
Introduction

Improper solid waste management could degrade and 
deteriorate the quality of the environment [1]. Without 
adequate pre-treatment, disposed waste – especially food 
waste – at open disposal sites or landfills would cause 
public nuisances such as air, water, and soil pollution 
[2]. The massive generation of leachate and landfill gases 
from the decomposition of food waste may accelerate the 
pace of environmental degradation and global warming 
[3]. As an environmentally friendly measure to segregate 
food waste from municipal solid waste, the roll-type 
electrostatic separator has been proposed in [4]. Food 
waste (FW) is detachable from plastic and glass during the 

rotational separation process owing to the high percentage 
of moisture level. In other words, FW has relatively higher 
conductivity than non-FW. With the aid of an electrostatic 
separator, the FW and non-FW would fall into different 
locations as desired. The substances are typically charged 
by friction, induced, or corona charges before being 
subjected to the electrostatic and gravity forces. During 
the separation process, however, some of these matters 
may fall in-between as middling product. The failure 
would result in decline in separation efficiency. The extent 
of electrostatic separation could be quantified in terms of 
food waste recovery and yield of middling product. High 
recovery with less middling is necessary for an efficient 
separation process.

Since electrostatic separation segregates substances 
with different electrical conductivities without involving 
incineration or chemical treatment, the process is free 
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from pollution. It is usually employed in the food 
security industry to remove hair, ash, or waste straws 
during packaging [5-6], and in metal recycling plants to 
recover metals from printed-circuit board waste [7-8]. 
The performance of the electrostatic separator could be 
affected by a number of factors. Tripathy et al. reported 
that temperature and feed rate have influences on both the 
recovery and grade of the separation process [9], whereas 
Medles et al. presented the effects of high voltage levels, 
roll electrode rotating speed, and the splitter angular 
position [10]. In addition, input factors such as mixture 
characteristics, particle charge/mass ratio and electrode 
configurations are found to affect the separating outcomes 
[11-12]. In short, the literature reveals that electrostatic 
separation is a complicated process that should be 
characterized, modeled, and optimized.

An artificial neural network (ANN) is a potential 
computational tool to be employed to predict separation 
performance. It has been successfully applied in many 
problem-solving domains like engineering, accounting, 
medicine, and geology. This computer model is 
considered as a system to receive inputs, to modify 
weights, and train the network before a desired response 
is produced at the output [13]. ANN can be employed 
to optimize an existing system or new processes, and to 
predict the system behaviour with known parameters [14-
15]. A five-level three-factor Taguchi orthogonal array 
(OA) design of experiment can be employed as a novel 
initiative to optimize the predicted results. To the best of 
our knowledge, this is the first report for prediction of 
food waste separation performance employing ANN and 
Taguchi design.

The aim of this study is to develop a model of food 
waste (FW) separation performance in terms of high 
FW content recovery and low misclassified middling 
mass. We investigated the impacts of the key parameters, 
i.e., power supply, rotation speed, and electrode angle. 
The effectiveness of this model was then validated 
by comparing the results obtained from experimental 
measurements and those predicted using ANN.

Material and methods

The test sample, which consisted of a 100 g mixture 
of 40 wt% FW (fruit peel) and 60 wt% non-FW (plastic 
and styrofoam), were first crushed into small pieces and 
deposited onto the roller of the separator as a monolayer. 
The water content of the FW ranged from 20% to 40%. All 
particles were cut manually into an average size of 3.0 mm 
each. An earth-grounded roller type electrostatic separator 
was employed. An ionizing needle electrode was powered 
by a DC power source to generate corona discharge. The 
surrounding air near the ionizing electrode was ionized to 
form a high intense ionizing zone. An electrostatic plate 
was connected downstream to provide the non-discharging 
electrostatic charge. The separated and recovered products 
were found in the FW, non-FW, and middling collection 
tanks under the separator.

The separation process relies on a number of forces, 
e.g., centrifugal force due to the rotation of the roller, 
lifting force due to the attraction by the electrostatic plate, 
and gravity force and pinning force due to the ionized 
effect on the insulative particles [16]. When the roller 
delivers the particles through the zone, the dissipative 
FW lose their charge rapidly, keeping them from being 
pinned for a longer time than the insulative non-FW. 
With the continuous rotation from the roller, FW particles 
were subjected to a centrifugal force which is larger than 
the pinning force. They were then thrown off from the 
roller into the FW collection tank. The non-FW particles 
remained pinned to the roller due to the larger pinning 
force and eventually they fell off into the non-FW tank 
when the rotation stopped. In order to assess the separation 
efficiency, the mass of the FW and the misclassified 
mixture (middling) were collected and measured by a 
digital precision balance with a resolution of 0.1 g after 
each run. 

In this study, an ANN model was constructed to predict 
the recovered food waste (Wf) and middling products (Wm). 
The Taguchi OA design considers three independent input 
factors: the voltage level of the DC power supply (kV), the 
rotation speed of the roller (rpm), and the corona electrode 
angle (degree) as determined by [16]. The recovered FW 
and middling mass were selected as the network responses. 
The experimental parameters and their levels are tabulated 
in Table 1.

ANN is a numerical estimation method that can be 
applied to simulate the experimental input variables and 
determine the governing rules among the corresponding 
factors [17]. It is a potential preeminent tool to model 
nonlinear processes such as electrostatic separation with 
its ability to learn the relationship among independent 
variables and predict accurate output [18]. There are three 
stages, namely training, testing, and validation performed 
by the network. Typically by random sampling method, 
about 70% of experimental data is used for training and 
the rest of the data for testing and validation [19]. The best 
performance of the ANN architecture is evaluated based 
on the smallest mean squared error (MSE) and the highest 
value of coefficient of determination (R-squared), which 
defines the fit integrity of the experimental data. Both 
MSE and R-squared are expressed as follows:

( ) nyt
n

i
ii /MSE

1

2∑
=

−=
                   (1)

Factor Unit
Level of factors

1 2 3 4 5

Voltage level kV 15 20 25 30 35

Rotation speed rpm 45 60 75 90 105

Electrode angle degree 20 30 40 50 60

Table 1. Factors and their levels.
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…where t is the target value, y the output value, and n the 
number of inputs. 

Results and Discussion

In the present study, the neural network is configured 
as a multiple input-single output (MISO) model in the 
MATLAB environment. The architecture of the ANN 
comprises an input layer, an output layer, and two hidden 
layers to compute the complex interconnections of 
neurons intelligently. ANN with two hidden layers would 
produce better prediction than a single-layer network 
[20]. The topology of a backpropagation ANN is shown 
in Fig. 1. It is a 3-10-2-2 structure that has 10 neurons 
in the first hidden layer and two neurons in the second 
layer, with constant percentage of training data (70%), 
testing (15%), and validation data (15%). Nonlinear 
sigmoid and linear activation functions were used in the 
hidden layers, respectively. The neurons in the layer are 
the constitutive units of ANN to receive inputs and sum 
them to generate an output through a linear activation 
function. The Levenberg-Marquardt backpropagation 
training algo-rithm was employed to adjust random initial 
weights assigned to each of the inputs until satisfactory 
results were met [21]. 

In the five-level three-factor Taguchi OA design, 25 sets 
of experiment were conducted and analyzed. Taguchi OA 
design reduces the time and cost compared to full factorial 
design as the latter needs 53 or 125 sets of experiment in 
acquiring the same information [22]. The trained ANN was 
employed to perform prediction of the output responses. 
Table 2 tabulates the corresponding experimental data 
and prediction results. It can be seen that the predicted 
values are close to the respective empirical values. From 

the regression analysis, the R-squared values obtained are 
0.988 and 0.979 for Wf and Wm, respectively. This indicates 
a good prediction for separation performance prediction 
using ANN.

Network efficiency would be enhanced with optimum 
percentage of data in the three stages (i.e., training, test,  
and validation) and the number of hidden neurons. 
However, these parameters are often determined by trial-
and-error [23-24]. In order to judge the extrapolating 
capability, the performances of ANN in relation to the 
variation in neuron number, testing, and validation dataset 
were hereby analyzed. Fig. 2 presents the performance of 
the neural network in terms of MSE and R-squared values 
due to the variation in the number of neurons. It can be 
noted that the R-squared value in Fig. 2a) decreases when 
the number of neurons increases from 10 to 100. The 
highest R-squared value was found to be 0.9777 at number 

Fig. 1. Topology of the backpropagation ANN in a) schematic 
view and b) Matlab environment.

Exp. 
No.

Wf (g) Wm (g)

Experi-
mental Predicted Experi-

mental Predicted

1 10.1 10.3 65.9 66.1

2 18.7 18.0 38.7 41.0

3 24.0 24.0 23.2 23.1

4 24.0 24.0 25.0 24.7

5 18.7 19.0 43.7 42.5

6 21.4 19.0 38.2 48.0

7 26.5 26.7 21.6 21.9

8 25.9 26.2 22.6 22.8

9 19.8 20.8 40.8 39.8

10 10.6 10.0 67.6 65.8

11 29.8 29.8 19.9 20.9

12 28.5 28.4 20.1 21.3

13 21.6 22.7 37.8 36.8

14 10.9 10.8 66.0 66.2

15 20.0 19.9 40.5 40.4

16 32.1 32.6 17.3 14.5

17 24.2 25.2 34.7 33.9

18 11.6 11.5 64.3 64.5

19 20.4 20.2 37.5 38.0

20 25.6 25.3 22.7 23.8

21 27.7 28.3 31.2 29.7

22 12.9 12.9 62.6 62.6

23 21.6 21.5 34.4 34.6

24 26.3 25.8 18.4 22.4

25 25.3 26.0 20.3 22.3

Table 2. Experimental data and the predicted results using ANN.
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of neurons of 10. The smallest MSE was determined as 
1.4187 × 10-2 in this case. Fig. 2b) shows that the percentage 
of testing data varied from 5% to 35% so as to evaluate 
its effect toward network performance. The number of 
neurons was 10 and the percentage of validation data was 
set as 5%. It can be seen that high values of R-squared and 
small MSE can be achieved at lower number of testing 
data. Fig. 2c) shows the performance when the percentage 
of validation data varied from 5% to 35%, while keeping 
the percentage of testing data constant at 15%. The 
maximal R-squared of 0.9922 and the minimal MSE of 
2.7326 × 10-3 existed when the training data was at 80% 
and validation data at 5%. These findings suggest that a 
low number of neurons, say 10, should be selected. Along 
the same line, the performance of the ANN could be 
improved with increment of percentage of training data. 
This approach is useful particularly when the Taguchi 
design is involved and the set of experimental data is less.

Fig. 3 depicts the ANN predictions with experimental 
data for recovered FW, Wf and middling mass, Wm. In 
this case, the number of neurons is 10 with percentage 
of training data at 80%, testing at 15% and validation 
data at 5%. Higher R-squared values, i.e. 0.993 and 
0.989 (compared to the previous 0.988 and 0.979) were 
obtained in both plots, which signify accurate pre- 

Fig. 2. Values of MSE and R-squared due to the variation of 
a) number of neurons, b) percentage of testing data, and c) 
percentage of validation data.

Fig. 3. Improved ANN prediction results for a) Wf and b) Wm with 
80% training data, 15% testing data, and 5% validation data. 
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diction with no more than 0.01 differences between 
the predicted and target data based on the correlation 
equations. Fig. 4 presents the R-squared values of 0.9906, 
0.9978, and 0.9985 for training, validation, and test, 
respectively. It could be summarized that the empirical 
error is minimized and the results from experiment and 
predicted model are in excellent agreement.

Conclusion

In the present study, the modelling of electrostatic 
separation performance in terms of recovered waste and 
misclassified middling is designed using ANN based on the 
Taguchi OA design. The selected input factors are voltage 
level, rotation speed, and electrode angle as determined in 
a previous study. The 3-10-2-2 structure of ANN produces 
good prediction results with R-squared value of about 
0.98, indicating that the presented model is suitable for 
prediction of the electrostatic separation performance. 
When a higher percentage of training data is used, from 
70% to 80% in this study, an improved R-squared of 0.99 
is obtained. This implies that performance enhancement of 
the ANN for prediction can be achieved with low numbers 
of neuron and adequate training data. The result of the 
present study can be useful for electrostatic separation 
process, particularly when the Taguchi design is involved 
and the set of experimental data is less.
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