
Introduction

There is widespread agreement that global biodiversity 
is declining at an accelerated rate. The main threat to 
tropical forest biodiversity is habitat loss, particularly 
loss of forest cover. Rapidly changing climate, habitat 
fragmentation, invasion of alien species and pathogens, 
pollution, over-exploitation, and escalating human 
population are the most important factors responsible for 
ecosystem degradation worldwide that alter the structural 

and functional integrity of the ecosystems. Such alterations 
have brought approximately one fifth of the plant species 
to the brink of extinction.

Indian Sandalwood Tree

In this research, the Indian Sandalwood tree is 
considered as the study species. Its botanical name is 
Santalum album.

Sandal is a nationally protected resource in India. 
Despite the protection status the natural resources of 
sandal (particularly in India) are being indiscriminately 
exploited, perhaps because of its extremely high export 
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value. Increasing demand for timber by a rapidly growing 
population has put high pressure on limited forest 
resources of sandalwood. The high value of the species has 
caused its past exploitation to the point making this tree’s 
population vulnerable to extinction. Indian sandalwood 
still commands high prices for its essential oil, but due 
to the lack of sizable trees it is no longer used for fine 
woodworking.

Nearly 85% of the supply of Indian sandalwood comes 
from the southern states of Tamil Nadu, Karnataka, and 
Kerala [1]. The Indian sandalwood industry has been in 
the grip of significant crisis of sandalwood, in terms of its 
procurement, for decades. Excessive harvesting without 
replenishment of this invaluable resource has substantially 
reduced the sandalwood industry, resulting in a global 
shortage and the soaring of market prices.

The species is threatened by over-exploitation 
and degradation of habitat through altered land use; 
fire, agriculture, and land-clearing are the factors of 
greatest concern. In 1998 this species was recognized 
as “vulnerable” by the International Union for the 
Conservation of Nature’s (IUCN) Red List, due to threats 
like the rapid spread of disease, fire, grazing by cattle, 
deer, and other animals (to which the sandalwood trees 
are extremely sensitive), and exploitation through illegal 
activity. Today the sandalwood tree still faces many threats 
from not only humans, in the form of exploitation and 
illegal harvesting, but also from natural forces. According 
to forestry consultant Dr. Anantha Padmanabha, “the tree’s 
growth under natural forest conditions is very slow due to 
reasons like fire, grazing, and human intervention.” It is 
feared that being associated with the severe exploitation 
of the natural populations of sandal, the genetic resources 
of the species may have also been affected. Such a loss 
of genetic resources may have far-reaching consequences 
on the improvement of sandal for its heartwood and oil 
quality. 

To preserve this tree from over-exploitation, suitable 
cultivation practices at other places are necessary. 
Prediction and mapping of potential suitable habitats for 
this tree is critical for monitoring and restoring its declining 
native population. If suitable sites are identified, we can 
use the germplasm of this tree and after tissue culture, 
and cultivation can be done at modeled habitats enabling 
the expansion of Sandalwood tree plantations [1]. The 
scope of this research reaches only to the identification of 
suitable sites in the study area.

Predictive Species Habitat Distribution Modelling 
(PSHDM)

Predictive species habitat distribution modelling 
(PSHDM), otherwise called environmental niche 
modelling, refers to the process of using computer 
algorithms to predict the distribution of species in 
geographic space on the basis of a mathematical 
representation of their known distribution in environmental 
space (i.e., realized ecological niche). The environment 
is in most cases represented by climate data (such as 

temperature and precipitation), but other variables such as 
soil type, water depth, and land cover can also be used. 
These models get applied in several research areas such as 
conservation biology, ecology, and evolution. According 
to these models, the presence of a species is considered a 
physiological or mechanistic logic of favorable site factors, 
or in other words a causal function of the explanatory 
variables based on the niche requirements of a species.

Agro-Forestry Database

According to the agro-forestry database (Version 
4.0) of the World Agroforestry Centre (Nairobi, Kenya), 
altitude, annual rainfall, mean annual temperature, pH, 
and soil type are the required factors for Santalum album’s 
survival. These are the abiotic factors, and a suitable host 
plant presence is the biotic factor that is required for the 
absorption of water and nutrients (especially nitrogenous 
compounds). The host plants require the abiotic factors 
as required by Santalum album, and it also needs soil 
moisture content as its additional abiotic factor [2].

The agro-forestry database provides a comprehensive 
list of variables that favor the growth of Santalum album. 
For finding their respective value ranges, dependency 
analysis is performed. Dependency analysis is used for 
finding the percentage of influence of each factor which is 
computed in this research by an algorithm different from 
those of the currently used niche models. This research 
uses a previous map that depicts the tree’s distribution 
(obtained in shapefile format) in 2014 (Fig. 1), the source 
of which is the ENVIS Center on Floral diversity. 

Fig. 1. Santalum album distribution map in 2014.
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The identified variables are checked for their values 
(pertaining to 2014) in the regions present within the 
delineated boundaries of this map. Clustering of classes 
has been done using fuzzy logic to maximize accuracy. 
Then site suitability analysis has been done in the study 
area for the present conditions. The site suitability maps 
for the study area thus prepared are validated by direct 
field visits. In order to make these algorithms as ‘machine-
learning algorithms,’ process modelling is done. The 
GIS software used for all operations and analyses in this 
research is ArcGIS 9.3. 

Material and Methods

Ecological Niche Modelling

This research perceives ecological niche modelling of 
Santalum album in any study-area as the combination of:
1. Dependency analysis.
2. Membership value estimation.
3. Site suitability analysis.
4. Strategy-oriented prescriptive process modelling.

Table 1 lists the sources of both parametric and non-
parametric data used in this research. These data were 
downloaded from the websites mentioned in the table.

Dependency Analysis

Dependency analysis is performed using the previous 
distribution map (Fig. 1) of Santalum album. It is 

performed with two types of factors (parametric and non-
parametric) – each having different algorithms developed 
in this research.

Case I: For Parametric Factors

Dependency analysis in the case of parametric factors 
first includes the following three operations:
1. Intra-layer zonal weightage calculation.
2. Clustering using fuzzy logic.
3. Contributive weightage calculation.

Intra-layer Zonal Weightage Calculation

Using the boundaries in the map, analysis has been 
done to find the parametric range of values for each factor 
that are likely suitable for the tree’s survival. 

In the first step the values of each layer (such as 
altitude, mean annual temperature, mean annual rainfall, 
soil pH, and soil moisture) are normalized using equations 
4.1, 4.2, and 4.3. 

                   Eq. 4.1

…where ‘x’ is a parametric value of each layer, ‘N’ is the 
number of parametric values in the concerned layer, and 
‘µ’ is the mean of all ‘x’ values which is obtained as the 
result of this equation. Symbol ‘i’ ranges from the 1st to Nth 
value of ‘x’.

Table 1. Sources of the obtained data. 

Factor Type of data Year of data Data source Reference

Mean annual temperature

Parametric

2014 http://www.worldclim.org/current [3]

Altitude 2014 http://srtm.csi.cgiar.org [4]

Mean annual rainfall 2014 http://www.worldclim.org/current [3]

Soil moisture 2014 http://rda.ucar.edu/ [5]

Soil pH 2014 http://www.isric.org/content/soilgrids [6]

Soil type Non-parametric 2014 http://www.isric.org/content/soilgrids [6]

Fig. 2. Normal curve showing ‘z’ values and their corresponding weightages.
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    Eq. 4.2

…where ‘σ’ is the standard deviation of ‘x’ values from the 
mean ‘µ’, and the value of ‘µ’ is obtained from equation 
4.1.

                  Eq.4.3

…where ‘z’ is the normalized value. Values of ‘µ’ and ‘σ’ 
are obtained from equations 4.1 and 4.2. respectively.

Ranking the ‘z’ value ranges is then done (as shown in 
Fig. 2) by allotting suitable weightages. This enables the 
calculation of intra-layer zonal weightages which can be 
substituted in equation 4.8. Highly frequent values tend to 
get crowded near the central region of the bell-shaped curve 
and less frequent values form the tail of the bell-shaped 
curve at both sides (as shown in Fig. 2). More priority in 
assigning higher weightages has been given to the zones 
with values that are present nearer the central region of ‘z’ 
value range. This is because Santalum album tends to get 
located more in areas that have parametric factor-values 
of minimal difference between the values themselves [7]. 
This means that higher weighted parametric zones within 
each factor layer are more preferable for the survival of 
Santalum album. 

Clustering with Fuzzy Logic

Now it can be noted that for all the parametric values 
within a ‘z’ value zone, a similar weightage has been 
provided throughout that zone. This indicates that if these 
‘crisp’ weightage clusters are proceeded with further, the 
ecological niche modelling performed will have discrete 
zonations of site suitability indices, making the final 
map less accurate. So in order to get an accurate niche 
modelling of Santalum album, ‘fuzzy logic’ is applied. 
The Fuzzy logic is implemented using equations 4.4, 4.5, 
4.6, and 4.7.

Algorithm

Let (z1,z2) denote the extreme ‘z’ values at both ends of 
a zone. Let (e1,e2) denote the corresponding discrete end-
point ranks of z1 and z2. Fig. 2 shows the corresponding 
end-point ranks of all zones end values. Let ‘c’ indicate 
the finally computed contributive index of ‘z’ in the zone 
of concern. Let ‘w’ be the weightage of the zone. Let ‘cmin’ 
denote the minimum contributive index. This means that 
the value of ‘c’ should always be greater than the ‘cmin’ 
value. This Algorithm as a whole helps in maximizing the 
accuracy of the final output map.

Case I

When z≤0, the ‘cmin’ value is calculated from equation 
4.4.

                         Eq. 4.4

…where e1 is the end-point rank of z1, and ‘w’ is the 
weightage of the zone of concern. The value of cmin 
obtained from equation 4.4 is substituted in equation 4.5:

 
Eq. 4.5

…where ‘z’ is the normalized value calculated from 
equation 4.3. Adding ‘cmin’ value in equation 4.5 ensures 
that the value of ‘c’ is always greater than the ‘cmin’ value. 
Thus Equation 4.5 gives the value of ‘c’ if z ≤ 0.

Case II

When z>0, the ‘cmin’ value is calculated from equation 
4.6.

                     Eq. 4.6

…where ‘e2’ is the end-point rank of ‘z2’ and ‘w’ is the 
weightage of the zone of concern. The value of ‘cmin’ 
obtained from equation 4.6 is substituted in equation 4.7.

 
Eq. 4.7

…where ‘z’ is the normalized value calculated from 
equation 4.3. Adding ‘cmin’ value in equation 4.7 ensures 
that the value of ‘c’ is always greater than the ‘cmin’ value. 
Thus Equation 4.7 gives the value of ‘c’ if z>0.

Case II: For Non-Parametric Factor

Soil-type factor values are non-parametric. The soil 
type data are based on the taxonomic soil type classification 
based on the World Reference Base (WRB) system. The 
areal extents of all the soil types in the Santalum album 
distribution were computed using ArcGIS 9.3. The soil 
type that spreads to the maximum extent is found to be 
Luvisol.

 The areal extent of Luvisol is considered equivalent to 
the maximum Contributive Index of 6. Now the ‘c’ values 
for all other soil types are computed using the ‘direct 
proportionality’ concept as the areal extent of a soil type 
is directly proportional to the membership value. The ‘c’ 
values thus computed are listed in Table 2.

Contributive Weightage Calculation

This procedure is followed for five parametric-factors: 
altitude, annual rainfall, mean annual temperature, pH, 
and soil moisture content. The maps thus prepared for 
each factor have undergone ‘overlay analysis,’ and by 
using ‘single output map algebra expressions,’ all the 
‘contributive indices’ of the layers are added together. 
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Now each layer’s percent contribution to this sum is 
determined, which in turn is the contributive weightage 
(wc). The factors and their corresponding contributive 
weightages have been tabulated in Table 3, from which 
it can be concluded that mean annual temperature is the 
most important factor for the survival of Santalum album. 
Thus all the operations in ‘dependency analysis’ have been 
accomplished. The analyses and operations that needed to 
be undertaken in the study-area of interest are discussed in 
detail in the next two headings.

Membership Value Estimation

Membership values are estimated for each pixel in the 
study-area considering each factor. Two cases arise in the 
estimation process. The first case deals with the parametric 

factor and the second case deals with the non-parametric 
factor.

Case I: For Parametric Factor

In this case, two operations are performed. They are:
1. Normalization of values
2. Clustering using fuzzy logic

Normalization of Values

The Factor-data values are normalized using equations 
4.1, 4.2, and 4.3.

Clustering using Fuzzy logic

Let (z1,z2) denote the extreme ‘z’ values at both ends of 
a zone. Let (e1,e2) denote the corresponding discrete end-
point ranks of z1 and z2. Fig. 2 shows the corresponding 
end-point ranks of all zone end values. Let ‘m’ indicate the 
finally computed membership value of ‘z’ in the zone of 
concern. Let ‘w’ be the weightage of the zone. Let ‘mmin’ 
denote the minimum membership value. This means that 
the value of ‘m’ should always be greater than the ‘‘mmin’ 
value. This algorithm as a whole helps in maximizing the 
accuracy of the final output map.

Case I

When z≤0, the ‘mmin’ value is calculated from equation 
4.8.

                     Eq. 4.8

…where ‘e1’ is the end-point rank of ‘z1’ and ‘w’ is the 
weightage of the zone of concern. The value of ‘mmin’ 
obtained from equation 4.8 is substituted in equation 4.9.

 
Eq. 4.9

…where ‘z’ is the normalized value calculated from 
equation 4.3. Adding ‘mmin’ value in equation 4.9 ensures 
that the value of ‘m’ is always greater than the ‘mmin’ value. 
Thus Equation 4.9 gives the value of ‘m’ if z≤0.

Case II

When z>0, the ‘mmin’ value is calculated from equation 
4.10.

                   Eq. 4.10

…where ‘e2’ is the end-point rank of ‘z2’ and ‘w’ is the 
weightage of the zone of concern. The value of ‘mmin’ 
obtained from equation 4.10 is substituted in equation 
4.11.

Table 2. Soil types and their respective contributive indices.

Soil 
number Soil type Area coverage 

(km2)
Contributive 
index (‘c’)

1. Luvisol 0.398429 6.0000

2. Alisol 0.030232 5.0871

3. Regosol 0.354129 3.6272

4. Acrisol 0.316433 2.8067

5. Vertisol 0.087412 2.6727

6. Nitisol 0.048922 1.8862

7. Cambisol 0.437767 1.3052

8. Lixisol 0.023634 0.5866

9. Andosol 0.035325 0.1226

10. Podzol 0.296963 0.0226

11. Ferralsol 0.186047 0.0132

12. Kastanozems 0.018305 0.0132

13. Leptosol 0.576661 0.0113

14. Solonchaks 0.049144 0.0057

15. Fluvisol 0.089761 0.0019

16. Histosol 0.006738 0.0019

Table 3. Factors and their corresponding contributive weightages.

Soil 
number Factor Factor’s contributive 

weightage  (wc)

1. Mean annual temperature 0.263392239019

2. Altitude 0.242469531299

3. Mean annual rainfall 0.013959986711

4. Soil moisture 0.064255526186

5. Soil pH 0.203901440089

6. Soil type 0.166666666762
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Eq. 4.11

…where ‘z’ is the normalized value calculated from 
equation 4.3. Adding ‘‘mmin’ value in equation 4.11 ensures 
that the value of ‘m’ is always greater than the ‘‘mmin’ 
value. Thus Equation 4.11 gives the value of ‘m’ if z>0.

Case II: For Non-Parametric Factor

From Table 2, the respective membership values of 
soil types present in the study-area are found out. Thus 
membership values are obtained for each factor (Case I or 
Case II) concerned with the study-area.

Site Suitability Analysis

The term ‘Site Suitability Index’ is used to denote 
the degree of suitability of an area in a map which can 
be computed from equation 4.12. The values of ‘m,’ after 
being calculated from equations 4.9 or 4.11 (for parametric 
factors), are substituted in equation 4.12, where they are 
multiplied with their respective contributive weightages 
(wc) to obtain the required ‘Site Suitability Index’.

 
Eq. 4.12

Now the prepared site suitability maps for each factor-
layer undergo ‘overlay analysis,’ in which all the site 
suitability indices computed for each factor in a pixel are 
added together to obtain the final site suitability index for 
the concerned pixel. Likewise, this procedure is repeated 
for all the pixels of the raster image to obtain the final site 
suitability map of the study-area.

Strategy-Oriented Prescriptive  
Process Modelling

Strategy-oriented prescriptive process modelling 
is defined as the simulation of procedures involved in 
an operation with the goal to establish guidelines and 
behaviour patterns which, if followed, would lead to the 
desired process performance in other similar cases of 
study. The patterns may range from strict enforcement to 
flexible guidance. This technique may prove to be useful 
in applying tactics and methods used in a situation to any 
other similar case studies, those of which also have the 
same type of desired target outputs [8].

Fig. 3. The model structure and the zoomed view of the first module of the model.
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It is helpful in making the so-far discussed algorithms 
a combined ‘machine-learned algorithm.’ This enables 
automatic execution of all the operations for the six factors 
concerned with any study-area. This modelling operation 
is done using the ArcGIS 9.3 ‘model builder.’

The model developed for each factor is shown in 
Fig. 3. This model is responsible for the computation 
of membership values for all pixels in the study-area 
pertaining to the parametric factors alone. As shown in the 
figure, the model has 16 modules. The figure also shows 
the zoomed view of the first module. Module 1 is designed 
such that it gets the parametric factor data values of any 
study area as the input from the user and normalizes the 
data using equations 4.1, 4.2, and 4.3 using the ‘single 
output map algebra expression’. 

There are two sub-modules for each of the modules 
from the 2nd module to the 15th module. These modules 
(i.e., from module 2 to module 15) are concerned with the 
extraction of the ‘z’ values in each zone separately and are 
also concerned with the calculation of membership values 
for the ‘z’ values (computed by module 1).

Thus these modules prepare dismantled rasters, where 
each pixel denotes the degree of membership (i.e., the 
membership value) in the final site suitability index to be 

computed. These dismantled rasters are then assembled by 
module 16, which is the final operation of this model. The 
final outputs of this model are the membership value maps 
concerned with all the parametric factors.

Fig. 10 shows the model that is responsible for the 
computation of membership values concerned with the 
non-parametric factor (i.e., soil type). Thus these two 
models perform the function of ‘membership value 
estimation.’ The outputs are then multiplied with their 
corresponding contributive weightages (wc) to obtain 
site suitability maps for each factor (both parametric and 
non-parametric). These maps are then added by overlay 
operation to obtain the final site suitability map of the 
study-area for the survival of Santalum album. The model 
that performs this operation is shown in Fig. 10.

Fig. 4 shows the enlarged view of modules 2, 3, and 
4 present in the model. The functions of modules 2 and 3 
have been elucidated in Table 4. Table 5 also elucidates the 
functions of module 4.

Table 4 enlists modules 2, 3, 5, and 15 and their 
respective sub-modules that extract the negative numbers 
from the normalized values and compute their respective 
‘m’ values. Figures showing the concerned modules are 
also given.

Fig. 4. The model structure and the zoomed view of the 2nd, 3rd, and 4th modules of the model.
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Table 4. Functions of some modules that deal with negative normalized values.

Module Sub-modules Function Equation or ‘map algebra expression’ 
used

Relevant 
figure

Module 5
Sub-module 1 Extraction of normalized values 

below -6
FLOAT (SELECT (normalized, 

“Value < -6”)) Fig. 5
Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Module 2
Sub-module 1 Extraction of normalized values 

between -6 and -5
FLOAT (SELECT (normalized, 
“Value > -6 AND Value ≤ -5”)) Fig. 4

Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Module 15
Sub-module 1 Extraction of normalized values 

between -5 and -4
FLOAT (SELECT (normalized, 
“Value > -5 AND Value ≤ -4”)) Fig. 8

Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Module 3
Sub-module 1 Extraction of normalized values 

between -4 and -3
FLOAT (SELECT (normalized, 
“Value > -4 AND Value ≤ -3”)) Fig. 4

Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Table 5. Functions of the remaining modules that deal with negative normalized values.

Module Sub-modules Function Equation or ‘map algebra expression’ 
used

Relevant 
figure

Module 14
Sub-module 1 Extraction of Normalized values between 

-3 and -2
FLOAT (SELECT (normalized, 
“Value > -3 AND Value ≤ -2”)) Fig. 8

Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Module 4
Sub-module 1 Extraction of Normalized values between 

-2 and -1
FLOAT (SELECT (normalized, 
“Value > -2 AND Value ≤ -1”)) Fig. 4

Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Module 13
Sub-module 1 Extraction of normalized values between 

-1 and 0
FLOAT (SELECT (normalized, 
“Value > -1 AND Value ≤ 0”)) Fig. 7

Sub-module 2 Calculation of the membership value Equations 4.8 and 4.9

Table 6. Functions of some modules that deal with positive normalized values.

Module Sub-modules Function Equation or ‘map algebra expression’ used Relevant figure

Module 12
Sub-module 1 Extraction of normalized values 

between 0 and 1
FLOAT (SELECT (normalized, 
“Value > 0 AND Value ≤ 1”))

Fig. 7
Sub-module 2 Calculation of the membership 

value Equations 4.10 and 4.11

Module 6
Sub-module 1 Extraction of normalized values 

between 1 and 2
FLOAT (SELECT (normalized, 
“Value > 1 AND Value ≤ 2”))

Fig. 5
Sub-module 2 Calculation of the membership 

value Equations 4.10 and 4.11

Module 11
Sub-module 1 Extraction of normalized values 

between 2 and 3
FLOAT (SELECT (normalized, 
“Value > 2 AND Value ≤ 3”))

Fig. 7
Sub-module 2 Calculation of the membership 

value Equations 4.10 and 4.11

Module 7

Sub-module 1 Extraction of normalized values 
between 3 and 4

FLOAT (SELECT (normalized, 
“Value > 3 AND Value ≤ 4”))

Fig. 5Sub-module 2 Calculation of the membership 
value Equations 4.10 and 4.11

Sub-module 2 Calculation of the membership 
value Equations 4.10 and 4.11
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Table 5 enlists modules 4, 13, and 14 and their 
respective sub-modules that extract the negative numbers 
from the normalized values and compute their respective 
‘m’ values. The Figures showing the concerned modules 
are also given.

Table 6 enlists modules 6, 7, 11, and 12 and their 
respective sub-modules that extract the positive numbers 
from the normalized values and compute their respective 
‘m’ values. The Figures showing the concerned modules 
are also given.

Table 7. Functions of the remaining modules that deal with positive normalized values.

Module Sub-modules Function Equation or ‘map algebra expression’ 
used

Relevant 
figure

Module 10
Sub-module 1 Extraction of normalized values 

between 4 and 5
FLOAT (SELECT (normalized, 

“Value > 4 AND Value ≤5”)) Fig. 6
Sub-module 2 Calculation of the membership value Equations 4.10 and 4.11

Module 8
Sub-module 1 Extraction of normalized values 

between 5 and 6
FLOAT (SELECT (normalized, 
“Value > 5 AND Value ≤ 6”)) Fig. 6

Sub-module 2 Calculation of the membership value Equations 4.10 and 4.11

Module 9
Sub-module 1 Extraction of normalized values above 

6
FLOAT (SELECT (normalized, 

“Value > 6”)) Fig. 6
Sub-module 2 Calculation of the membership value Equations 4.10 and 4.11

Fig. 5. Model structure and the zoomed view of modules 5, 6, and 7 of the model.
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Table 7 enlists modules 8, 9, and 10 and their 
respective sub-modules that extract the positive numbers 
from the normalized values and compute their respective 
‘m’ values. Figures showing the concerned modules are 
also given.

Fig. 5 shows the enlarged view of modules 5, 6, and 
7 present in the model. The functions of modules 5 and 6 
have been elucidated in Table 4 and Table 6, respectively. 
Table 6 also elucidates the functions of module 7.

Fig. 6 shows the enlarged view of modules 8, 9, and 10 
present in the model. The functions of these modules have 
been elucidated in Table 7.

Fig. 7 shows the enlarged view of modules 11, 12, and 
13 present in the model. The functions of modules 11 and 
12 have been elucidated in Table 6. Table 5 elucidates the 
functions of module 13.

Fig. 8 shows the enlarged view of modules 14 and 15 
present in the model. The functions of modules 14 and 15 

have been elucidated in Table 5 and Table 4, respectively.
Module 16 (shown in Fig. 9) receives the output rasters 

from modules 2 to 15 (discussed so far) and does ‘mosaic’ 
operation by assembling all the individual output rasters 
and gives the final membership value map (i.e., output) for 
each individual factor-layer.

The membership values of soil type data are obtained 
by joining the columns of the attribute tables of both the 
study-area data and the soil type data (Table 2) of the 
Santalum album distribution using the ‘join field’ tool. 
Using the ‘lookup’ tool, the site suitability map concerned 
with the soil type presence in the study-area is prepared. 
The model thus developed using this methodology is 
shown in Fig. 10.

Fig. 11 shows the model that multiplies the membership 
values of all layers with their respective contributive 
weightages (wc) to obtain the final site suitability map of 
any study area. The model does this operation using ‘single 

Fig. 6. Model structure and zoomed view of modules 8, 9, and 10 of the model.
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output map algebra expression,’ which uses equation 4.8 
to get the ultimate result.

Fig. 12 shows the ‘ecological niche modelling 
toolbox’ designed and developed in this research using 
the algorithms discussed in this chapter. This toolbox has 
two toolsets (one for dependency analysis and the other 
for membership value estimation) and one model. This 
toolbox helps in preparing the final site suitability map 
for any study area. Each toolset of this toolbox consists 
of six models, each one of which is responsible for the 
preparation of raster images having contributive indices 
and membership values concerned with all the respective 
individual factor-layers.

Advantages of the ‘Ecological Niche Modelling 
Toolbox’

Fig. 13 shows the dialog box which takes the required 
inputs from the two toolsets discussed before, and 
provides the output which is the ‘Site Suitability Map’ of 
the study area of concern. Thus the toolbox developed in 
this research contains the ‘machine-learned algorithms’ 
bringing higher accuracy and speed in the attainment 
of the final site suitability map for any study-area. This 
toolbox also helps in making the job of Santalum album 
management easier, when compared with the manual 

Fig. 7. Model structure and the zoomed view of modules 11, 12, and 13 of the model.
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employment of the algorithms (developed in this research) 
every time a new study-area needs to be investigated.

Case Study

The study area of this research is Tamil Nadu, the 
11th-largest state in India by area (1,30,394.39 km2) and 
the sixth most populous (7,21,47,030 people). If the 
appropriate data concerning Tamil Nadu are fed as inputs 
to the models (discussed so-far) present in the ‘dependency 
analysis’ and ‘membership value estimation’ toolsets, the 
map (shown in Fig. 14) is obtained as the output.

Results and Discussion

The membership value and site suitability index 
ranges are the same (i.e., 0 to 6) for all maps prepared in 

this research. This entire value range has been divided into 
three zones, namely high, medium, and low membership 
value zones. These zones have their zonal value ranges as 
4 to 6, 2 to 4, and 0 to 2, respectively.

Table 8, 9, and 10 discuss the outputs (which are 
intermediate results in this research) obtained using the 
‘dependency analysis’ toolbox. Table 8 shows the actual 
zonal value ranges present in the respective zones for each 
parametric factor in 2014. Table 9 shows the soil types that 
contribute highly, moderately, and lowly in 2014. Table 10 
shows the most preferred soil type and the most favored 
parametric factor value by Santalum album with each 
factor layer in 2014.

Table 11 shows the areal coverages of the high, medium, 
and low membership value zones in the membership value 
map, concerned within each factor layer pertaining to 
Tamil Nadu. As shown in this table, the entire Tamil Nadu 
comes under the high membership value zone when ‘mean 

Fig. 8. Model structure and the zoomed view of the modules 14 and 15 of the model.
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annual temperature’ and ‘Soil pH’ are considered. Thus 
Table 11 discusses the final site suitability map, which has 
been obtained as the ultimate output of this research. It 
can be noted from Fig. 14 that almost the entire study area 
(Tamil Nadu) is highly suitable for the survival of Santalum 
album, as the minimum suitability index within the study 

area is 5.609 (which falls within the high suitability range 
of 4 to 6). If all the pixels of the final output raster shown 
in Fig. 14 are statistically analyzed, it can be seen that the 
scope of survival of Santalum album in the study-area as 
a whole is 83.42%.

Ground Truthing

Accuracy assessment of the prepared map is done by 
checking and overlaying the same over the areas where 
currently there is an acceptable greater distribution of the 
tree. Such areas in Tamil Nadu are the Kalrayan Hills, 
Chitteri Hills, Shevaroys, Javadi Hills, and Pachamalai 
Hills. If the suitability index over these areas (with more 
number of Sandalwood trees) is high, then it indirectly 
means that the prepared map has high accuracy. Table 12 
shows the accuracies attained within each hill range.

Fig. 9. Model structure and zoomed view of the module 16 of 
the model.

Fig. 10. The model concerned with soil type membership value 
extraction.

Fig. 11. Model producing the ultimate result.

Fig. 12. The ‘ecological niche modelling toolbox’ developed in 
this research.
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Fig. 13. Input dialog box of site suitability analysis for Santalum album.

Table 8. The actual zonal value ranges present in the respective zones for each parametric factor in 2014.

Soil 
number

Parametric factor 
layer

Actual parametric factor’s zonal value ranges occurring in
High contributive index zone 

(i.e., 4 to 6)
Medium contributive index zone

(i.e., 2 to 4)
Low contributive index zone

(i.e., 0 to 2)

1. Mean annual 
temperature 19.05-28.90ºC 13.3-19.05ºC -

2. Altitude 451-1,951.36 m 1,951.36-2,852.77 m 2,852.77-2,924 m

3. Mean annual 
rainfall 981.85-1,983.95 mm 1,983.95-2,045.72 mm -

4. Soil moisture 3.70-114.86 Kg m-2 114.86-117.71 Kg m-2 -

5. Soil pH 3.11-7.30
1.8-3.11

AND
7.30-7.60

-

Table 9. Soil types that contribute highly, moderately, and lowly 
in 2014.

Non-
parametric 
factor layer

Soil types

Having high  
contribution 

Having 
medium 

contribution 

Having low 
contribution

Soil type Luvisols and 
Alisols

Regosols, 
Acrisols, 

and 
Vertisols

Nitisols, 
Cambisols, 
Lixisols, 

Phaeozems, 
Andosols, 
Podzols, 

Kastanozems, 
Ferralsols, 
Leptosols,

Solonchaks, 
Histosols, and 

Fluvisols

Table 10. Optimal value for all the factors in 2014.

Soil 
number Factor Optimal value for the 

factor in 2014

1. Mean annual 
temperature 24.82ºC

2. Altitude 1,049.94 m

3. Mean annual rainfall 1,443.46 mm

4. Soil moisture 59.27 Kg m-2

5. Soil pH 5.20

6. Soil type Luvisol
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Direct field visit (Fig. 15) has been conducted for 
each of the above-mentioned hills for verifying whether 
sandalwood trees are actually present at their locations, 
which was done with the help of hand-held GPS by 
noting the respective latitude and longitude and verifying 
the same with respect to the high suitability zones in the 
site suitability map prepared. A total of 32 points has 
been visited in all hills together and these points to give 
90.625% accuracy.

Fig. 14. Site suitability index map of Tamil Nadu for the growth 
of Santalum album in 2014.

Table 11. Areas covered under each membership value zone in 2014.

Soil 
number Factor layer

Area (km2)
High membership value zone Medium membership value zone Low membership value zone

1. Mean annual 
temperature 1,30,394.39 0 0

2. Altitude 1,28,356.32 1,998.94 36.90

3. Mean annual rainfall 126,482.56 3,911.83 0

4. Soil moisture 129,090.45 1,303.94 0

5. Soil pH 1,30,394.39 0 0

6. Soil type 13,039.44 46,941.98 70,412.97

Fig. 15. Photo taken while conducting a field visit in the Shevaroy 
Hills for ground truthing.

Table 12. Accuracies attained within hill ranges.

Hill range
Percentage of accuracy of ‘site 

suitability map’ attained over these hill 
ranges

Kalrayan Hills 86.75%

Pachamalai Hills 90.59%

Shevaroy Hills 87.22%

Chitteri Hills 86.95%

Javadi Hills 87.10%
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Conclusion

The ‘ecological niche modelling’ toolbox designed in 
this research can be helpful in obtaining ‘site suitability 
maps’ for any study area quickly and effectively if the 
required data are fed as inputs. The Indian state of Tamil 
Nadu was taken as the study area and it was observed that 
this Indian state provided 83.42% scope of survival of 
Santalum album in 2014. The output maps are validated 
using overlay operations in GIS and also through ground 
truthing. The Accuracy achieved through direct field visits 
was 90.625%, but through GIS overlay operations we 
attained variable percentages of accuracies (within each of 
the hill ranges) for the same map. This was because there 
is a variance in the quantum of distribution of sandalwood 
trees among these hill ranges. 

Probable reasons for the non-achievement of 100% 
accuracy of the ‘site suitability map’ are:
1. There cannot be a strict condition that if a hill poses 

a high suitability for Santalum album’s survival, 
then that hill should be completely covered with 
sandalwood trees.

2. Also, it can be noted that there are still some areas 
with non-favorable situations for Santalum album’s 
survival if the ‘site suitability map’ of the hills is 
carefully analyzed.
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