources, whereas bioethanol is sold on a monthly 
basis. Truck tonnage capacity and tank litre capacity 
were assumed as constant and equal to, accordingly,  
12 t and 28,300 l. Transportation costs are dependent on 
the distance between a buyer/seller and the plant, which 
was assumed as a Cartesian distance between particular 
fields with constant transportation cost per unit ($20 US 
in this case). All sellers and buyers have their minimum 
and maximum supply and demand, which provides 
information as to whether they are suitable for the given 
case.

         (6)

   (7)

 (8)

 
(9)

It is apparent that the presented issue is a combination 
of a simplified supply chain design with additional 
production optimisation variables. Like scheduling, the 
described problem focuses on deciding how to commit 
available resources between a variety of possible tasks. 
In this manner each of the listed equipment must be 
assigned to proper production stages. Each of the listed 
sugar beet suppliers and buyers of fuel must be assigned 
as well. All selected variables must be subject to the 
limitations concerning appropriate production volume 
and composition of the bioethanol production line. The 
limitations are mostly verifiable at the very end of the 
selection process. Due to complexity in verifying the 
relevant tasks, the raised problem can be considered as 
NP-hard. In fact, a complex scheduling or supply chain 
problem is often considered as NP-hard and dealt with the 
use of modern heuristic optimisation methods [31].

A problem H is NP-hard (non-deterministic 
polynomial-time hard) when every problem L in NP can 
be reduced in polynomial time to H. If a solution for H 
takes one unit time, it can be used to solve L in polynomial 
time.
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The presented optimisation problem can be solved 
twofold. It can be modelled as a routing problem in a 
polytree, i.e., a directed decision tree (Fig. 3). Nodes of 
this graph represent particular devices and locations of the 
bioethanol plant. Edges of the graph represent total cost 
transitions. The solution in this case would be a path from 
an initial node to final node, where all subsequent nodes 
on the path represent particular pieces of equipment, plant 
locations, and buyer/seller locations to be chosen.

The second possibility is to conduct a search for the 
optimum point in a multidimensional space, based on an 
objective function. Each of the variables determine the 
choice of a particular device for the appropriate stage of 
production, and choice of locations on the map for beet 
suppliers and bioethanol buyers, which adds up to 37 
optimisation variables to be determined. Both approaches 
have been tested to determine the most suitable.

   (10)

… where eqn indicates a chosen piece of equipment for a 
particular production stage, locSB indicates the location of 
a raw material seller from the map, and locBE indicates the 
location of a bioethanol buyer on the map. All variables 
in this case are integer numbers indicating numbers of 
particular items from the list or the map.

Ant Colony Optimization

ACO [32] is one of the first optimisation techniques 
inspired by the intelligence of animal swarms. The 
source of inspiration was the behaviour of ant colonies, 
especially the mechanism of their communication. The 
ACO algorithm is mainly used in graph problems where it 
has proven to be highly efficient.

The ant system algorithm is one of the basic algorithms 
derived from the ACO techniques group. The algorithm by 
which the optimisation process is carried out is as follows:
1.	 	 Assign m agents to the start node.
2.	 	 Assign a certain initial amount of pheromone to each 

edge of the graph.
3.	 	 Construct a path for each agent.
4.	 	 Update the amount of pheromone on each edge.
5.	 	 If T iterations were performed, end the processing; 

otherwise go to Step 3.
6.	 	 Save the best path.

As a well-known algorithm, ACO has found many uses 
in complicated optimisation tasks. There are numerous 
examples of job sequencing and operation machine 
allocation done by the ACO algorithm as well [33].

River Formation Dynamics

One of the latest methods in the field of swarm 
intelligence is the river formation dynamics algorithm 
[34]. The principle of its operation is to imitate the process 
of riverbed formation. A set of drops, placed at a starting 
point, is subjected to gravitational force that attracts 
them to the centre of the earth. As a result, these drops 

are distributed throughout their environment, seeking the 
lowest point – the sea.

RFD utilizes this idea into graph theory problems, 
creating a set of agents that move on the edges between 
nodes, and explore the environment for the best solution. 
This is accomplished by the mechanisms of erosion 
and soil sedimentation. The amount of soil relates to an 
altitude assigned to each node. Transition from one node to 
another is carried out according to the decreasing gradient 
between the nodes. This provides many benefits for the 
optimisation process (e.g., avoidance of local cycles). In 
this sense, RFD is a gradient-oriented variant of the ACO 
algorithm.

The RFD algorithm is as follows:
1.	 	 Initialise nodes
2.	 	 Initialise drops
3.	 	 Move drops
4.	 	 Erode paths
5.	 	 Deposit sediment
6.	 	 Analyse paths
7.	 	 If an end condition has been met, end processing; 

otherwise go to Step 3
Drops move individually until they reach a goal or 

evaporate – not being able to make a move. The probability 
that drop k located in node i selects another node j is the 
following:

 (11)

… where:

 (12)

Nk(i) represents a set of neighbouring nodes connected 
to edges of the node in which drop k is located; altitude(i) 
indicates the amount of soil in node i, and distance(i,j) 
represents edge length between nodes i and j.

All nodes are eroded according to Equation (13). The 
erosion is inversely proportional to the total length of the 
route of a drop pathLengthk.

 (13)

The final step is to deposit a small amount of 
sediment to all nodes in order to avoid approaching a 
zero altitude, which would adversely affect the operation 
of the algorithm. This amount decreases with successive 
iterations of the algorithm.

Particle Swarm Optimization

PSO [35] is another example of a stochastic optimisation 
method. Since its development in 1995 it has gained wide 
popularity among researchers due to its robustness and 
effectiveness in solving various optimisation tasks.
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In PSO a number of simple agent-particles is placed in 
a search space, and each evaluates the objective function 
at its current location. Each particle i in the swarm is 
composed of three vectors indicating its current location 
, previous best location , and velocity . The location of 
the particle is indicated by a set of coordinates being the 
problem solution. The PSO algorithm is as follows:
1.	 	 Randomly generate initial swarm.
2.	 	 Evaluate the fitness of the next particle.
3.	 	 Compare particle fitness value with its best; if the 

current value is better than the best one, then set its 
best to the current value and set the best location  to 
the current location .

4.	 	 Identify the best particle in the neighbourhood and 
assign its index to the variable g.

5.	 	 Update the velocity and position of the particle.
6.	 	 If all particles have been processed, continue; 

otherwise go to Step 2.
7.	 	 If an end condition has been met, end processing; 

otherwise go to Step 2.
The PSO algorithm also finds many uses in production 

optimisation, e.g., in biogas production [36].

Cuckoo Search

One of the newest swarm algorithms is the cuckoo 
search, developed by Yang and Deb [37]. It was inspired 
by the brood parasitism phenomenon seen in some species 
of cuckoos, which is manifested by placing their eggs in 
nests of birds of other species. The algorithm applies the 
mechanism of Lévy flights to select subsequent nests, 
allowing for proper balance between exploration and 
exploitation of a search space. A Lévy flight is a random 
walk in which the steps are defined in terms of the step-
lengths, which have a certain heavy-tailed probability 
distribution, with the directions of the steps being isotropic 
and random.

Each cuckoo lays one or more eggs (in a randomly 
chosen nest), each representing coordinates of a point in 
the search space, being the problem solution. The number 
of nests is fixed, and at the end of each iteration a part 
of them is rejected with some probability with only the 
best nests (with the best fitness value) moved to the 
next iteration. Those assumptions are represented by the 
following algorithm:
1.	 	 Randomly generate initial population of n nests xi.
2.	 	 Get a cuckoo randomly by Lévy flights and evaluate 

its fitness.
3.	 	 Randomly choose a nest j.
4.	 	 If fitness of the chosen cuckoo is better than nest j, 

replace j by the new solution.

Fig. 2. Map of available locations for the plant. Grey colour 
marks suppliers of sugar beet and black – petrol stations.

Fig. 3. Simplified decision tree for the optimisation process.

Algorithm iterations 100

Average annual operating time 250 days

Average motor load of a device 5.5

Price for 1 kWh of energy 0.1 USD

Table 1. Parametres used in simulation.
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5.	 	 Abandon a fraction of the worst nests and create new 
ones.

6.	 	 Keep the best solutions.
7.	 	 If an end condition has been met, end processing; 

otherwise go to Step 3.
The CS algorithm has proven to be very efficient in 

solving various engineering optimisation tasks [38]. 
Furthermore, a modified version of the CS algorithm was 
previously used in selecting energy system parameters for 
buildings [39].

Results and Discussion

The following tests were created to test the capabilities 
of swarm algorithms in a given task. An optimisation 
model has been prepared for each of the four swarm 
algorithms: ant colony optimization, river formation 

dynamics, particle swarm optimization, and cuckoo 
search. As mentioned earlier, the problem can be divided 
into two types based on the used algorithm. Therefore, the 
ACO and RFD algorithms were used to solve a decision 
tree problem, and the PSO and CS algorithms conducted a 
multidimensional space search.

The tests were conducted on a PC with an Intel i7 
procesor. Matlab software was chosen as the testing 
environment. All algorithms were set to work for exactly 
100 iterations.

A list of equipment (Appendix a) characterised by 
price, capacity, power, and energy efficiency was created 
for all of the production stages, i.e., washing, cutting, 
extracting, liming, two stages of carbonation, five stages 
of evaporation, two stages of mixing, fermentation, 
centrifuging, and two stages of distillation. Moreover, 
a list of possible sugar beet providers and petrol station 
locations (Appendix b) with relevant characteristics was 

Table 2. Optimisation results of the considered algorithms for 100000 l/a bioethanol production.

Table 3. Optimisation results of the considered algorithms for 500000 l/a bioethanol production.

Table 4. Optimisation results of the considered algorithms for 1000000 l/a bioethanol production.

  CS RFD PSO ACO

Equipment price [USD] 101 005 101 005 101 045 101 005

Energy costs [USD] 175 375 175 375 175 375 175 375

Transportation costs [USD] 22 000 12 240 21 040 16 160

Sugar beet costs [USD] 688 843.80 688 843.80 747 887.50 688 843.80

Revenue [USD] 61 421.58 61 421.58 53 004.24 61 421.58

Total costs [USD] 925 802.22 916 042.22 992 343.26 919 962.22

  CS RFD PSO ACO

Equipment price [USD] 133810.00 125505.00 126650.00 136105.00

Energy costs [USD] 18040.40 175798.60 184699.80 180404.40

Transportation costs [USD] 23440.00 42080.00 60720.00 31865.00

Sugar beet costs [USD] 3740252.00 3442460.00 3442460.00 3639172.00

Revenue [USD] 320835.90 320835.90 307085.80 320835.90

Total costs [USD] 3594706.50 3465007.70 3507444.00 3666710.50

  CS RFD PSO ACO

Equipment price [USD] 217290.00 191491.00 241845.00 191491.00

Energy costs [USD] 215451.20 209647.60 209647.60 214066.80

Transportation costs [USD] 198680.00 82640.00 44920.00 43480.00

Sugar beet costs [USD] 7277724.00 6884334.00 6884334.00 6884334.00

Revenue [USD] 641671.80 641671.80 641671.80 530004.20

Total costs [USD] 7267473.40 6726440.80 6739074.80 6803367.60
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created. All other factors used in the simulations are 
presented in Table 1.

The values chosen are not representative of a real 
bioethanol plant. The model presented is more a proof of 
successful use of an optimisation system for the said task 
rather than an example of a proper plant model. In this 
case, complexity and type of data are more important than 
the values themselves.

Several tests have been conducted for different 
expected annual bioethanol production – 100,000 l/a, 
500,000 l/a, and 1000,000 l/a – for which the results are 
presented below in Tables 2, 3, and 4, respectively.

As shown in Table 2, the lowest costs were achieved 
by the RFD algorithm, whereas the highest were obtained 
by the PSO algorithm. However, overall differences 
between particular solutions is very little, and equals in 
the extreme case $76,301.04 US. The small difference 
between all given total costs components is a result of the 
limited possibility to choose from sugar beet sellers and 
bioethanol buyers, as well as a clear idea of the amount 
of equipment to buy. The small annual bioethanol demand 
influences the necessity for low device capacity and sparse 
transportation.

Tables 3 and 4 present more diverse results, as the 
annual bioethanol demand is much higher, which in turn 
opens more possibilities. In these cases the RFD algorithm 
achieved the best results as well. There is a much higher 
difference between equipment costs, because the number 
of required devices increased with capacity to meet the 
annual bioethanol demand. In all cases the energy costs 
are very similar because there is little difference between 
particular device efficiencies.

The most notable dissimilarity occurs in the case 
of sugar beet costs. With increased annual demand, 
the required sugar beet supply increases as well, which 
makes the choice of particular beet supplier and plant 
location susceptible to high changes in costs. As heuristic 
optimisation methods, the presented algorithms are not 
bound to present only the optimal solutions, therefore 
a small change on the location map may result in a big 

change in costs of buying and transporting sugar beets. 
Agents of the space-searching algorithms, such as the PSO 
and CS, can in some cases make too large a step and omit 
the best solution. As is apparent, this is the case, since 
those two algorithms presented the worst results in most 
instances.

The RFD and ACO algorithms achieved the best overall 
results, with the RFD algorithm being considerably better. 
This is due to the fact that the RFD algorithm applies the 
gradient-oriented method of selecting subsequent nodes. 
It helps to avoid local cycles, and reinforces the best paths 
while still possessing the possibility of finding different 
routes. In the case of the other two algorithms, the CS 
algorithm surpassed the PSO in accordance with numerous 
other studies that compared those two algorithms.

This proves that the RFD and ACO algorithms 
are characterised in this case by the best convergence 
and robustness. To better illustrate this, a convergence 
comparison has been made. Fig. 4 presents how the four 
tested algorithms converged throughout the optimisation 
process. It can be stated that the RFD algorithm achieved 
the best result in this case. However, it needed more 
iterations to reach its optimum. All other algorithms 
converge at a considerably higher rate.

A final conclusion can be drawn from the presented 
result. That is, the two algorithms that solved the problem 
as a graph (ACO and RFD) obtained better results than 
the other two. It follows from this fact that the investment 
planning problem that was formulated should be 
considered as a directed graph problem. By this means, the 
best results can be achieved. Moreover, because of their 
robustness, swarm algorithms fit into the given problem 
very well. They can easily adapt to changes in the model, 
making the investment planning tool very versatile.

Conclusions

This article presents a comparison of four swarm 
algorithms – ant colony optimization, river formation 
dynamics, particle swarm optimization, and cuckoo 
search – as they relate to the task of first-generation 
bioethanol plant investment planning. The formulated 
planning process consists of equipment and plant location 
choice. With the assistance of those algorithms, additional 
optimisation for the planning process could be performed.

Two approaches for the given problem have been 
presented. One of them focuses on solving a polytree 
problem by sequentially selecting all needed pieces of 
equipment and the plant location according to cost criteria. 
The other is formulated as a multidimensional space 
search, where a sought point indicates indexes of given 
equipment, their number, and plant, sugar beet seller, and 
bioethanol buyer locations. The first approach was solved 
with the ant colony optimization and river formation 
dynamics algorithms, and the later with the particle swarm 
optimization and cuckoo search algorithms.

To solve the given problem, a list of equipment with its 
characteristics (price, power, efficiency, and capacity) was 

Fig. 4. Normalised fitness function convergence throughout the 
optimisation process for all considered algorithms.
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Appendix a). Parameters of matched bioethanol plant equipment for each production stage.

Stage Price 
[USD]

Capa-
city

Electrical 
efficiency 

[%]

Power 
[kW]

Process 
efficiency 

[%]

Washing

4500

12 t/h

78

2.2 88.2

4515 80

4670 81

4545 82

4590 82

Cutting

2400

2 t/h

74

1.5

~100.00

3500 82.8

3545 79

3615 79

3570 79

5673
3 t/h

76
1.5

5783 75

4500

3 t/h

86

44650 85.5

4560 86

Extrac-
tion

1735 900 l

- - 113.73

1814 1100 l

1848 1250 l

2024 1550 l

2118 1950 l

2387 2550 l

2417 3750 l

3929 5650 l

5396 7550 l

5920 9450 l

6528 11350 l

6969 13200 l

9609 15100 l

11905 18900 l

14225 22700 l

17654 37850 l

20280 45400 l

23327 56750 l

27131 75700 l

Liming

1735 900 l

- - 106.23

1814 1100 l

1848 1250 l

2024 1550 l

2118 1950 l

2387 2550 l

2417 3750 l

3929 5650 l

5396 7550 l

5920 9450 l

6528 11350 l

6969 13200 l

9609 15100 l

11905 18900 l

14225 22700 l

17654 37850 l

20280 45400 l

23327 56750 l

27131 75700 l

Carbona-
tion

11500 5500 l/h

- - 92.19

13800 6000 l/h

16000 7000 l/h

18500 8000 l/h

20000 9500 l/h

24000 9800 l/h

Evapora-
tion

10000 5000 l

- - 78.25

35000 7000 l

45000 8500 l

65000 10000 l

80000 20000 l

100000 50000 l

Mixing

1700

580 l

79

1.5

~100.00

1710 79

1740 74

2500

2200 l

79

3

2375 85.5

2535 82.5

2400 83

2410 84

2350 84.6

3500

2800 l

83

5.5
3300 87.9

3330 86

3510 85.5



1212 Redlarski G., et al.

prepared, along with a map of possible bioethanol plant 
locations, sugar beet suppliers, and petrol stations.

As a result of the tests, we can conclude that the best-
performing algorithm is the river formation dynamics 
algorithm. Total costs of the investment resulting from 
its optimisation were slightly lower than those obtained 
from the ant colony optimization algorithm. Generally, all 
presented swarm algorithms produced satisfying results 
and are suitable to solve the bioethanol plant design 
planning problem.

The polytree approach to the given problem allowed 
us to obtain better results. The ACO and RFD algorithms 
have chosen less expensive and more efficient sets of 
equipment, and more profitable plant locations. This 
indicates that the given problem should be approached in 
this way in the future.

Swarm algorithms are characterised by their robustness, 
and can easily adapt to much more complicated models, 
which makes the presented tool very versatile. This 
suggests that adding more detail and subjecting the model 
to more objective functions and constraints is possible, 
and can produce satisfying results. Just by the addition of 
another variable that represents a different characteristic, 
and its inclusion in an objective function, the model can be 
easily expanded. The main drawback of the presented test 
is that the model is based on randomized characteristics 
of a plant. With more accurate data such a system could 
be compared with actual bioethanol plants to determine 
to what extent the optimization can benefit real plant 

Appendix b). Information about sugar beet sellers and bioethanol 
buyers used in the location map in Fig. 2.

Type Position 
on the map

Price 
[USD]

Max 
amount

Min 
amount

Beet seller

B10 586.25/t 12 000 t 2 400 t

C1 586.25 13 000 2 600

D19 670 16 000 3 200

I2 670 18 000 3 600

K10 636.5 13 000 2 600

O13 619.75 11 000 2 200

R20 636.5 14 000 2 800

S8 619.75 12 000 2 400

Bioethanol 
buyer

A5 6.365/l 600000 l 120 000 l

B15 6.7 800 000 160 000

E1 6.365 700 000 140 000

G6 7.705 1 600 000 320 000

G11 7.035 1 000 000 200 000

I19 7.035 1 100 000 220 000

N7 7.37 1 200 000 240 000

P16 6.7 900 000 180 000

Q1 7.37 1 300 000 260 000

T2 7.705 2 000 000 400 000

Fermen-
tation

1735 900 l

- - 148.57

1814 1100 l

1848 1250 l

2024 1550 l

2118 1950 l

2387 2550 l

2417 3750 l

3929 5650 l

5396 7550 l

5920 9450 l

6528 11350 l

6969 13200 l

9609 15100 l

11905 18900 l

14225 22700 l

17654 37850 l

20280 45400 l

23327 56750 l

Centri-
fugation

2500

3 t/h

82.8

1.5

65.08

2545 79

2600 79

2575 74

5000

12 t/h

85.5

4

5180 82.5

5030 83

5070 84

5040 84.6

10000

20 t/h

87.9

7.510145 86

10350 85.5

20000
100 t/h

89.4
11

20100 89.8

30000 200 t/h 90.6 15

Distilla-
tion

5000 640 l

- - 36.5

7500 1220 l

9500 1450 l

9800 1800 l

10500 20000 l

11500 2300 l

13500 2500 l

16000 3200 l

Appendix a). Continued.
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developers. Extension to this problem should be a topic 
for future research.

Nomenclature

Pi 	 Power of i-th device [kW]
RBE 	 Revenues from the sale of bioethanol [USD]
CSB 	 Costs associated with transportation of beet 		
	 [USD]
CBE 	 Costs associated with transportation of bioethanol 
	 [USD]

	 Purchase price of beet from i-th seller [USD·t−1]
	 Amount of beet purchased from i-th seller [t]

	 Selling price of bioethanol for i-th recipient 
	 [USD·l−1]

	 Amount of bioethanol sold to i-th recipient [l]
CE 	 Costs associated with the purchase of executive 
	 devices [USD]
ci 	 Price of i-th device [USD]
ki 	 Number of i-th devices [–]

	 Effciency of i-th device [%]
	 Distance to i-th seller [km]
	 Distance to i-th recipient [km]

tW 	 Average annual operating time [d/y]
ni 	 Average motor load of i-th device [–]
Qel 	 Annual electricity consumption [kWh·y−1]
G 	 Price for 1 kWh of energy [USD]
CEN 	 Costs associated with the purchase of electricity 
	 [USD]
C 	 Total costs [USD]
CSBp 	 Costs associated with the purchase of sugar beet 
	 [USD]
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