
Introduction

Bioretention systems are implemented and studied 
especially in the context of the urban environment, but 
lately they are also included in rural and agricultural 
areas. These sustainable techniques are grouped 
in a category that is referred to by different terms: 

sustainable drainage systems (SUDS) in the UK [1-2], 
low-impact development (LID) or best management 
practices (BMPs) in the USA and Canada [3], water-
sensitive urban design (WSUD) in Australia, natural 
drainage systems in the U.S. city of Seattle [4], and 
on-site stormwater management by the Washington 
State Department of Ecology (USA) [5]. Terminology, 
although varied, does not necessarily produce confusion 
regarding the definition and basic characteristics of 
the categories of sustainable techniques. This type 
of sustainable system is intended to mimic natural 
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Abstract

The benefits of bioretention systems are very important to the environment. Because of low knowledge 
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hydrological regimes in order to minimize the impact 
of human activity on surface water drainage discharge, 
reducing flooding and pollution of waterways and 
groundwater [6]. There are different measures that 
vary in design to suit different scenarios. For example, 
Josimov-Dundjerski (2015) presents one of the 
sustainable systems based on bioretention for wastewater 
treatment: the constructed wetland (CW). Due to 
multiple variables, it is important to choose the correct 
measure or adapt and develop a new measure [6-7]. 

Existing research and case studies related to 
bioretention systems play a crucial role in understanding 
their mode of operation, the choice of suitable types 
for different areas and scenarios for reducing the 
risks arising from incorrect perception [8-12]. Green 
infrastructure is efficient in controlling the problems 
caused by the quantity and quality of urban stormwater 
runoff [13-16]. The sustainable technics based on 
bioretention are at present researched and implemented 
on a large scale in various countries worldwide, while in 
others they are completely ignored. An important step 
in the application of bioretention systems is determining 
the model and design according to a given area. The 
design and modelling tools for these systems have 
evolved rapidly and encompass a wide range of types 
that vary in terms of complexity [17-21]. DRAINMOD, 
stormwater management model (SWMM), 
WinSLAMM, HydroCAD, HEC-HMS, IDEAL, 
and WWHM are major computational hydrologic or 
hydraulic models used to simulate bioretention systems 
[22-29]. 

The aim of this research was to develop general 
rules and effective models for the use of bioretention 
systems in Romania, with particular reference to one 
of the biggest urban developments at the national 
level: Cluj-Napoca. We used the RECARGA model 
to determine bioretention cell effective models for 
environmental conditions provided by the studied 
sites. RECARGA is a hydraulic model for optional 
event and continuous simulation or design purpose and 
provides detailed analysis for bioretention hydraulics 
and runoff retention [21, 22]. This research is useful 
for sizing the bioretention cell in order to meet the 
specific performance targets, such as reducing the 
volume of stormwater runoff and for analysing the 
potential impact of the variation of design parameters. 
A secondary objective of this study was to increase 
scientific and public awareness through targeted analysis 
of the bioretention cells in the context and environmental 
conditions in Romania.

Materials and Methods

Study Area

Cluj-Napoca, with an area of ​​179.5 km², is located 
in central Transylvania in the Someş Mic Corridor, 
and is located within three major geographical  

units: the Transylvanian Plain, the Someş Plateau,  
and the Apuseni Mountains. It is located specifically 
at the intersection of parallel 46°46’N with meridian 
23°36 ‘E. Cluj-Napoca is part of the Someş-Tisa basin. 
The studied sites through the prevailing characteristics 
fits within these categories: commercial area, industrial 
area, high-density residential area, and low-density 
residential area (Fig. 1). The commercial area is located 
in eastern Cluj-Napoca city (46°45’32.16”N latitude 
and 23°32’24.78”E longitude), the industrial area is in 
northeastern Cluj-Napoca (46°47’36.52”N latitude and 
23°38’3.72”E longitude), the low-density residential area 
is in southwestern Cluj-Napoca (46°44’43.81”N latitude 
and 23°34’10.75”E longitude), and the high-density 
residential area is to the west (46°45’8.48”N latitude and 
23°33’31.37”E longitude) [30]. 

Numerical Modelling

For the analysis of bioretention hydraulics and runoff 
retention in the studied sites we used the RECARGA 
model developed at the University of Wisconsin-
Madison [31-32]. RECARGA is based on continuous 
modelling or on one event, simulates the hydrological 
functions of bioretention cells, and was developed 
using MATLAB computing software and language 
[33]. RECARGA relies on the Green-Ampt infiltration 
equation for the initial infiltration in the soil surface and 
on the van Genuchten relationship for drainage between 
soil layers [31-32]. The model simulates the continuous 
movement of water through bioretention cell, records 
the soil moisture, and water volume for every phase, and 
synthesizes the results. 

From the three types of simulation (continuous, 
single event, and based on user input) we selected 
the simulation based on unique event with an excess 
rainfall (47 mm) in order to evaluate bioretention 
cell performance under extreme conditions. Some 
of the variables [34] taken into account to achieve  
a unique event based on simulations were different for 

Fig. 1. Map of the studied sites.
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each site individually (except for evapotranspiration, 
surface, and rainfall) and concern: native soil texture, 
hydrological conductivity, CN, evapotranspiration, 
rainfall, percentage of impermeable surface. For 
rainfall distribution we selected the Hyetograph (time 
distribution of rainfall) II; for the simulation we 
introduced the depth of the precipitation corresponding 
for a period of 24 hours (mm). Based on the hydrological 
map of Romania we used the 47 mm (4.7 cm) value.

Average hourly evapotranspiration was Regional 
AVE.ET is 0.3302 cm/day. Native soil texture of the 
4 sites was determined by performing 4 geotechnical 
drillings. Native soil hydraulic conductivity was 
determined based on the constant head permeability test 
and on soil textural classes (Table 1). 

For rooting and storage areas we preserved the 
default values of the RECARGA model: 10 cm/hr, 
respectively, 15 cm/hr. The underdrain flow required is 
the result of the division of ponding depth to 24 hours 
and subtraction of the native soil hydraulic conductivity.

We simulated models for bioretention cells with  
an area of 404.6856 m2. Tributary basin area is 
4,046.85 m2. Results on the percentage of 

impermeability were obtained by assessing areas 
suitable for bioretention implementation in the four 
studied sites [30]. The curve number (CN) index has 
emerged from the consultation of the CN values for 
hydrological soil groups [35, 36]. The resulting data 
for each site introduced in the RECARGA model are 
summarized in Table 1. 

We conducted two simulations based on a unique 
event for each of the 4  areas: with underdrain and 
without underdrain. Performing 2 simulations for 
each area is justified by the fact that it is necessary to 
determine the best options for building the bioretention 
cells according to the existing conditions. In order to 
calculate facility area ratio (FAR) in addition to the 
parameters originally introduced, we introduced one 
additional parameter: the Target Stayon.

Results and Discussion

The result are summarized in two parts: water 
balance terms and plant survivability terms [37]. The 
file also records the relative water content in each 

Input data High-density residential Low-density residential Commercial Industrial

Facility area (m2) 404.6856 404.6856 404.6856 404.6856

Tributary area (m2) 4046.85 4046.85 4046.85 4046.85

Percent impervious 56 53 53 83

Pervious CN 98 90 81 93

Regional AVE.ET (cm/day) 0.3302 0.3302 0.3302 0.3302

Simulation type Single event Single event Single event Single event

Rainfall distribution Type II Type II Type II Type II

Rainfall depth (cm) 4.70 4.70 4.70 4.70

Output file name RDM I
RDM II

RDR I
RDR II

C I
C II

I I
I II

Depresion zone depth (cm) 15.24 15.24 15.24 15.24

Root layer depth (cm) 60.96 60.96 60.96 60.96

Soil texture in root layer Sandy Loam Sandy Loam Sandy Loam Sandy Loam

Storage layer depth (cm) 30 30 30 30

Soil texture in storage layer Sand Sand Sand Sand

Native soil layer texture Clay Silty clay Sandy loam Clay

Native soil hydraulic conductivity (cm/hr) 0.2 0.09 5.58 0.42

Underdrain flow rate cm/hr
V1 - 0 V1 - 0 V1- 0 V1 - O

V2 – 0.43 V2 – 0.54 V2 – 0.15 V2 – 0.215

Target Stay-on (cm) - - - -

RDM I – High Density Residential Area without underdrain; RDM II – High Density Residential Area with underdrain; 
RDR I - Low Density Residential Area without Underdrain; RDR II - Low Density Residential Area with Underdrain; 
C I – Commercial area without underdrain; C II – Commercial area with underdrain; I I – Industrial area with underdrain; 
I II – Industrial area without underdrain

Table 1. Input data included in the RECARGA model; modelling variables for the 4 sites.
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layer expressed as a fraction of the overall soil volume 
occupied by water: ThetaRZ (rooting zone), ThetaSZ 
(storage zone), and ThetaCZ (native soil layer).

In the high-density residential area (RDM I) in 
the scenario of a bioretention cell without underdrain, 
the modelling performing RECARGA shows that  
the existing condition will cause a ponding time of  
69.5 hours (Table 2). In general, the ponding duration 
should be less than 24 hours after a storm event has 
ended. In the scenario with underdrain in the same area 
(RDM II) the ponding time will decrease substantially 
(Table 2). This will improve plant survivability 
conditions. The drawback is the decrease of stormwater 
runoff retained in the cell. 

In the case of the low-density residential area the 
results related to plant survivability conditions for a 
bioretention cell without underdrain (RDR I) shows 

that the ponding time exceeds the limit (Table 2).  
In the scenario with underdrain (RDR II), ponding  
time decreases from 69 to 47 hours (Table 2). The 
quantity of runoff retained in the cell decreases as in 
the case of a high-density residential area (Fig. 2). In the 
commercial area (C I) the values of the ponding time, of 
the retained runoff quantity, and of the recharge are very 
good in the case of a bioetention cell without underdrain 
(Figs 2-4). Using an underdrain for the bioretention 
cell from commercial area (C II) decreases ponding 
time from 22.75 hours to 21.25 hours (Table 2). In this 
case, the retained runoff (stayon) does not decrease 
significantly (Table 2).

In the industrial area for a bioretention cell without 
underdrain (II), the ponding time will reach a total  
of 58.25 hours (Table 2). Using an underdrain  
(scenario III), the ponding time decreases from 58.25 

Area/
underdrain

Hours ponded
Number of 
overflows

Tributary Runoff (cm)

Max. Total Precipitation
cm

Impervious runoff
cm

Pervious runoff
cm

RDM I 69.5 69.5 1 47 46.65 46.38

RDM II 47.25 47.25 1 47 46.65 46.3836

RDR I 69 69 1 47 46.95 43.775

RDR II 47 47 1 47 46.65 43.775

C I 22.75 22.75 0 47 46.65 40.53

C II 21.25 21.5 0 47 46.65 40.5361

I I 58.25 58.25 1 47 46.65 44.7811

I II 46.25 46.25 1 47 46.65 44.781

RDM I – High Density Residential Area without underdrain; RDM II – High Density Residential Area with underdrain; 
RDR I - Low Density Residential Area without Underdrain; RDR II - Low Density Residential Area with Underdrain; 
C I – Commercial area without underdrain; C II – Commercial area with underdrain; I I – Industrial area with underdrain; 
I II – Industrial area without underdrain

Table 2. Results: plant survivability conditions.

Fig. 2. Water balance in bioretention cell: runon, runoff and recharge.
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to 46.25 hours (see Table 2). The best results in terms 
of water balance in the bioretention cell have been 
observed in the case of the commercial area. The 
most problematic area (58.25 hours ponded) is high-

density residential (Figs 2-4), which is due to native soil 
hydraulic conductivity and texture (Table 1).

The hydrological functions of the bioretention cell 
are influenced by native soil type, the percentage of 

Fig. 5. Influence of hydraulic conductivity on ponding time.

Fig. 3. Water balance in bioretention cell: evapotranspiration.

Fig. 4. Water balance in bioretention cell: underdrain, soil moisture, and stay-on.
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impermeability of the treated area, and the index curve 
number. The results differ substantially depending on 
the characteristics of each site. The soil texture was one 
of the main variables that influenced the results obtained 
related to the bioretention cell efficient models for  
Cluj-Napoca. Native soil hydraulic conductivity 
affects the ponding time following a rainfall event. 
Ponding time is reduced with the increase of hydraulic 
conductivity (Fig. 5).

Discussion

 Ponding time for sites with reduced hydraulic 
conductivity of the native soil is high even in the 

condition of precipitation with lower runoff. Instead, 
detention of runoff in the cell increases from 8.11% 
to 54.72%. Le Coustumer et al. (2007) shows that 
the hydraulic conductivity of the soil layer decreases 
significantly during their first four weeks of the 
experiment, and then tends to have a constant value 
[38]. Bioretention can effectively reduce the impact 
of development on the hydrological regime in urban 
areas [39]. The existing research [40-43] indicates that 
hydrological performance of the bioretention systems 
is dependent largely on seasonal conditions. Dietz and 
Clausen [44] reported overflows for only 0.8% of the 
total runoff captured by the system. Similar results 
related to the importance of the native soil texture was 
obtained by Sun et al. [45]. 

Fig. 6.  (a) Facility Area Ratio – FAR; RDM I; (b) Facility Area Ratio – FAR. RDM II; (c) Facility Area Ratio – FAR. RDR I; (d) Facility 
Area Ratio – FAR. RDR II; (e) Facility Area Ratio – FAR. C I; (f) Facility Area Ratio – FAR. C II; (g) Facility Area Ratio – FAR. I I; (h) 
Facility Area Ratio – FAR. I II.
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The performance of one bioretention cell depends 
on the balance facility area-tributary area (facility 
area ratio, or FAR). The results show that the volume 
of the runoff decreases with the FAR increase (Fig. 6). 
FAR recorded a 5% increase when the bioretention  
cell surface increased from 10% to 15% of the tributary 
area. The same results were obtained in all studied  
sites. 

The depth of the ponding zone provides initial 
storage for the runoff volume, allowing the water 
to spread and infiltrate on the entire surface of the 
bioretention cell. Depths below 15 cm of the area 
leads to insufficient runoff spread over the entire 
surface, reducing the efficiency and output in the 
sedimentation in lower areas [46-47]. In the studied 
cases, a 15 cm depth is sufficient to meet the objectives 
of the bioretention cell. Considering the fact that 70% 
of stormwater runoff comes from 5 cm of precipitation, 
the models resulting for 47 mm precipitation provides 
effective function for the existing conditions in the four 
sites from Cluj-Napoca.

Increasing the thickness of the rooting zone for the 
bioretention cell modelled for the studied site, we have 
not observed notable changes in ponding time. The 
changes that have occurred with the change in value of 
this component refer to the amount of runoff retained in 
bioretention. It also noted a decrease of the facility rate. 
The underdrain reduces the ponding time and increases 
the amount of filtered water. In the performed modelling, 
the underdrain allows an additional volume of water 
to infiltrate through the rooting zone, reducing the 
maximum ponding time. According to research results 
and the literature, a minimum thickness of 60 cm of the 
rooting zone is efficient [48]. 

The ponding time has decreased and managed 
to be within the recommended limit to achieve the 
optimal conditions for plant survivability. Because the 
water flow through an underdrain is still considered 
runoff, adding an underdrain reduces ponding time but 
increases the amount of runoff removed from the cell. 
Results show that even in cases when the underdrain 
is not used, the ponding zone can increase the volume 
captured by the bioretention facility. We recommend 
the use of underdrains only in areas where the hydraulic 
conductivity of the native soil leads to a long period for 
ponding time. 

We entirely agree with Davis et al. that using 
an underdrain is still a technical debate between 
bioretention system designers. It is wrong to treat the 
bioretention cells strictly in terms of filtering and to 
use underdrains for all models [49-50]. This approach 
would contradict the fact that bioretention systems were 
originally designed as infiltration systems [51]. The 
results show that in a high-density residential area with 
clayey soil, a bioretention cell allows water infiltration 
even without an underdrain, but over a longer period of 
time [52]. In general, regardless of the areas included in 
the study and their characteristics, the results show that 
resulting bioretention models are effective in reducing 

the volume, and capturing and detaining stormwater 
runoff. The results are comparable to those obtained in 
similar studies [53-60].

Conclusions

Based on the existing conditions related to soil 
texture, we conclude that bioretention cells can be 
designed in the commercial area without underground 
drainage – with ponding time being optimal in both 
cases (with and without drain). Native soil hydraulic 
conductivity of the high-density residential, low-density 
residential, and industrial area with high-density area 
limits the bioretention cell functions. 

Adding an underdrain for the bioretention cell 
modelled for these areas is possible and the existing 
conditions do not limit the installation, taking into 
account the high degree of unevenness of soil. For 
the industrial area where the amounts of pollutants 
are higher than in other areas and the native soil 
hydraulic conductivity is low, we recommend installing 
bioretention cells based mainly on stormwater runoff 
filtration. 

To obtain relevant results in modelling of the 
bioretention systems for a given area, it is recommended 
to use correct data obtained from a detailed 
assessment of existing conditions that may influence 
the implementation (native soil texture, hydraulic 
conductivity, curve number index, the percentage of 
impervious surfaces, local weather conditions, and the 
degree of soil compaction). 

Locating facilities in areas whose soils favour 
bioretention functions leads to an improvement in 
performance. It is important to correctly dimension the 
bioretention cell based on the macro, meso, and micro-
areas. Attention must be directed toward increasing the 
capacity of infiltration of the pervious surfaces.
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