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Abstract

Near infrared spectroscopy and interval partial least-squares (iPLS) were applied to rapid 
quantitative analysis of thepoly-β-hydroxybutyrate (PHB), polyphosphate (Poly-P), and glycogen (Gly) 
during denitrifying phosphorus removal. Wavelet denoising was used to pretreat the raw near infrared 
spectroscopy, and the quantitative analysis models (iPLS models) of PHB, Poly-P, and GLY were established 
with interval partial least-squares (iPLS). The iPLS was used to select the optimal spectral interval for 
modeling. The total phosphorus decreased from 7.9 mg/L to 0.67 ma/L during denitrifying phosphorus 
removal. The region from 4,320 to 4,640 cm-1 was selected to establish the iPLS model of intracellular 
PHB. The region from 4,000 to 4,320 cm-1 was selected to establish the iPLS model of intracellular Poly-P. 
Finally, the region from 5,103 to 5,379 cm-1 was chosen to establish the iPLS model of intracellular GLY. 
Statistical tests of these iPLS models of PHB, Poly-P, and GLY show that the correlation coefficients 
(rc) between the correction values and the chemical values are 0.9637, 0.9582, and 0.9437, with the root 
mean square error of cross validation (RMSECV) being 0.0069, 0.0039, and 0.0025. Test results of iPLS 
models show that the correlation coefficients (rp) between the prediction value (by iPLS model) and the 
chemical value were 0.9430, 0.9389, and 0.9133, with the root mean square error of prediction (RMSEP) 
being 0.0523, 0.0040, and 0.0058. These research results show that the proposed models may provide a 
rapid and effective quantitatively analysis of intracellular PHB, Poly-P, and GLY, and that the effect of the 
denitrifying phosphorus removal process can be quickly judged from the cell metabolism perspective.
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Introduction

Phosphorus is the main factor causing water 
eutrophication [1], and denitrifying phosphorus removal is 
a sustainable biological nitrogen and phosphorus removal 
process [2-3]. The metabolism of microorganisms plays 
an important role in denitrifying phosphorus removal 
[4]. Under anaerobic conditions, denitrifying phosphorus 
removal bacteria absorb volatile fatty acids and synthesize 
intracellular poly-β-hydroxybutyrate (PHB) using the 
energy of the degradation of intracellular polyphosphate 
(Poly-P) and glycogen (GLY), and then release PO4

3- into 
the outside [5-7]. However, under anoxic conditions, 
denitrifying phosphorus removal bacteria decompose 
stored PHB as an energy source to excessively absorb 
PO4

3- and transform it to Poly-P, replenishing GLY and 
cell-growth [8-11]. Therefore, the metabolism of PHB, 
Poly-P, and Gly are considered to determine the efficiency 
of denitrifying phosphorus removal [12]. So the rapid 
measurements of the content of intracellular PHB, Poly-P, 
and GLY are important for operating or regulating the 
denitrifying phosphorus removal process. The traditional 
methods to analyze intracellular PHB, Poly-P, and GLY 
are complicated, costing much time and resources, and 
often causing secondary pollution [13]. Therefore, it is 
of much significance to develop a rapid and pollution-
free method to analyze the content of intracellular PHB, 
Poly-P, and GLY.

Near infrared spectroscopy is a fast and green 
analytical technique. With the characteristics of simple 
operation, low cost, rapid analysis, less consumption of 
chemicals, and simultaneous measurements of multiple 
components [14-19], it has drawn much attention in recent 
years and has been widely used in food, medicine, the 
environment, etc. [20-28]. However, there is little research 
on its application for measuring intracellular PHB, Poly-P, 
and GLY in the denitrifying phosphorus removal process. 
It is often inevitable that near infrared spectra will be 
affected by the uneven particles distribution of samples 
and background noise of near infrared spectroscopy 
instruments. Therefore, raw near infrared spectra data 
should be preprocessed to eliminate such interference [29]. 
Wavelet denoising is an effective preprocessing method 
that can effectively eliminate scattering and noise [30-31]. 
Interval partial least squares (iPLS) is a new chemometric 
method developed on the basis of PLS. Compared with 
PLS, iPLS has better performance in quantitative analysis 
[32]. With the iPLS method, the full-spectra are divided 
into several regions and then the optimal intervals are 
selected to establish the quantitative analysis model (iPLS 
model) [33-34]. The near infrared spectroscopy combined 
with iPLS algorithm has achieved good results in rapid 
quantitative analysis of polyphenols in green tea and 
inorganic nitrogen in water and in the rapid diagnosis of 
some diseases [19].

However, as to near infrared spectroscopy combined 
with iPLS algorithm, there is little study on the analysis 
of intracellular PHB, Poly-P, and GLY in the denitrifying 
phosphorus removal process. Therefore, in this study 

wavelet denoising was used to preprocess raw near 
infrared spectra of samples in the denitrifying phosphorus 
removal process. After pretreatment, iPLS was used 
to select the optimum spectral interval and establish 
quantitative analysis models of intracellular PHB, Poly-P, 
and GLY. It is hoped that this study may provide a rapid 
and non-polluting method for the analysis of intracellular 
PHB, Poly-P, and GLY in the denitrifying phosphorus 
removal process.

Material and Methods

Experimental Equipment and Water Quality

A sequencing batch reactor was used in this 
experiment (Fig. 1). Denitrifying phosphorus removal 
was achieved by alternate anaerobic and anoxiccondition. 
The volume of the reactor was 15 L. The reaction 
temperature was maintained as room temperature.  
The operational cycle was 360 min. The influent time was 
30 min, anaerobic stage was 105 min, anoxic stage was 
150 min, precipitation time was 25 min, drainage was  
5 min, and stabilization time was 45 min. The raw water 
quality in this experiment was as follows: 180 mg/L  
for COD, 7.5 mg/L for TP, 32 mg/ L for NH4

+-N, and 
7.5 for pH.

Sample Collection and Analysis Method

When the denitrifying phosphorus removal process 
was in stable operation, sludge samples were collected 
every 15 min, and 20 samples were collected in a cycle. 
Finally, 140 samples were collected in 7 cycles. The 100 
samples were used to establish iPLS models, and the 
remaining 40 samples were used to test iPLS models. 
All the samples were centrifuged for 5 min, and then the 
sludge samples were dried for 20 h. Every sample was 
divided into two sub-samples. One was measured with 
chemical method to get the chemical value of intracellular 
PHB, Poly-P, and GLY; the other was measured with near 
infrared spectrometer to collect spectral data. The iPLS 
method was employed to establish the iPLS models. 
Gas chromatography was used for measuring PHB. 
Molybdenum antimony spectrophotometric method was 
used for measuring Poly-P. The anthrone method was 
used for measuring GLY. Near infrared spectrometer was 
used for measuring spectral data.

Establishing and Evaluating the iPLS Model

The establishment of iPLS models includes the 
following steps. First, raw near infrared spectra were 
pretreated with wavelet denoising. Second, the full 
spectrum was divided into several intervals. Then 
independent PLS regression analysis was conducted in 
each subinterval, and the interval with the minimum 
RMSECV was the optimal modeling interval. After that, 
the iPLS model established in the optimal interval was 
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the optimal model, and the accuracy of the iPLS model 
was evaluated with the root mean square error of cross 
validation (RMSECV) and the correlation coefficient 
(rc). Finally, the established models were tested, and 
the performance of the models was evaluated with the 
root mean square error of prediction (RMSEP) and the 
correlation coefficient (rp). These evaluation parameters 
are calculated with the following formula [35-36]:

               (1)

               (2)

               (3)

                   (4)

…where m and n are the numbers of the modeling sample 
and test sample, xi and yi are the chemical values of the 
modeling sample and the test sample, x'i is corrected value 
by iPLS model, y'i is predicted value by iPLS model, and 
x–  and y–   are the average of chemical values of the modeling 
sample and the test sample.

Results and Discussion

Change of Intracellular Substances of Denitrifying 
Phosphorus Removal Process

Fig. 2 shows the changes of intracellular substances 
during the denitrifying phosphorus removal process. 
As we can see in Fig. 2, intracellular Poly-P and GLY 
were decomposed to produce energy to synthesize PHB 
in the anaerobic stage. Therefore, the content of Poly-P 

Fig. 1. Process of denitrification phosphorus removal.

Fig. 2. Content of intracellular PHB, Poly-P, and GLY in 
anaerobic and anoxic phases during denitrification phosphorus 
removal.
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decreased from 5.31% to 1.19%, and the content of GLY 
decreased from 7.81% to 6.31%. However, stored PHB is 
decomposed during tne anoxic stage, producing energy to 
absorb phosphate from sewage and to synthesize Poly-P 
and GLY. The content of PHB decreased from 12.41% 
to 3.11%, the content of Poly-P increased from 1.19% to 
6.01%, and the content of GLY increased from 6.31% to 
8.81%. These data show that the denitrifying phosphorus 
removal process has been stable.

Pretreatment of Raw Near Infrared Spectra

The raw near infrared spectra of the samples are 
shown in Fig. 3. The X-axis is the wave number, which 
ranges from 4,000 to 12,000 cm-1, and the Y-axis is 
the absorbance of near infrared spectra. Fig. 3 shows 
that there are similar shape and change in the raw near 
infrared spectra of all the samples. However, the raw 
near infrared spectra are also affected by the uneven 
distribution of particles and instrument noise. Therefore, 
there are scattering and noise signals in raw near infrared 

Fig. 3. Raw near infrared spectra by near infrared spectrometer.

Fig. 4. Pretreated spectra of sludge samples; wavelet denoising 
was used to pretreat the spectra.

Fig. 5. Establishing the iPLS model of PHB: a) change of 
RMSECV in full spectrum, b) change of RMSECV in each 
interval, c)s elected wave number, and d) iPLS model of Poly-P; 
linear correlation between the corrected value and the truth value 
of PHB.
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spectra, especially in the wave number of 4,000 to  
5,000 cm-1, where a large number of burr peaks appear. 
These interferences will affect the true characteristic 
signal of the substances. So effective pretreatment is 
necessary to obtain desired spectral information and 
improve the accuracy of the quantitative analysis model. 
Fig. 4 shows near infrared spectra pretreated with  
wavelet denoising. After pretreatment, the interferences 
in the raw near infrared spectra were effectively reduced, 
and the near infrared spectra are smoother.

Establishing the iPLS Model

After pretreatment by wavelet denoising, the near 
infrared spectra (4,000-12,000 cm-1, 1,037 spectral data) 
were divided into several intervals by iPLS. Then the 
interval with the minimum RMSECVV was selected as 
the optimal interval, and the iPLS model in the optimal 
interval was the best model.

Establishing the iPLS Model 
of Intracellular PHB

Establishing the iPLS model of intracellular PHB is 
shown in Figs 5(a-d) and Table 1. In the full-spectrum, 
the RMSECV changed with the principal component 
number (Fig. 5a), and the minimum RMSECV is 0.69% 
when the principal component number is 10. Then the 
full spectrum is divided into 25 intervals. For each 
internal, the optimal principal component number and the 
corresponding RMSECV are shown in Fig. 5b). The italic 
number in the bar column of each interval represents the 
optimum principal component number of the interval, 
and the height of each column presents the RMSECV of 
the corresponding interval. In addition, the dotted line 
represents the minimum RMSECV in full spectrum. As 
shown in Figs 5(b-c), the RMSECV of the 24th interval 
(4,320-4,640 cm-1) is the minimum compared with full-
spectrum, with RMSECV being 0.69%. Therefore, the 
24th interval is the optimal interval for modeling, which 
has the characteristics of higher information content. In 
this interval, the iPLS model of intracellular PHB was 
considered the best model (Fig. 5d). In Fig. 5d), the X 
axis is the chemical value of intracellular PHB, and the 
Y axis is the corrected value of the iPLS model. The rc, 
between the chemical value and the correction value, is 
0.9637, and the corresponding RMSECV is 0.0069. The 
result shows that the iPLS model of intracellular PHB has 
a good correction effect.

Establishing the iPLS Model of Intracellular 
Poly-P

Figs 6(a-d) show the establishment of an iPLS model 
of intracellular Poly-P, and Fig. 6a) shows the RMSECV 
changes with the number of principal components in 
the full-spectrum. In the full-spectrum, the minimum 
RMSECV is 0.39%, with the principal component number 
being 2. Fig. 6b) showed the optimal principal component 
number and the RMSECVs of 25 intervals. As can be 
seen from Figs 6(b-c), the RMSECV is the minimum in 
the 25th interval (4,000-4,320 cm-1), with the RMSECV 
being 0.0039. Therefore, the 25th interval is considered 
the optimal interval, and the iPLS model in this interval 
was considered a good model for intracellular Poly-P 
(Fig. 6 d). In Fig. 6d), the X axis and Y axis respectively 
represent the chemical value and the corrected value. 
Between the chemical value and the correction value, rc 
is 0.9582 and the corresponding RMSECV is 0.0039. The 
result shows that the iPLS model of intracellular Poly-P 
has a satisfying effect of correction.

Establishing the iPLS Model 
of Intracellular GLY

The establishment of the iPLS model of intracellular 
GLY are presented in Figs 7(a-d) and Table 1. Fig. 7a) 
shows how RMSECV changes with different numbers 
of principal components. The RMSECV is the minimum 
(0.25%) when the principal component number is 9. The 
full spectrum is divided into 29 subintervals (Fig. 7b). 
As can be seen from Figs 7(b-c), the RMSECV of the 
25th interval (5,103-5,379 cm-1) is the minimum 0.25%. 
Therefore, the 25th interval is the optimal interval. The 
established model is shown in Fig. 7d. The rc between 
the chemical value and the correction value is 0.9437, 
with the RMSECV being 0.0025. These results indicate 
that the iPLS model of intracellular GLY has a perfect 
correction effect.

Tests of iPLS Models of Intracellular PHB, 
Poly-P, and GLY

The established iPLS models of intracellular PHB, 
Poly-P, and GLY were tested on the basis of the data 
of the 40 samples that were not used in modeling. The 
test results are shown in Fig. 8, where the X axis is the 
chemical value and the Y axis is the prediction value 
by iPLS models. The test results of iPLS model of PHB 

Intracellular
polymer

Selected wave band 
(cm-1) Optimal internal Principle component 

number rc RMSECV rp RMSEP

PHB 4320-4640 24 10 0.9637 0.0069 0.9430 0.0523

Poly-P 4000-4320 25 2 0.9582 0.0039 0.9389 0.0040

GLY 5103-5379 25 9 0.9437 0.0025 0.9133 0.0058

Table 1. Selected wave band, optimal internal, principle component number, and evaluation parameters of PHB, Poly-P, and GLY.
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Fig. 6. Establishing the iPLS model of Poly-P: a) change of 
RMSECV in full spectrum, b) change of RMSECV in each 
interval, c) selected wave number, and d) iPLS model of Poly-P; 
a linear correlation between the corrected value and the truth 
value of Poly-P.

Fig. 7. Establishing the iPLS model of GLY: a) change of 
RMSECV in full spectrum, b) change of RMSECV in each 
interval, c) selected wave numberb, and d) iPLS model of GLY; 
a linear correlation between the corrected value and the truth 
value of GLY.
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shows that, between the prediction value and the chemical 
value, rp is 0.9430, and the root mean square error of 
prediction (RMSEP) is 0.0052. The test result of the iPLS 
model of Poly-P shows that, between the prediction value 
and the chemical value, the rp is 0.9389 and the root mean 
square error of prediction is 0.0040. The test results of 
iPLS model of GLY show that between the prediction 

value and the chemical value, the rp is 0.9133 and the 
root mean square error of prediction (RMSEP) is 0.0058. 
These results show that the iPLS models are capable 
of satisfactorily and promptly predicting the content of 
intracellular PHB, Poly-P, and GLY.

Conclusions

A fast and effective method for proving quantitative 
analysis for intracellular PHB, Poly-P, and GLY was 
developed based on near infrared spectroscopy. The 
noise of raw near infrared spectra may be reduced by 
wavelet denoising, and the effective spectral information 
was extracted. The established quantitative analysis 
models that make use of the iPLS algorithm are powerful 
analytical tools for intracellular PHB, Poly-P, and GLY. 
The feasibility of the iPLS models based on near-infrared 
spectroscopy was evaluated by root mean square error of 
cross validation and correlation coefficient. In addition, 
the performance of iPLS models was validated by test 
samples, thereby demonstrating their capability as 
simple, fast analytical tools for intracellular PHB, Poly-P, 
and GLY. These results demonstrated that the iPLS 
models of intracellular PHB, Poly-P, and GLY are rapid 
and reliable for detecting and quantifying the content 
of intracellular PHB, Poly-P, and GLY in denitrification 
phosphorus removal. In the future, the influence of 
different pretreatment methods or different modeling 
methods on the rapid analysis of intracellular substances 
should be researched further.
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