
Introduction

Phosphate fertilizers are produced through the reaction 
of powdered phosphate rock, including radioactive 
potassium and radionuclides of naturally existing uranium-
radium, and thorium radioactive series with sulphuric acid. 
Phospho-gypsum (CaSO4.2H2O) is known as a by-product 
of waste material of the phosphoric acid production process 

[1]. Increasing phospho-gympsum production results in 
various environmental and radiological problems together 
with several technological and economical impacts. Such 
problems directed researchers to find out alternative ways 
for using them as additive in construction materials. In 
the construction industry, phospho-gypsum can be used 
as clinker raw material and as a concrete set retarder 
in cement production, as a secondary binding material 
together with cement and lime, and in artificial aggregate 
production and road stabilization [2-4].

Perlite is an amorphous volcanic glass with acidic 
characteristics. It expands when heated, and expended 
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Abstract

This research investigates the utilization of artificial neural networks for improving the mechanical 
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perlite is quite a light-weight and porous material. Perlite 
rocks may have different colors and structures. The color 
of raw perlite may range from transparent light grey to 
bright black and the colors totally whiten when expended 
under heat treatment. The most significant characteristic 
of perlite is about 2-5% water content as compound to 
water in hydrated glassy silicate structure and this water 
provides the stability of perlite. When perlite is heated, 
all of the free water evaporates at 450ºC, but the structure 
of the rock doesn’t change. When the temperature 
reached 700-1,200ºC, the effective water in structure of 
the glass turns into vapor with a couple hundred degrees 
temperature. It then bursts out of the rock and disappears. 
With this process, the volume of perlite increases at least 
four-fold and such an increase may reach 20-fold based 
on the type of perlite [5-7]. In the construction industry, 
perlite is used in indoor and outdoor plasters, heat 
insulation, and construction of water structures since it 
is resistant to freezing (water insulation of roofs and roof 
decks, swimming pools, and the manufacture of light-
weight construction materials) [8-10]. 

An artificial neuron network (ANN) is a compu- 
tational model based on the functions of a biological 
neural system. ANN can use identifying and modeling 
data in different forms. It has a wide range of use such 
as engineering, medicine, and the economy [11-13]. 
An artificial neural network is an interconnected group 
of nodes to the vast network of neurons in a brain and 
it contains simple processing elements called neurons 
organized into layers. The ANN performs a useful  
function and it performs the function of nonlinear mapping 
[14-16].

ANN has many advantages and one of the greatest 
advantages of artificial neural networks is their capability 
to learn from their environment. Learning from the 
environment is useful in applications with complex data 
[17-18]. 

An ANN can be used for a variety of tasks such as 
classification, function approximation, data processing, 
filtering, clustering, and decision-making. Choosing the 
right ANN depends on the type of the application and data 
representation of a given problem [19, 11, 20]. 

The present study was conducted to model compressive 
strength, capillary absorption, water absorption, and 
flexural strength data obtained with multiple regression 
analysis and ANNs, and also to identify the method with 
the most accurate results on the parameters.

Materials and Methods
 

Materials 

In the present study we used CEM I 42,5 cement 
complying with TS EN 197-1 and washed-sieved natural 
aggregate complying with TS EN 197-1 standards [21]. 
The phospho-gypsum used in the present experiment was 
supplied from TÜGSAŞ Fertilizer factory. Samples were 

brought to the laboratory, their moisture was removed, 
and they were subjected to grain-size analysis. In experi- 
ments, 200 µm grain size was used. Phospho-gypsum 
samples were composed of 41.25% SO3 and 31.48% CaO 
(Table 1). Perlite samples were supplied from the Akper 
Mining Raw Perlite Crashing Sieving and Expansion 
Integrated Facility. The expended perlite used in this  
study had fully white color and 0-5 mm grain size. The  
unit weight varied between 32-200 kg/m3. The melting 
point was 1,300ºC, heat conductance was between 
0.034-0.045 Kcal/MhºC, and pH was 6.6-8.0. Chemical 
properties of CEM I 42,5 R-type cement, phospho-
gypsum, and expended perlite are provided in Table 1. 

Methods

Plaster Specimens

Plaster specimens were prepared in accordance with 
the outdoor plaster preparation principles specified in TS 
EN 13914-1. Lime was not used since the plasters were 
prepared for outdoor use. The water was admixtured in 
accordance with TS EN 196-1 as to have one-half of the 
cement quantity. Moulds were prepared in accordance with 
TS EN 196-1, inner surfaces were greased, and plaster 
samples were placed in these moulds. Half of the moulds 
were filled with a spatula so as not to have any spaces, 
and then they were subjected to vibrations 60 times. Then 
the remaining section was filled and any surplus samples 
were removed with a spatula. The top of the moulds was 
covered with glass so as not to have any air. The specimens 
were set for 24 hours and then the moulds were removed. 
Then the plaster specimens were placed in curing pools 
under standard conditions [22-23].

Chemical 
Composition

CEM I 42,5 
R-type

(%)

Phospho-
gypsum 

(%)

Perlite 
(%)

CaO 63,81 31.48 0.60

SiO2 18.54 0.95 71.8

Al2O3 5.25 2.45 12.9

Fe2O3 2.74 0.26 0.53

MgO 1.85 0.54 0.17

SO3 3.43 41.25 -

P2O5 - 0.86 0.02

TiO2 - 0.11 -

F - 1.43 -

MnO - - 0.05

LOI* 3.57 19.21 -

*Loss on ignition

Table 1. Chemical properties of CEM I 42,5 R -type cement, 
phospho-gypsum, and expended perlite.
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Compressive Strength Tests

The specimens were kept in curing pools for 28 days 
and then subjected to compressive strength tests at 2,400 
(±200) N/s loading rate in accordance with TS EN 196-1. 
According to TS EN 998-1, compressive strength should 
be a minimum of 2.5 N/mm2.

Water Absorption Coefficients 

Admixtures were placed in moulds and cured under 
standard conditions for 28 days. Then cured specimens 
were subjected to a capillary absorption test in accordance 
with the TS EN 772-4 standard for capillary absorption test 
for construction materials. Specimens were initially dried 
in an oven and side surfaces were covered with praphine, 
and they were subjected to water absorption only from the 
bottom. The 40 x 40 x 160 mm prismatic specimens were 
dried for 28 days until they reached a constant weight, and 
their initial weights were determined. Specimens were 
placed in still water so as to have water contact from the 
bottom. Then the change in specimen weight and rise in 
water level was measured [24]. Specimens were weighed 
at certain time intervals (0, 10, 60, 100, 1,440 min.) and 
capillary absorption coefficients were calculated using the 
following equation:

                             (1)

…where:
Q = amount of water absorbed by the specimens (cm3)
A = surface area of water contact (cm2)
k = capillary water absorption coefficient (cm/s1/2)
t = time (s)

Water Absorption Tests 

The 4 x 4 x 16 cm prismatic specimens were placed 
in a curing pool for seven days and were dried in an oven 
until a constant weight. Specimens were immersed into 
the water and change in weight was measured at different 
time intervals (0, 10, 60, 100, 1,440 min.) 

Flexural Strength Tests

Following the 28-day curing period, specimens were 
subjected to a flexural strength test with a loading rate of 
50(±10) N/s in accordance with TS EN 196-1 test standard. 
According to TS EN 998-1, the minimum flexural strength 
should be 1 N/mm2 [22, 25].

Regression Modeling 

The aim of the multiple regressions is to estimate 
the relationship between independent variables and a 
dependent variable. The decision as to which variable in 
a records set is modeled as the based variable and which 
might be modeled because the unbiased variables can 

be based on a presumption that the value of one of the 
variables is resulting from, or directly inspired with the 
aid of the other variables. Usually a constant is included 
as one of the regressors [26]. 

Artificial Neural Networks Modeling

The ANN refers to the interconnections among the 
neurons in the different layers of each system. ANN can 
be explicitly programmed to carry out a challenge by 
manually developing the topology and then placing the 
weights and thresholds of each link. Determining weights 
is called training. The training data set consists of input 
signals assigned with a corresponding target [27-28].

Modification of ANN is calculated using an algorithm 
described as: Each teaching step starts with forcing both 
input signals from the training set. In this study, the 
Levenberg-Marquardt (LM) algorithm was used to train 
the network.

LM is an intermediate optimization algorithm between 
the Gauss-Newton (GN) method and Gradient descent 
(GD) algorithm [29]. For LM, the performance index to 
be optimized is defined as:

  (2)

…where k is error vector, w = [w1 w2 … wN], T consists 
of all weights of the network, dKP is the desired value of 
the kth output and the pth pattern, oKP is the actual value 
of the kth output and the pth pattern, p is the number of 
the pattern, and K is the number of the network outputs 
[30]. This algorithm can be considered as a trust-region 
modification to Gauss-Newton [31]. MATLAB software 
(Matlab 7.11.0.584 (R2010b)) was used for the artificial 
neural network.

Results and Discussion

The present study sought to find the best-fitting 
R2 value of the ANN and regression models that were 
compared and thus find a reasonable approach to estimate 
and improve mechanical and physical properties of 
phospho-gypsum and perlite mixed plaster. In the multiple 
regression analysis, compressive strength (Nt/mm2), 
capillary absorption (cm/s1/2)/1000, water absorption, and 
flexural strength (Nt/mm2) were used as the dependent 
variables, and phospho-gypsum and perlite were used as 
the independent variables. The scheme of the artificial 
neural network is presented in Fig. 1. Best-fitting results 
were obtained with three input nodes (phospho-gypsum 
and perlite), one hidden layer with three neurons (which 
has the logsig function), and one output (CCI). About 
70% of the data set was selected as training data for  
the ANN model. The output error (0.007 mse) and 
maximum number of iterations (10 epochs) were 
determined.
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The results of regression analysis and artificial neural 
network are provided in Table 2, which shows compressive 
strength (CS), capillary absorption (CA), water absorption 
(WA) and flexural strength (FS). A caption on a single line 
should be centered.

Regression equations yielded an R2 value of 0.5264-
0.9883 (Table 2). R2 value of artificial neural network 
was identified as 0.9907, which is the highest value of 
this research. According to R² results, artificial neural 
network model performance was found to be successful in 

describing the relationship between actual and predicted 
compressive strength, capillary absorption, water 
absorption, and flexural strength.

As seen in Table 3, the artificial neural network had 
better results both in training and test error results. While 
perlite (p) had the least RMSE value (0.3512) yielding 
the best results in training dataset, the value was 0.1824 
in the ANN. Similar findings were observed in MAPE 
and MAE values. In other words, the ANN yielded the 
lowest values. This shows that the ANN was successful 
in predicting compressive strength, capillary absorption, 
water absorption, and flexural strength values.

The ANOVA results revealed that phospho-gypsum 
and perlite additives had significant effects on compressive 
strength, but the interactive effects of phospho-gypsum 
and perlite were not found to be significant. The effects of 
only phospho-gypsum on capillary absorption were found 
to be significant. Besides, the main effects of perlite and 
interactive effects on phospho-gypsum and perlite were 
not found to be significant. 

The effects of phospho-gypsum and perlite additives 
and interactive effects of perlite on water absorption were 
also found to be significant. While the effects of phospho-
gypsum and perlite additives on flexural strength were 
found to be significant, interactive effects of phospho-
gypsum and perlite were not found to be significant. All 
these interactions are provided in Table 4. Interventions 
are cited. A caption on a single line should be centered. 
ANOVA results revealed that the desired plaster 
characteristics were achieved in the present study.

Conclusions

This study indicated that it was possible to use ANN 
to estimate compressive strength, capillary absorption, 
water absorption, and flexural strength. The research also 
developed an artificial neural network model that was 
trained with phospho-gypsum and perlite and compared 
the model outcomes with the linear regression models. 
ANN estimated the compressive strength, capillary 
absorption, water absorption, and flexural strength 
with higher accuracy, and it can analyze out the model 
data. When the inputs and outputs of the system were 
complicated (multiple input and output, nonlinearity, 
surface defect, and deceases, etc.), with ƒ, the help of 
structural advantages, the ANN could model with high 
accuracy.

The construction industry is the largest industry in 
several countries. Further research is recommended 
for perlite use by the construction industry and for the 
production of perlite-supplemented plasters with desired 
commercial attributes. Research is also recommended 
to solve significant environmental problems through the 
use of phospho-gypsum, like industrial waste materials 
in the manufacture of construction materials. In this way, 
both the waste materials can be regained for the economy 
and environmental problems can be prevented. In present 
study, the artificial neural networks model and regression 

Dataset Error* Pg P
Artificial
Neural 

Network

Training

RMS 0.9273 0.3512 0.1824

MAPE 0.0732 0.0351 0.0142

MAE 0.7224 0.2641 0.1407

Testing

RMS 1.0189 0.2961 0.2288

MAPE 0.0711 0.0217 0.0161

MAE 0.8123 0.2244 0.1877

* RMS: root-mean-squared error, MAPE: mean absolute 
percentage error, MAE: mean absolute error

Table 3. Errors in training and testing dataset according to 
regression and artificial neural network.

Regression 
Diagnostics (R2)

Regression Equations Fitting 
Data

Test 
Data

CS = -12.448 - (0.539 x pg) - 
(0.272 x p) 0.7133 0.7201

CA = 0.585 + (0.029 x pg) - (0.003 x p) 0.5264 0.5342

WA = 22.73 - (0.7767 x pg) + 
(0.7435 x p) - [0.053 x (pg x p)] 0.9883 0.9872

FS = 1.059 - (0.0459 xpg) - 
(0.0231 x p) 0.7136 0.7252

Artificial Neural Network - 0.9907

pg: phospho-gypsum, p: perlite. R2 values are significant at 
P<0.001

Table 2. Regression models for the estimation values.

Fig. 1. Scheme of artificial neural network. 
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models were compared to find the best-fitting R2 value and 
thus find a reasonable approach to estimate and improve 
mechanical and physical properties of phospho-gypsum 
and perlite-mixed plaster.
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