
Introduction

World energy demand continues to grow alongside 
global economic and social development. According to 
data published by the International Energy Agency, global 
emissions of energy-related carbon dioxide reached 36.3 
GtC in 2015. Such large-scale consumption of fossil 
energy is leading to global warming. As the country with 
the highest energy consumption and carbon emissions in 
the world, China actively takes part in reducing carbon 
emissions and has established carbon emission trading 
pilots over seven provinces and cities. 

In recent years, the efficiency of carbon emissions has 
become an important issue in academia, and a subject for 
both domestic and foreign scholars. Kaya and Yokobori 
first proposed the concept of carbon productivity, defining 
it as CO2 emissions over nominal GDP [1]. Sun believes 
that the carbon dioxide emissions per unit of GDP, as a 
measure of carbon emissions, are also an indicator of the 
energy-saving emission reduction standards at a national 
level [2]. However, some scholars hold different views. For 
example, Mielnik and Goldember propose the concept of a 
carbon index specifically defined as carbon emissions per 
unit of energy consumption, to measure the contribution 
of developing countries to energy conservation and 
climate change mitigation [3]. Ang uses energy intensity 
as a carbon index to measure a country’s carbon emissions 
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performance [4]. CO2 emissions are based on GDP as a 
basis of energy consumption as the starting point, but 
the GDP-based carbon efficiency index is favorable for 
developed countries. Because the total GDP of developed 
countries is generally higher, energy consumption as the 
basis for the carbon emission efficiency index is more 
beneficial to developing countries. Many scholars pay 
more attention to the research of measurement methods of 
carbon emission efficiency, which is based on the concept 
of carbon emission efficiency. Zhou et al. studied carbon 
emission efficiency in 18 countries with the highest CO2 
emissions in the world, and used the MCPI index to 
measure carbon emission efficiency, and, based on this, 
performed correlation analysis of the factors affecting 
carbon emission efficiency [5]. Zaim and Taskin, and 
Zofio and Prieto use the DEA method to measure the 
carbon emission efficiency of OECD countries and 
analyze the differences [6-7]. According to Marklund 
and Samakovlis, based on the secondary direction of the 
distance function model, the EU estimates the cost of 
carbon emission reduction [8].

Presently, the mainstream approach toward 
researching carbon emission efficiency used by both 
foreign and domestic scholars is DEA. Gomes and Lins 
have proposed a ZSG-DEA model to reallocate CO2 
emission permits among countries listed and not listed 
in Annex I of the Kyoto Protocol [9]. Färe et al. have 
proposed a DEA model that was used by 28 member 
states of the Organization for Economic Co-operation 
and Development from 1992 to 2006 to determine the 
magnitude and time of CO2 emission reductions [10]. 
Chiu et al. studied the allocation of emission allowances 
among 24 member states of the European Union using 
the ZSG-DEA model [11]. Wu et al. used a competitive 
DEA model that simultaneously considers the desirable 
output expansion and undesirable output contraction to 
evaluate the efficiency of power-generating enterprises 
in 60 countries from 2007 to 2011 [12]. Based on the 
ZSG-DEA model, Pang et al. analyzed the rational and 
efficient allocation of CO2 emissions among different 
countries to achieve global Pareto optimality [13]. Wei 
et al. estimated the potentials and marginal costs of CO2 
emission reductions for 29 provinces in China from 1995 
to 2007 using the extended SBM model [14]. Wang et 
al. proposed a new and efficient allocation scheme of 
emission allowances among China’s provinces by 2020 
using an improved and optimized ZSG-DEA model [15]. 
Research by Zhou et al. shows that the spatial-temporal 
allocation strategy seems to be more economically 
attractive for controlling the increase of CO2 emissions in 
China [16]. Moreover, Wang et al. allocated CO2 emission 
allowances among China’s provinces by 2020 by 
modifying the model published by Gomes and Lins into 
a “zero-sum game” evaluation model that considers slack 
effects [17]. Miao and Sheng treat CO2 as an undesirable 
output variable, using a non-radial ZSG-DEA model 
to allocate CO2 emissions between different Chinese 
provinces [18]. Lozano et al. analyzed data on pulp and 
paper enterprises in Sweden using the DEA method in 

order to explore efficient allocation of CO2 emissions [19]. 
Sun et al. analyzed the mechanism of initial allocation of 
emission rights among manufacturing enterprises using 
DEA and extended allocation of emission permits models 
[20]. Sun et al. proposed a centralized DEA model for 
industrial optimization and designed a dual model for the 
centralized DEA model to analyze shadow prices on CO2 
emissions [21]. Zhang and Hao allocated carbon emission 
quotas among the 39 Chinese industry sectors by 2020, 
and employed an input-oriented ZSG-DEA model to 
examine the efficiency of allocation solutions [22].

Currently, studies on the allocation of carbon emission 
allowances are mainly carried out at province level, while 
most sector-level studies focus on the relationship between 
carbon emissions and economic growth. Due to significant 
differences among sectors, it is necessary to allocate the 
national carbon emission reduction index among different 
sectors, and clearly state the responsibility of each sector 
in reducing emissions in order to rationally and efficiently 
fulfill target emission reduction in China. In this study, we 
use the epsilon-based measure of efficiency model with 
integrated radial and non-radial characteristics, which 
can effectively replace traditional research using CCR, 
BCC, and SBM models for the calculation of efficiency 
problems. According to the national carbon emission 
reduction target, the allocation of carbon emission rights 
was adjusted by sector, and allowances were reallocated 
using the zero sum gains-data envelopment analysis 
(ZSG-DEA) model based on EBM calculations in order 
to provide a reference for allocating carbon emission 
allowances among sectors in China.

Methods and Data 

DEA can handle the efficiency issues of multiple-
input multiple-output in a unified framework and has a 
stronger explanatory power due to a more flexible specific 
functional form of stochastic foreword analysis. Based 
on the calculation methods, classical DEA models could 
be divided into two categories, where the first category 
is represented by the constant returns to scale (CRS) 
model based on radial measurements [23], while the 
second category is represented by the SBM model based 
on non-radial measurements [24]. Both CRS and SBM 
models have certain drawbacks. The radial CRS model 
measures input-oriented efficiency scores by assuming 
that the output is constant, but all the input factors reduce 
proportionally due to an over-stringent assumption, which 
has deviated from the actual economy. On the other hand, 
the efficiency calculation of the SBM model includes non-
radial slack variables, thereby avoiding the assumption 
that input factors reduce proportionally. However, the 
cost of this optimization is the original proportional 
information of the projection value of an efficient frontier. 
Moreover, the SBM model has insufficient exposure 
during the process of solving the linear programming 
problem. In other words, the optimal relaxations obtained 
using zero and positive values exhibit significant 
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differences. In order to solve the problems of CRS and 
SBM models in measuring and calculating efficiency 
scores, Tone et al. have constructed an EBM model that 
integrates radial and non-radial characteristics [25]. For 
n decision-making units (DMUs) with m input factors (x) 
and s outputs (y), the EBM model can be expressed as:
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…where γ* is the optimal efficiency score calculated 
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output matrices, respectively. Besides, X>0, Y>0. As 

0x x sθ −= − , the input-oriented EBM model can also 
be written as:

  (2)

When 0xε =  the EBM model can be simplified 
into an input-oriented CCR model. When 1θ ε= = , 
the EBM model is transformed into an SBM model. The 
core parameter  and the value of w are estimated before 
calculating the EBM efficiency score.

The carbon emission reduction target or carbon 
emission allowances have a fixed total quantity in 
allocating responsibilities to reduce emissions. Hence, 
the conventional DEA model can only be used to 
calculate the relative efficiency of the initial allocation 
of responsibilities to reduce carbon emissions among 
sectors, and cannot improve the DEA efficiency of each 
sector by adjusting the allocation. Gomes and Lins [9] 
researched this issue and proposed a ZSG-DEA model that 
re-configures the inputs (or outputs) to find an efficient 

DEA strategy, and emphasizes the proportional reduction 
strategy. According to this strategy, an inefficient DMU 
must subtract a certain number of inputs (or accept a 
certain number of outputs) to become an efficient DEA. 
In order to maintain total inputs (or outputs) constant, 
other DMUs must accept a certain number of inputs (or 
subtract a certain number of outputs) on a pro-rata basis 
according to their initial input (or output) values. The 
basic mathematical idea of the ZSG-DEA method can be 
described as:

   (3)

Equation (3) represents the mathematical expression 
of the output-oriented ZSG-DEA method. The linear 
programming aims at allocating output variables,  
wherein  hrk represents the technical efficiency of unit k 
as evaluated under the ZSG condition, hk represents the 
classical DEA technical efficiency of evaluated unit k, xiq 
and yjq  are i-th input variable and the j-th output variable 
of DMU q, respectively, and q is the planning coefficient. 
It can be seen that the evaluated DMU k allocates surplus 
output variables to other DMUs. DMUk reduces the 
output allocation of yikhrk and requires other (K-1) DMUs 
to increase their proportions according to their respective 
output variables, based on the principle of proportional 
increase, wherein the increment is directly proportional 
to the original value of the output variable of the  
other DMUs. The assumption of proportional increase 
implies the increased allocation of output variables 
among DMUs:
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Although this is nonlinear programming, its technical 
efficiency, hrk, has been proven to be linearly correlated 
with the technical efficiency of classical DEA, hk under 
ZSG.
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…where DMUs without an expansion coefficient of 1 
under the classical DEA condition were combined into  
the cooperative set W. θnm = hn /hm is the technical efficiency 
ratio of DMU n to DMU m. Equation (5) can simplify 
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the calculation of technical efficiency, hrk, for each DMU 
on the new ZSG frontier. The following figure compares 
the output-oriented classical DEA method with the 
ZSG-DEA method. It can be observed that the technical 
efficiency of unit A, which was originally low under the 
classical DEA method, could be improved by obtaining 
the output level of DMUs with higher efficiencies. 
Conversely, unit B, with a higher technical efficiency, 
reduces its output level. After allocation, all DMUs  
were on the ZSG-DEA frontier with efficiency values  
of 1.

Based on allocative efficiency, our research analyzes 
the allocation model of carbon emission allowances among 
six major sectors in China in order to find a mechanism 
to reduce emissions with fair efficiency. China’s 12th 

Five-Year Plan proposed the target of “reducing the GDP 
carbon emission intensity by 17% in 2015 compared 
with the end of 2010.” Our research continues this target 
by setting its objective to “reduce the national carbon 
emission intensity by 17% in 2020 compared with 2015.” 
The responsibilities to reduce carbon emissions were 
allocated among sectors from 2016 to 2020, based on 
optimal allocative efficiency, as to yield the most efficient 
allocation of carbon emission rights. With respect to the 
classification of sectors, our research divides these sectors 
into six categories according to the method described in 
the Total Energy Consumption Table by Sector of the 
China Energy Statistical Yearbook [26-31]: 1) agriculture, 

forestry, animal husbandry, and fishery; 2) industry; 
3) construction; 4) transportation, warehousing, and 
postal service; 5) wholesale, retail, accommodation, and 
catering; and 6) other sectors.
1)	 Population by sectors. Based on population data 

from the China Statistical Yearbook, the average 
annual population growth rate from 2009 to 2014  
was calculated according to population trends over 
the past five years. Moreover, China’s population 
from 2015 to 2020 was predicted by assuming that the 
population growth rate remains constant from 2015 
to 2020, and that the population proportion in each 
province and city remains consistent with 2014.

2)	 Carbon emissions by sectors from 2009 to 2013 were 
determined according to the Energy Consumption 
Table in the China Energy Statistical Yearbook, where 
the total energy consumption of various power sources 
in each sector was multiplied by the standard coal 
consumption coefficient, converted into the standard 
consumption volume, and subsequently multiplied  
by the carbon emission coefficients of each power 
source. Afterward, the carbon emissions from 2015 to 
2020 were predicted according to the average growth 
rate of carbon emissions from 2009 to 2014.

3)	 GDP by sectors from 2009 to 2014 (calculated for 
each sector at prices in those years), obtained from the 
System of National Accounts in the China Statistical 
Yearbook, were divided by the consumer price index 
to obtain GDP data for each sector from 2009 to 2014, 
with 1985 as the base period. Furthermore, the GDP 
data from 2015 to 2020 were predicted based on the 
average GDP growth rate of each sector from 2009 to 
2014.

4)	 Energy consumption by sectors from 2009 to 2013 
was calculated according to the Energy Consumption 
Table in the China Energy Statistical Yearbook, and 
energy consumption from 2014 to 2020 was predicted 
based on the average growth rate.

5)	 Initial allocation of carbon emission allowances by 
sectors. First, the carbon emission intensity per unit 
of GDP was calculated according to the national total 
carbon emissions and total GDP from 2011 to 2015. 
Second, the target values of carbon emission intensity 
from 2016 to 2020 were calculated by adopting 
the target to “reduce the national carbon emission 
intensity by 17% in 2020 compared with 2015.” 

Variable Units Mean Std. Dev. Min Max

Energy consumption Million tons of 
standard coal 84,256.21 120,468.00 8,609.35 362,336.30

Population Ten thousand people 3,140.67 2,821.26 194.90 7,573.29 

Initial allocation of carbon emission 
allowances Million tons 494,630.00 488,478.10 62,023.13 2,073,863.00 

Carbon emissions Million tons 45,493.25 65,045.39 4,648.53 195,639.60 

GDP Billion yuan 76,546.47 58,864.93 20,817.87 189,085.70 

Table 1. Descriptive statistics.

Fig. 1.  Schematic diagram of output-oriented ZSG-DEA.
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Finally, the allowance allocation was calculated based 
on carbon emissions from each sector from 2011 to 
2015, in order to obtain the initial allocation of carbon 
emission allowances among sectors from 2016 to 
2020.
In this study, industry population, sector initial  

carbon emissions, and industry energy consumption are 
used as input variables, industry GDP as the desired 
output, and CO2 as an undesirable output. Data is from 
the China Statistical Yearbook, China Energy Statistical 
Yearbook, and China’s Provincial Statistical Yearbook. 
The data for the 13th and five-year periods are estimated 
based on previous data. Descriptive statistics are shown 
in Table 1.

Results and Discussion

Data analyses in this study were carried out using 
MAX-DEA software. The initial allocative efficiencies of 
carbon emission allowances among six sectors in China 
from 2016 to 2020 were calculated and the results are 
shown in Table 2.

The integration of radial and non-radial characte-
ristics of the EBM model can be used to simultaneously 
and effectively solve issues in calculating the efficiency 
scores using CCR, BCC, and SBM models. It is obvious 
that the agriculture, forestry, animal husbandry, and 
fishery sector has relatively higher efficiency scores that 

are close to 1, while the allocative efficiencies of carbon 
emissions among other sectors still need to be further 
improved.

The allocative efficiencies of all sectors should 
achieve efficiency, which means achieving an efficiency 
score of 1 in order to achieve a fair and efficient allocation 
of carbon emission rights among sectors. However, most 
sectors have low allocative efficiency scores at present. 
Therefore, our research employed the ZSG-DEA model 
on the basis of the EBM model to reallocate the carbon 
emission allowances. First, the increment or reduction 
of carbon emissions required for each sector in order to 
achieve an efficient allocation was calculated based on the 
initial allocative results and efficiencies. Subsequently, 
the efficiency scores were calculated by using the adjusted 
carbon emissions as new input variables. After several 
iterations, the efficiency scores of the ZSG-EBM model 
for all sectors were finally close to 1, even if the allocation 
of carbon emissions rights among sectors achieved a 
unified efficient frontier of ZSG-EBM. The detailed 
iterative processes and adjustment results are shown in 
Table 3.

Based on the EBM model, the carbon emission 
allowances among sectors were reallocated and calculated 
using the ZSG-DEA model. 

In terms of numerical values, the adjustment 
method for the transportation, warehousing, and postal 
service sector yielded negative scores, while one of 
other sectors yielded positive scores, indicating that the 

Sector 2016 2017 2018 2019 2020

Agriculture, forestry, animal husbandry, and fishery 0.973 0.98 0.987 0.993 1

Industry 0.738 0.762 0.786 0.811 0.835

Construction 0.833 0.855 0.876 0.898 0.92

Transportation, warehousing, and postal service 0.737 0.761 0.785 0.809 0.833

Wholesale, retail, accommodation, and catering 0.847 0.868 0.889 0.911 0.933

Other sectors 0.777 0.8 0.823 0.846 0.87

Table 2. EBM efficiency scores of each sector from 2016 to 2020.

Sector
Initial carbon 

emission 
allowance

Initial 
efficiency 

score 

Efficiency 
score of the 
first iteration

Efficiency score 
of the second 

iteration

Efficiency 
score of the 

third iteration

Final carbon 
emission 
allowance

Agriculture, forestry, animal 
husbandry, and fishery 4,938 0.986 0.989 0.994 1 5,459

Industry 184,640 0.786 0.793 0.859 0.972 183,539

Construction 5,228 0.876 0.887 0.934 0.951 5,958

Transportation, warehousing, 
and postal service 25,209 0.785 0.798 0.902 0.933 23,923

Wholesale, retail, 
accommodation, and catering 7,724 0.889 0.896 0.953 0.985 8,107

Other sectors 45,221 0.823 0.838 0.911 0.992 45,974

Table 3. Allocative results and adjusted scores of carbon emission allowances among sectors.
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agriculture, forestry, animal husbandry, and fishery; 
construction; transportation, warehousing, and postal 
service; wholesale, retail, accommodation, and catering; 
and other sectors can increase their carbon emissions 
according to the initial carbon emission allowances 
while maintaining their DEA efficiencies. On the other 
hand, the transportation, warehousing, and postal service 
sector must reduce its corresponding carbon emissions to 
achieve an efficient DEA. 

From Table 3 we see that the industrial sector 
accounted for the largest initial emission allowance 
among the six industries, reaching 67.6%. Therefore, 
promoting industrial low-carbon development and 
active control of carbon emissions is imperative, as is 
strengthening the industrial sector to address climate 
change, and to establish phased, sub-regional, sub-sectors, 
sub-enterprise allocations of a low-carbon industrial 
development system. Moreover, it is also important to 
increase carbon emission control for such key industries 
as steel and cement. In Beijing, Shanghai, and other 
pilot provinces, it is essential to carry out industrial 
carbon emission peak management, exploration, and 
management experience, while giving full play to the role 
of the carbon market mechanisms in the industrial control 
of carbon emissions. At the same time, it is important to 
improve the low-carbon competitiveness of enterprises, 
strengthen enterprise carbon asset management, and 
promote low-carbon enterprise pilot demonstration. 
Rationally improving China’s industrial structure and 
increasing investment in technology and clean energy use 
are also important here.

Conclusions

This study calculated, adjusted, and optimized the 
allocative efficiencies of carbon emission rights among 
six sectors in China from 2016 to 2020 on the basis 
of allocative efficiency. Our main conclusions are as 
follows. First, the initial allocation of carbon emission 
rights among six sectors in China has a relatively low 
DEA efficiency, with significant differences in efficiency 
among sectors from 2016 to 2020. Second, among the 
six major sectors, only the agriculture, forestry, animal 
husbandry, and fishery sector achieved an efficient 
initial allocation of carbon emission rights, whereas the 
industry and transportation, warehousing, and postal 
service sectors have low allocative efficiencies, which 
urgently need to be improved. Third, the industrial sector 
has the greatest room for adjustment, based on the final 
adjustment method, and the reduction can be compensated 
for by corresponding increments of other sectors to keep 
the total carbon emissions constant.

Based on the conclusion of this paper, the following 
suggestions emerge. The first objective is to establish 
differentiated carbon emission reduction targets and 
strategies, implement the carbon emission reduction 
targets in various industries, realize the rational and 
effective distribution of carbon emission rights among 

industries, and promote carbon emission allocation in 
different industries. The second is to increase investment 
in science and technology to encourage new energy 
development, and increase clean energy use to promote 
China’s energy-saving emission reduction measures 
and its energetic development while accelerating 
carbon emission reduction and sustainable development 
processes. Finally, it is also important to adjust the 
industrial structure and accelerate the upgrading of 
industries to avoid excess energy-intensive industries 
while actively encouraging the development of strategic 
new industries.

Since the establishment of China’s seven carbon 
trading pilot areas, the pilot area for the establishment 
of energy transformation has played a positive role. In 
2017 China will vigorously promote carbon trading; the 
national unified carbon trading market will gradually 
increase in size. Here, petrochemical, chemical, building 
materials, steel, nonferrous metals, paper, electricity, 
and aviation are the eight key industries included in 
the carbon emissions trading range. The next phase of 
research should focus on these eight key industries, for 
China to achieve carbon emission reduction targets and 
rationally optimize the allocation of resources to improve 
its carbon emission efficiency.
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