
Introduction

With respect to industrialization and urbanization, 
China’s economy is presently in a period of stable 
and rapid development. However, this economic and 
population growth brings with it a range of problems such 
as resource shortages and environmental pollution. As 
such, it is necessary to better understand the resources-

population-environment relationship, and the “carrying 
capacity” concept offers a way of thinking about 
sustainable development. 

The carrying capacity concept was originally derived 
in the field of ecology [1]. Since that time, numerous and 
varied theories of carrying capacity have been developed 
based on different requirements [2-8], and these studies 
have imbued the concept with a breadth and depth of 
meaning. In China, the resources and environmental 
carrying capacity (RECC) concept was first introduced in 
1991 by scientists who had used this concept in a report 
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Abstract

Evaluating resources and environmental carrying capacity (RECC) plays an important role in sustain-
able regional development. Using the urban agglomerations of Beijing, Tianjin, and Hebei Province as 
examples, in this paper we utilize remote sensing (RS) and geographic information system (GIS) techniques 
to study RECC. Based on data obtained from statistical information and RS technology, we selected 22 in-
dicators with which to construct an RECC evaluation scheme. Then we conducted a mean-variance analysis 
to determine the weight of each indicator. Finally, we calculated the RECC of each city in the study area and 
statistically analyzed the main factors influencing RECC. Our results indicate that:

• The environment carries the most weight in RECC assessments, followed by resources, economic, 
and infrastructure

• In the study area, the RECC ranking is as follows: Beijing, Tianjin, Chengde, Langfang, Qin-
huangdao, Cangzhou, Shijiazhuang, Tangshan, Baoding, Zhangjiakou, Hengshui, Handan, Xingtai

• Geographically, the eastern and central regions have higher RECC than the southern and northeast 
regions

• A region’s per capita fiscal income is the most important factor affecting its RECC
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titled “The Fujian province Meizhou Bay development 
zone environmental planning comprehensive research” 
[9]. Subsequently, many studies have been conducted 
to analyze RECC [10-12]. However, despite the fact 
that some researchers have used geographic information 
system (GIS) to analyze carrying capacity [13-15], most 
studies have used only statistical data to assess RECC, and 
a few have utilized remote sensing (RS) data.

In this study, using statistical and RS data, we evaluated 
the RECC of the urban agglomerations of Beijing, Tianjin, 
and Hebei Province. These crucial economic urban 
agglomerations in northern China are often characterized 
by fog and hazy weather conditions. As such, investigating 
the RECC of this area will have important practical 
significance for its sustainable development, as well as 
providing guidance for other regions.

Study Area and Data Sources  

The study area is located in Northern China between 
longitudes 113.08°-119.87°E and latitudes 36.03°-
42.62°N (Fig. 1), and has an area of 21.8 × 104 km2. It 
consists of two municipalities directly under the central 
government (Beijing and Tianjin) and 11 prefecture-
level cities (Baoding, Langfang, Tangshan, Zhangjiakou, 
Chengde, Qinhuangdao, Cangzhou, Hengshui, Xingtai, 
Handan, and Shijiazhuang).

In this study we used both statistical and RS data. We 
obtained 2014 statistical data from the Beijing Statistical 
Yearbook 2015, Tianjin Statistical Yearbook 2015, Hebei 
Economic Yearbook 2015, and China City Statistical 
Yearbook 2015. The RS data we utilized:
MOD04_L2-MODIS/Terra Aerosol 5-Min L2 Swath 10 

km aerosol products.

National Polar-orbiting Partnership-Visible Infrared 
Imaging Radiometer Suite (NPP-VIIRS) nighttime 
lights data.

Defense Meteorological Satellite Program Operational 
Linescan System (DMSP-OLS) nighttime lights data.

MOD13A3 normalized difference vegetation index 
(NDVI) products.

Landsat8-Operational Land Imager (OLI) products. All of 
these data were observed in 2014, except the Landsat8-
OLI product, which contains data observed in 2013 
due to several poor-quality images in 2014. 
We downloaded the aerosol products from ladsweb.

nascom.nasa.gov, the nighttime lights data from ngdc.
noaa.gov/eog, and the vegetation index and Landsat8-OLI 
products from glovis.usgs.gov.

Methods

RS Data Processing

Aerosol Optical Depth (AOD) and NDVI

To determine the annual mean aerosol optical depth 
(AOD) values, we applied the following procedures:
1. Used the MODIS reprojection tool (MRT) to resample 

and generate a mosaic from the original AOD  
imagery.

2. Extracted the AOD data of the study area using ArcGIS 
10.3 software.

3. Used the ordinary kriging technique to interpolate 
values when AOD values were missing within the 
study area.

4. Lastly, we calculated the mean annual AOD using 
ArcGIS software.
We followed the same procedures used for the AOD 

products with the NDVI products, except for step No. 3, 
above, since there were no missing values in the NDVI 
products.

NPP-VIIRS Data

Since the original NPP-VIIRS data have not been 
filtered to eliminate noise such as lights from fires, bright 
surfaces, and other temporal lights, they cannot exactly 
identify human socioeconomic activities. Here, to correct 
the NPP-VIIRS data, we utilized a method proposed by 
Shi et al. [16], which consists of three steps:
1. Assuming that the 2013 DMSP-OLS imagery and the 

2014 NPP-VIIRS imagery had the same areas that 
were lit up, we applied the DMSP-OLS imagery to 
correct the NPP-VIIRS imagery.

2. Then we created a mask in which pixels with positive 
digital number (DN) values in the DMSP-OLS imagery 
were assigned a value of 1 and we overlaid this mask 
with NPP-VIIRS imagery to obtain an initial corrected 
NPP-VIIRS imagery.

3. Unlike Shi et al. [16], we chose a reasonable threshold 
from the four most-developed megacities (Beijing, Fig. 1. Location of study area.
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Shanghai, Guangzhou, and Shenzhen) to correct any 
outliers.

Landsat8-OLI Data

We extracted the areas’ land cover types from the 
Landsat8-OLI data with the help of eCognition 9.0 
software, which uses an object-based technique to 
classify RS imagery and has been proven to obtain 
satisfactory classification results [17-20]. In this study, 
our classification accuracy was better than 85% when 
compared with the ground truth points. Based on our 
classification results, we identified areas of developed and 
cultivated land and adopted these as resource indicators.

Selection and Weighting of Indicators

From an extensive literature review, we made a 
preliminary selection of 38 indicators. Then, based on 
expert advice and a correlation test, we ultimately chose 
22 indicators for our RECC evaluation (see Table 1). To 

facilitate our analysis, we divided the indicators into four 
subcategories: resources, environment, economic, and 
infrastructure.

Before calculating the weight of the indicators, we 
needed to remove their dimensional effects, which we did 
by adopting the following equations:
For positive indicators:

For negative indicators:

…where  is the statistical or RS value of the i-th city 
for the j-th indicator,  is the normalized value of the i-th 
city for the j-th indicator, and  and  denote 
the maxima and minima of the j-th indicator, respectively.

Sector Indicator Unit Attribute Data source

Resources

1) Precipitation mm + SY

2) Per capita constructive land m2 + RS

3) Per capita cultivated area m2 + RS

4) Energy consumption per 10,000 yuan GDP ton (SCE) - SY

5) Per capita nighttime lights nW/cm2/sr - RS

Environmental

6) Ratio of industrial solid wastes comprehensively utilized % + SY

7) Ratio of wastewater centralized treated of sewage work % + SY

8) Industrial wastewater discharged per 10,000 yuan GDP ton - SY

9) Industrial sulphur dioxide emissions per 10,000 yuan GDP ton - SY

10) Industrial soot(dust) emission ton - SY

11) NDVI + RS

12) AOD - RS

Economic

13) Per capita GDP yuan + SY

14) Per capita annual disposable income yuan + SY

15) Registered rate of unemployment % - SY

16) Per capita fiscal income yuan + SY

17) Number of patent granted per 10,000 persons unit + SY

Infrastructure

18) Number of doctors per 10,000 persons user + SY

19) Number of beds in health care institutions per 10,000 persons unit + SY

20) Number of collections of public libraries per 100 persons unit + SY

21) Number of subscribers of mobile telephones per 100 persons user + SY

22) Number of subscribers of internet services per 100 persons user + SY

SY refers to data obtained from statistical yearbook, RS refers to data obtained from remote sensing, + means positive indicator, - 
means negative indicator

Table 1. Indicator system.
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Based on these normalized values, to avoid any 
subjective influences we used an objective approach – 
mean variance analysis – to determine the weight of each 
indicator. The details of this analysis procedure are as 
follows:

…where E(j) refers to the mean of the j-th indicator, σ(j) is 
the standard deviation of the j-th indicator, and ω(j) is the 
weight of the j-th indicator.

Finally, we can determine the RECC using the 
following formula:

Results and Discussion

Spatial Features of AOD

Fig. 2 presents the final AOD distribution. In this 
study, we used AOD data as an environment indicator, 
as it has been proven to accurately reflect air quality 
[21-23]. The AOD value of the southeast region of the 

study area is obviously higher than that of the northwest 
region, likely due to their different regional landforms. 
Specifically, most factories are located in the plain areas of 
the southeast region and these can lead to bad air quality, 
whereas the northwest region contains mountainous areas 
with few factories.

Spatial Features of NDVI

A number of studies have found the NDVI to reveal 
environmental conditions [24, 25], so we used the 
NDVI products for our environment index. Fig. 3 shows 

Fig. 2. AOD distribution in study area.

Fig. 3. NDVI distribution in study area.

Fig. 4. NPP-VIIRS nighttime light data distribution in study area.
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the NDVI map, and we can see that the NDVI value is 
relatively low in built-up areas. Furthermore, the NDVI 
value of the northwest region is low due to the presence of 
massive desert areas and sparse grassland in Zhangjiakou. 
The low NDVI value in coastal regions is due to the water 
areas in Tianjin and Tangshan.

Spatial Features of NPP-VIIRS Data

Fig. 4 shows the corrected NPP-VIIRS imagery. As 
expected, urban areas have higher values than other areas. 
Since the use of nighttime lights data has been proven to 
be effective for estimating electric power consumption 
[16, 26], we used it in our study as a resource indicator. 

RECC Analysis

Based on the above formulas, Table 2 lists the 
weight of each indicator. Some scholars have evaluated 
the importance of the subcategories by accumulating 
the weight of subordinate indicators [12, 27], but this 
approach is unreasonable when the quantity of indicators 
differs in each subcategory. In this paper, to estimate the 
significance of each subcategory we calculated the mean 
weight of its indicators. We can see from the table that, of 
the four RECC subcategories, environment has the largest 
mean weight at 0.0475, followed by resources 0.0472, 
economic 0.0452, and infrastructure 0.0410.

Based on the values of the selected indicators and 
their weights, Table 3 presents the RECC and subcategory 
ranks of each city in the study area. A larger RECC value 
means a better state of development. The results show 
that Beijing has the highest rank and its RECC value is 
significantly higher than that of other cities. The RECC 
value of Beijing (0.757) is nearly threefold the minimum 
RECC value (0.282, Xingtai). In addition, to investigate 
the spatial distribution of the RECC in the study area, we 
used the natural breaks approach in Arcgis10.3 software to 
divide the RECC into four levels. Fig. 5 shows the RECC 
distribution map, from which we can conclude that the 
central and eastern cities have higher RECC levels than 
cities in the southern and northwestern regions.

On the basis of subcategory rank, we can further 
analyze the above results. First, despite the bad rankings 
of Beijing (11) and Tianjin (13) in the resources 
subcategory, they are ranked in the top three of the other 
three subcategories, which reveals that the RECC values 
of Beijing and Tianjin can be improved by importing 
external resources. Secondly, due to the more diversified 
and vitalized economies of the coastal regions, we can see 
that the economic conditions of the cities in this region 
(Qinhuangdao, Tangshan, Cangzhou) are superior to those 
in the inland regions (Zhangjiakou, Baoding, Hengshui, 
Xingtai, Handan). In addition, the municipalities (Beijing, 
Tianjin) and Shijiazhuang, the provincial capital, are 
ranked in the top five with respect to economic conditions 
because of advantageous government policies. Moreover, 
Langfang is ranked third highest in the economic 
subcategory due to its geographical position between 
Beijing and Tianjin, from which its economy undoubtedly 

Fig. 5. Spatial distribution of RECC in study area.

Resources Environment Economic Infrastructure

Indicator weight Indicator weight Indicator weight Indicator weight

1 0.0515 6 0.0454 13 0.0517 18 0.0384

2 0.0465 7 0.0429 14 0.0433 19 0.0459

3 0.0462 8 0.0412 15 0.0455 20 0.0415

4 0.0411 9 0.0529 16 0.0426 21 0.0391

5 0.0505 10 0.0502 17 0.0429 22 0.0403

11 0.0490

12 0.0512

Mean 0.0472 Mean 0.0475 Mean 0.0452 Mean 0.0410

Table 2. Weight of each indicator.
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benefits. Thirdly, from the spatial distribution of the 
RECC, we can see that, interestingly, cities with the worst 
rankings have good resources. This demonstrates that 
there are obvious spatial imbalances between human and 
natural resources. Cities with the lowest RECC levels can 
promote their RECC by better developing themselves with 
respect to the other three subcategories, i.e., environment, 
economic, and infrastructure. According to the statistical 
data, we can also see that the economic condition of 
districts in Baoding city are ranked sixth, whereas Baoding 
has the lowest economic conditions. This suggests that 
differences exist both between and within cities.

Analyzing Main Factors of Influence 

The values and spatial distribution of RECC  
themselves provide valuable information for the future 
development of each city in the study area. However, 
it is necessary to further investigate the factors having 
the greatest effect on the RECC. Many other studies 
have used correlation coefficients to determine the main 

factors influencing RECC [11, 28-29]. Here we used 
SPSS software and this same method to obtain the final 
results shown in Table 4. From the table we can see that 13 
indicators have a statistically significant correlation with 
RECC and that indicator 16 (per capita fiscal income) 
has the largest correlation coefficient (0.835). As such, 
we can consider indicator 16 to be the most crucial factor 
influencing RECC.

Effect of Indicator Selection Strategy 
on RECC Assessment

We employed two indicator selection strategies to 
evaluate RECC. The first contains all the indicators 
mentioned above and the other contains 19 indicators, 
three of which (5-per capita nighttime lights, 11-NDVI, 
and 12-AOD) can only be obtained by RS data and 
were excluded. In this way, we explored the influence 
of indicators sourced from RS on RECC. From Table 5 
we can see that the difference between these two RECC 
indicator selection strategies is not statistically significant. 

City
RECC Resources Environment Economic Infrastructure

Result Rank Result Rank Result Rank Result Rank Result Rank

Beijing 0.757 1 0.101 11 0.268 1 0.223 1 0.165 1

Tianjin 0.516 2 0.082 13 0.229 2 0.124 2 0.082 3

Chengde 0.442 3 0.182 1 0.182 8 0.028 8 0.050 6

Langfang 0.433 4 0.117 9 0.200 6 0.075 3 0.042 7

Qinhuangdao 0.421 5 0.128 5 0.173 9 0.036 6 0.085 2

Cangzhou 0.398 6 0.121 8 0.217 3 0.029 7 0.030 9

Shijiazhuang 0.394 7 0.084 12 0.214 4 0.039 5 0.057 5

Tangshan 0.379 8 0.110 10 0.148 11 0.057 4 0.064 4

Baoding 0.378 9 0.147 3 0.213 5 0.008 13 0.010 13

Zhangjiakou 0.348 10 0.161 2 0.143 12 0.011 10 0.033 8

Hengshui 0.342 11 0.133 4 0.182 7 0.010 11 0.017 12

Handan 0.340 12 0.125 7 0.168 10 0.021 9 0.026 10

Xingtai 0.282 13 0.126 6 0.126 13 0.009 12 0.022 11

Table 3. RECC rank of each city in study area.

Indicator 1 2 3 4 5 6 7 8

Correlation coefficient 0.275 -0.187 -0.313 0.643* -0.747** -0.033 0.198 0.582*

Indicator 9 10 11 12 13 14 15 16

Correlation coefficient 0.577* 0.549 -0.154 0.335 0.780** 0.593* 0.613* 0.835**

Indicator 17 18 19 20 21 22

Correlation coefficient 0.599* 0.615* 0.308 0.709** 0.797** 0.676*

**coefficient is significant at the 0.01 level; *coefficient is significant at the 0.05 level 

Table 4. Correlation analysis between RECC and evaluation indicators of study area.
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Moreover, the RECC rank of each city has only a slight 
change, except for those of three cities (Chengde, 
Cangzhou, and Tangshan). However, we also find that 
the standard deviation of the result that included RS 
data (0.117) is less than that without RS data (0.149). In 
addition, the difference between maximum and minimum 
RECC with RS data included (0.475) is also lower than 
that without RS data (0.567). This reveals that indicators 
determined from RS data can more reasonably and stably 
assess RECC.

Although this study selected four aspects for 
assessment, due to data limitations we could not adequately 
consider institutional and perceptual aspects. Also, there 
is currently no explicit standard for constructing indictor 
systems and we look forward to eventually developing a 
comprehensive indicator system. Moreover, RS techniques 
have been utilized for broader applications, such as water 
quality assessment and water storage estimations [30-32], 
and we could use these to acquire more RECC assessment 
indicators. In future work, when we are able to collect 
additional relevant data, we can take these factors into 
account to gain a more comprehensive understanding of 
RECC.

Conclusions

In this study, we utilized both RS and statistical data 
to assess RECC. Using the mean-variance method, we 
determined the RECC value of the urban agglomerations 
of Beijing, Tianjin, and Hebei Province. Our research 

results were made more objective by the utilization of RS 
data and can provide valuable information for planners 
and managers, despite the relatively small influence of 
incorporating RS data. In terms of the overall conditions 
of each city in the study area, managers can adopt 
corresponding measures to improve their cities’ RECC 
and thereby help them to develop in more sustainable 
directions. This process can also be applied to other 
regions.
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