
Introduction

Human health is affected by all air pollution, but some 
emissions have more severe atmospheric conditions. In 
particular, carbon dioxide (CO2) and other pollutants, 
which contribute to global warming, have recently 
attracted attention, because CO2 is one of the most 
researched gases [1-2].

China has become the focus and main force of the 
world to shoulder the responsibility of reducing CO2 
emissions. China has produced the most carbon emissions 

in the world, and even in 2014 its total carbon emissions 
ran up to 11.5 billion tons – almost one third of the total 
emissions of the world. Undoubtedly, China’s carbon 
emissions are getting more and more attention from 
all over the world. However, the difficulty in reducing 
carbon emissions is the continuing existence of large 
demand due to rapid urbanization and industrialization. 
Thus, China is trying hard to mitigate its CO2 emissions.

The Yangtze River Economic Zone (YREZ) is one 
of the largest economic zones of the economic density 
in China. Both the proportion of population and GDP in 
the YREZ are more than 40 percent of the total number, 
and the CO2 emissions in this area take over more than 
one third of the total number. The YREZ, linking the 
mainland’s most developed core areas (the Chengdu 
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Chongqing and Wuhan regions), includes almost 
half of China’s hinterland. Thanks to the rich natural 
resources, solid industrial and manufacturing base, and 
comprehensive transportation system, this economic 
zone has developed into one of the strongest areas. 
Consequently, investigating the main influential factors 
of the YREZ’s CO2 emissions is of vital importance to 
develop appropriate policies pertaining to energy savings 
and emissions reduction.

Different methods of investigating CO2 emissions 
have been used by scholars worldwide [3-4], and they 
might be divided into four types.

The first method is index decomposition analysis. 
This classical approach mainly analyzes the factors 
that affect carbon emissions from the historical data, as 
well as the impact of various factors on CO2 emissions. 
Decomposition analysis was applied by Shahiduzzaman 
and Layton [5] to investigate the effect on CO2 emissions 
brought by economic changes in the United States, and 
it was concluded that economic structure contributed 
significantly to carbon emissions in the US. Based 
on Kaya factors,  Remuzgo and Sarabia [6] used the 
decomposition analysis method to study the international 
inequality in CO2 emissions and they decomposed the 
man-made carbon emissions into four factors: carbon 
intensity, electricity intensity, labor productivity, and 
employment rate. Using the divisia index (LMDI) 
decomposition method, Moutinho et al. [7] explored  
the influential factors of changes in CO2 emissions in 
four parts of Europe and concluded that energy structure 
is an essential driving force affecting carbon emissions. 
The same method was applied by Chen and Liang  
[8], who extended the change in China’s carbon 
emissions into twelve influencing factors, including 
energy intensity, energy structure, economic structure, 
labor productivity, and so on. Structural decomposition 
analysis, using the input-output theory and linkage 
analysis, was applied by Chang and Lahr [9] to explore 
changes in China’s production-source CO2  emissions. 
According to their empirical results, economic scale and 
energy intensity played dominant roles in the change of 
carbon emissions. 

The second approach is the bottom-up analysis. The 
input-output price method was used by Di Cosmo and 
Hyland [10] to simulate the impact of price increases 
of ETS allowance on the final commodity price. Three 
different environmental regulations were investigated 
in the study on how environmental regulations affect 
carbon emissions and energy intensity of China’s power 
plants [11]. In addition, taking Beijing as an example, how 
industrial structure potentially affects carbon emissions 
was investigated by Mi et al. [12]. The combination of 
the bottom-up model and the scenario analysis model 
was designed by Zhang et al. [13] to predict future carbon 
emissions and to estimate the reduction possibility of the 
primary aluminum industry in China. And the results 
indicated that a series of measures, such as controlling 
ore quality, could effectively mitigate CO2 emissions of 
industry in China.

The third method is system optimization. To 
investigate the impact of urbanization on energy structure 
and energy consumption, Li et al. [14] developed the 
urbanization-energy consumption-CO2 emissions system 
dynamic model with the system dynamics method.  
A multi-objective optimization model was introduced by 
Kang and Liu [15] to explore the impact of the heat pump 
on economic efficiency and CO2 emission reduction of 
the heat exchanger network. A bi-directional fixed effect 
model was constructed to study the impact of urban 
transportation on CO2 emissions in China [16]. Four 
assessment methods, including average amount of mixed 
electricity and marginal mixed power, were discussed 
and an optimizing energy system model was applied to 
predict the carbon emissions of Germany in 2030 [17]. 
Zhao et al.  [18] studied the carbon connection among 
different departments by combining the production 
model and the improved hypothesis extraction method. 

The last is econometric models. The ARDL model 
was applied by Sohag et al. [19] to explore the effect of 
Malaysia’s resident consumption structure on carbon 
emissions. The stochastic copula autoregressive model 
was used by Marimoutou and Soury [20] to study the 
impact of energy price on CO2 emissions. A cross-
section regression analysis was carried out between the 
emission reduction plan and the major indexes analyzed 
at the European level  [21]. The effect of Iran’s energy 
consumption structure on CO2 emissions was investigated 
and the technical and scale benefits of the manufacturer 
were explored using the data envelopment analysis 
model [22]. Based on the DEA model, the Malmquist 
index method was used by Lin and Fei [23] to assess the 
CO2 emissions associated with the agricultural sector in 
China. Using the STIRPAT dynamic model, Yuan et al. 
[24] explored the influential factors on CO2 emissions 
associated with energy in China. Dividing China’s  
30 provincial administrative units into three different 
levels of economic growth zones based on the per capita 
GDP, Wang and Zhao  [25] applied the Grey Forecast 
model in evaluating the impacts of CO2 emissions 
associated with energy. 

Though the driving factors of carbon emissions 
have been widely discussed, there are two differences 
between the present research and previous studies.  
The first is that existing literature has focused more  
on the national level and provincial level than a regional 
level, while the present paper focuses on the study  
of carbon emissions in a key economic zone and 
investigates the impacts of the influential factors on 
carbon emissions in the YREZ. The other is that linear 
models are adopted by most researchers to explore  
the relationship between CO2 emissions and the 
influencing factors, while in this article the vector 
autoregressive (VAR) model, taking nonlinear 
relationship among variables into consideration, is applied 
to explore the impacts of major influencing factors on 
CO2 emissions in the YREZ. The VAR model has been 
widely used by Lin and Xu [26-27] to investigate China’s 
CO2 emissions.
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Material and Methods

Data Source and Description

The annual observations on CO2 emissions, industrial 
structure, urbanization level, energy efficiency, and 
per capita GDP in the YREZ during 1985-2014 were 
selected in this article. All the data are obtained from 
the China Statistical Yearbook (1985-2015) and the 
provincial statistical yearbooks (1985-2015). Energy 
efficiency is obtained by dividing the total output by 
carbon consumption. Industrial structure is calculated as 
value-added of the second industry divide by local GDP. 
Urbanization level means the proportion of the urban 
population. The definitions and the statistical descriptions 
of the variables are shown in Tables 1 and 2.

According to the annual data of the variables, this 
paper analyzes their dynamic changes. As shown in 
Fig. 1, CO2 emissions, with an annual growth rate of 
8%, have been growing rapidly since 2002. Energy 
efficiency has a rapid growth rate thanks to the advance 
of modern science and technology. Overall, energy 
structure has been gradually optimized, and the share 
of coal consumption declined steadily from 86.37%  
in 1993 to 59.56% in 2014. Per capita GDP increased  
from 783 yuan in 1985 to 47,731 yuan in 2014, with  
a rapid average annual growth rate of 14.7%. Industrial 
structure presents a pattern of fluctuation, and the 
proportion of the second industry reached its peak 
(49.91%) in 2011. In addition, there has been a steady 
increase in urbanization level, with an average annual 
growth rate of 3.3%.   

VAR Model

The VAR model was first introduced by Sims [28]. 
It takes the form of multiple simultaneous equations, 
and the endogenous variables in each equation form 
a regression with the lagged values of all endogenous 
variables to estimate the dynamic relationships between 
all the endogenous variables. According to existing 
studies, it has been concluded that large amounts of 
dynamic relationships do exist between CO2 emissions 
and its influencing factors. Therefore, the VAR model is 
applied in the present paper to investigate the dynamic 
impacts of the driving factors on CO2 emissions in the 
YREZ.

The mathematical expression of general VAR model 
is as follows:

          
(1)

…where yt, (t = 1,... T) is a K × 1 vector, A is K × K 
aparametric matrix, xt is a vector of exogenous variable, 
and B is a K × M coefficients matrix to be estimated. μt 
represents the random error term.

It is a difficult and contradictory process to determine 
the lag length (p) when constructing a VAR model. If 
the selected lag period is too long, there would be too 
many parameters to estimate in the model, which might 
result in the decline of the freedom and the inefficiency 
of the model. On the contrary, if the lag period is too 

Variable Definition Unit

CE CO2 emissions in the YREZ 104tons

GDP Per capita GDP in the YREZ 104yuan

ENE Energy efficiency in the YREZ Tce per percent

URB Urbanization level in the YREZ Percent

INS Industrial structure in the YREZ Percent

ENS Energy structure in the YREZ Percent

Table 1. Definition of relevant variables.

Variable Unit Mean Std. dev. Min Max

CE 104 tons 105152.3 61846.13 38086.29 219318.9

GDP 104 yuan 1.2901 1.399 0.0783 4.7731

ENE Tce per percent 7309.374 4778.021 1362.891 18172.48

URB Percent 30.0812 8.8539 17.5643 46.2156

INS Percent 46.1126 2.115 42.3278 49.9095

ENS percent 71.4009 7.0935 59.5561 86.3685

Table 2. Statistical description of the variables.
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short, the residual might not reach the white noise and 
the results could cause biased estimates. Therefore, there 
is a need to reach a balance between lag periods and 
degree of freedom. The Swartz Criteria (SC) and Akaike 
information criterion (AIC) are usually used to help 
determine a proper lag period. The formula of the two 
statistics can be expressed as follows:

                 (2)

              (3)

               
(4)

…where l represents a logarithmic likelihood function, 
k is the number of parameters to be estimated, and n 
indicates the number of observations.

Model Specification

The IPAT identity (I = PAT) is often used to investigate 
the effects of the different factors driving environmental 
pollution:

TAPI ⋅⋅=                            (5)

Dietz and Rosa [29] proposed the STIRPAT model 
based on the IPAT model, the model can be expressed 
as follows:

Fig. 1. Trends of CO2 emissions, energy efficiency, energy structure, per capita GDP, industrial structure, and urbanization level, 
1985-2014.
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                          (6)

The definitions of the variables are shown in Table 3.
In order to avoid the possibility of heteroscedasticity, 

all the variables take a logarithmic form, and Eq. (10) can 
be written as:

      (7)

In order to analyze the influences of the driving 
forces on CO2 emissions in the YREZ, Eq. (7) can be 
rewritten as:

 (8)

To further the study of the driving forces of the 
YREZ’s CO2 emissions, the model was expanded by 
adding URB, INS, and ENS to the model. Firstly, city 
is the center of population, transportation, construction, 
and industry. Urban areas and the rapid progress of 
industrialization and technology are leading to serious 
air pollution in urban areas [30-32]. The urbanization 
level in the YREZ increased from 17.6% in 1985 to 
46.2% in 2014. An increasing urban population needs 
large amounts of urban housing and infrastructure and 

will result in an increase in CO2 emissions. Therefore, it 
is essential to introduce URB into the model. Secondly, 
the second industry includes a majority of high energy-
consuming industries. It is definitely that the proportion 
of the second industry has a positive impact on CO2 
emissions. Hence, INS is introduced into the model. 
Thirdly, as a major energy-consuming country in the 
world, China uses coal as its main energy source. Large 
amounts of coal use can lead for a significant increase in 
carbon emissions. Accordingly, the ENS is also involved 
in the model.

The expanded econometric model of CO2 emissions 
in the YREZ is as follows:

       

 
(9)

Results and Discussion

Unit Root Test

Time series analysis usually requires a stable  
sequence so that there is no existence of a stochastic 
trend or accurate trend. However, the majority of the 
time series might not be stationary, which may possibly 
result in biased analysis. The unit root test is used to test 
whether the variables have unit roots. Table 4 presents  
the findings of the different variables. The results  
indicate that none of the time series above is a stationary 
sequence. To address this issue, the first-order difference 
method is applied to change the time series into a 
stationary one. Test results of the first-order differential 
form are shown in Table 5. Data in Table 5 indicate that 
all the variables can reject the null hypothesis at different 
significance levels. This provides us with strong evidence 
to accept the conclusion that the first-order difference 
sequences are stationary, and the co-integration test can 
be proceed.

Variable Definition

I the emission level of a pollutant

P The size of the population

A a country’s affluence

T technological progress

a the intercept term

b, c, d the elasticities of environmental 
impacts of P, A and T respectively

ξ The random disturbance

Table 3. Definition of relevant variables in the model.

Series
ADF DFGLS KPSS

Intercept Intercept
and trend Intercept Intercept

and trend Intercept Intercept
and trend

Levels

CE -1.5311 -2.0089 -2.0397** -2.4186 0.5798** 0.1320*

GDP -1.7895 0.0499 -1.7797 -3.4723** 0.5701** 0.1689**

ENE 3.6875 -1.9344 1.2281 0.2684 0.5869** 0.1560**

URB 1.8214 -3.7071* -0.2769 -2.2160 0.6098** 0.1581**

INS -1.6846 -2.4726 -1.6486* -1.7642 0.4355* 0.161

ENS -0.5774 -2.4383 -0.6404 -2.6146 0.5399** 0.1005

***, **, * denote the null hypothesis of a unit root is rejected receptively at the 1%, 5%, and 10% significance levels

Table 4. Results of unit root test of all the variables.
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Johansen Co-Integration Test

The co-integration test determines whether a set 
of non-stationary linear combinations have a stable 
equilibrium relationship. The Johansen test is a test 
of regression coefficient based on the VAR model and  
a test for multivariate co-integration. Table 6 presents  

the results of the Johansen test, which includes both the 
trace statistic and the max-eigen statistic. Trace test and 
max-eigenvalue test both indicate one co-integration 
equation at the 0.05 level. Thus, it is reasonable to 
conclude that there is only one co-integration equation 
among the variables.

Hypothesized No. of CE(s) Eigenvalue Trace statistic 0.05 Critical value Prob.**

None* 0.9108 125.8897 95.7537 0.0001

At most 1 0.5549 60.6397 69.8189 0.2162

At most 2 0.4643 38.7826 47.8561 0.2690

At most 3 0.3009 21.9310 29.7971 0.3023

At most 4 0.2430 12.2660 15.4948 0.1446

At most 5 0.1613 3.8415 4.7485 0.1293

Hypothesized No. of CE(s) Eigenvalue Max-Eigen statistic 0.05 Critical value Prob.**

None* 0.9108 65.2550 40.0776 0.0000

At most 1 0.5549 21.8571 33.8769 0.6187

At most 2 0.4643 16.8516 27.5843 0.5927

At most 3 0.3009 9.6651 21.1316 0.7754

At most 4 0.2430 7.5181 14.2646 0.4298

At most 5 0.1613 3.8415 4.7478 0.1293

* denotes rejection of the hypothesis at the 0.05 level
** mackinnon-haug-michelis (1999) p-values.

Table 6. Johansen co-integration test.

Lag LogL LR FPE AIC SC HQ

0 397.6888 NA 3.31e-21 -30.1299 -29.8396 -30.0463

1 446.9941 72.0617 1.29e-21 -31.1534 -29.1211 -30.5682

2 504.4972 57.5031 4.11e-22 -32.8075 -29.0332 -31.7206

3 596.1465 49.3496* 3.45e-23* -37.0882* -31.5719* -35.4997*

Table 7. Lag selection criteria.

Series
ADF DFGLS KPSS

Intercept Intercept
and trend Intercept Intercept

and trend Intercept Intercept
and trend

Frist 
difference

CE -3.4032*** -3.3243** -1.6081* -3.4649*** 0.0971*** 0.0841***

GDP -3.0592** -3.3605** -2.6995* -3.2787** 0.1067*** 0.0580***

ENE -3.4266** -3.7630** -3.3211*** -3.688** 0.2167*** 0.0998***

URB -4.5549*** -4.5415*** -6.0825*** -4.6814*** 0.2201*** 0.1380**

INS -3.6972*** -3.6256** -3.3665*** -3.6832** 0.0829*** 0.0834***

ENS -5.7862*** -5.8304*** -5.4361*** -5.9109*** 0.0230*** 0.1338**

***, **,* are the same as for Table A1

Table 5. Results of unit root test of variables in first-order difference.
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Optimal Lag Order Selection

To make the conclusion of the model more  
convincing, it is of vital importance to coordinate  
the lag order and the degree of freedom. Table 7 
shows the results of lag order selection under different  
criteria. “*” suggests lag order chosen by the 
corresponding criteria. Finally, 3 is selected as the 
optimal lag order.

VAR Specifications and Estimates

Taking all the relevant variables into account,  
the VAR model of the CO2 emissions in the YREZ 
is constructed. Based on the criteria of AIC and SC,  
the estimates with their t-values and the standard  
errors of the model are presented in Table 8. It can be 
concluded that most of the t-values are significant,  

Fig. 3. Responses of the Yangtze River Economic Zone’s CO2 emissions to its driving factors.

Fig. 2. VAR roots of characteristic polynomial.
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and the equation has high R2 of 0.9982 and high adjusted 
R2 of 0.9941.

AR Roots Test

The VAR model’s stability requires that the reciprocal 
of the characteristic roots is less than 1. This implies  

that all the characteristic roots should be within the 
unit circle. The result of the AR root test is presented 
in Fig. 2. There is no root located outside the unit circle, 
which implies that the estimated VAR model meets the 
stability test. The adoption of the stability test ensures 
the following analysis based on the VAR model is more 
convincing and more effective.

Period S.E. LNCE LNENE LNENS LNGDP LNINS LNURB

1 0.04159 100.0000 0.0000 0.0000 0.00000 0.0000 0.0000

2 0.04644 98.7066 0.0250 0.7424 0.3129 0.2118 0.0012

3 0.05256 95.7855 2.3760 0.8034 0.5906 0.4426 0.0020

4 0.06137 94.6877 3.4786 0.6427 0.7661 0.3614 0.0636

5 0.06926 78.5998 17.8354 1.4430 1.0235 0.9474 0.1510

6 0.07729 64.1503 10.0272 12.0819 1.5245 1.6173 10.5988

7 0.08396 54.7283 17.8684 12.1377 2.2860 1.5854 11.3943

8 0.08952 48.1442 22.0685 12.8986 3.7235 1.4115 11.7537

9 0.09141 46.2336 22.4531 13.7223 4.4746 1.3645 11.7518

10 0.09189 46.2214 22.0116 14.0211 4.6382 1.3718 11.7360

Table 9. Estimates from variance decomposition.

LNCE(-1)

-0.8441

LNENE(-1)

-1.5185

LNENS(-1)

0.0982

(4.2612) (3.4708) (0.4513)

[-0.1981] [-0.4375] [0.2176]

LNCE(-2)

0.0106

LNENE(-2)

6.2851

LNENS(-2)

0.1752

(5.3244) (4.6134) (0.2142)

[0.0020] [1.3624] [0.8177]

LNCE(-3)

3.3027

LNENE(-3)

-2.5370

LNENS(-3)

-2.5370

(5.4277) (4.4127) (4.4127)

[0.6085] [-0.5749] [-0.5749]

LNGDP(-1)

4.2402

LNURB(-1)

-0.3746

LNINS(-1)

0.0402

(3.6689) (0.2093) (1.0092)

[1.1557] [-1.7893] [0.0398]

LNGDP(-2)

-7.0139

LNURB(-2)

-0.5551

LNINS(-2)

-0.8827

(4.9814) (0.2642) (1.0680)

[-1.4080] [-2.1013] [-0.8266]

LNGDP(-3)

0.4504

LNURB(-3)

-0.0625

LNINS(-3)

2.6615

(4.7603) (0.3626) (1.9440)

[0.0946] [-0.1725] [1.3691]

C

22.6623 R2 0.9982 SC -2.4189

(15.8407) Adj_R2 0.9941 AIC -3.3308

[1.4306] SSR 0.014 SC -2.4189

Table 8. Vector autoregression estimates.
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Impulse-Response Function

The impulse-response function is to find out the 
dynamic effects of the independent variables on the 
dependent variables. This methodology is used to present 
the response of one endogenous variable to an impact 
caused by an error term. Fig. 3 presents the responses 
of CO2 emissions in the YREZ to the influencing 
factors – both short term and in the long run. One 
standard deviation shock to energy efficiency (ENE) 
increases carbon emissions briefly for about 4 years and 
then there is a negative response in the long run. One 
standard deviation shock to energy structure (ENS) 
seems to increase carbon emissions both in the short and 
long terms. CO2 emission shows a small fluctuation in 
economic growth (LNGDP). In the early 2 years it has a 
negative impact but a positive response in the late years. 
One standard deviation shock to industrial structure 
(LNINS) seems to raise CO2 emissions in the short term, 
but the impact will gradually be reduced and finally 
has a small opposite effect in the long run. The impulse 
response of the carbon emissions to urbanization level 
(LNURB) indicates that one standard deviation shock to 
URB tends to raise CO2 emissions both in the short and 
long terms, but finally the impact will be very weak. 

Variance Decomposition

Variance decomposition is used to describe the 
proportion of error variance of different impacting factors 
of carbon emissions in the YREZ. It is a description of the 
relative effect that can explain the contribution of each 
variable to the system variable. The results of variance 
decomposition are presented in Table 9. For the YREZ’s 
carbon emissions, energy efficiency shock is the most 
important factor in explaining its variability. In the third 
period, energy efficiency shock accounts for around 2.5% 
of the forecast error variance and rises to 22% over the 
long term. The impact of energy structure ranks second. 
In the short term, the impact of energy structure is less 
than 1% of the predicted variance, while it reaches to 14% 
at long horizons. This is different from Lin’s research 
[26], which suggested that energy structure shock would 
not play a crucial part in affecting carbon emissions. 
The next relative significant contributor is urbanization 
shock. Although the percentage of its predicted variance 
is far less than 1% in the short term, the number rises to 
11% in the long run. However, economic progress and 
industrial structure shock account for around 4% and 1% 
of the predicted variance in the long run, respectively. 
This indicates that neither of them is a significant factor 
affecting carbon emissions in the YREZ.

Conclusions

According to time series data from 1985 to 2014, the 
present paper investigated the impacting factors of CO2 
emissions in China’s YREZ based on the VAR model.  

It can be concluded from the results that energy efficiency, 
energy structure, and urbanization level are three key 
elements for reducing CO2 emissions. These empirical 
results are crucial for policy makers of the YREZ, and 
the following policy recommendations might be helpful. 

First, promote energy-saving technology research 
and improve energy efficiency. Priority should be 
given to research and the application of energy-saving 
technologies and emission reduction technologies. On 
the one hand, control the development of high-energy 
consuming industries. Including the energy-saving 
targets into the comprehensive evaluation of economic 
and social development and the annual assessment system 
would effectively improve the energy efficiency of high 
energy consuming industries. On the other hand, the 
government should increase the investment of advanced 
energy-saving technologies. By formulating fiscal 
policies, such as subsidizing related research institutions 
and enterprises, the government can encourage them to 
participate in the research and development of low carbon 
dioxide emission techniques. Moreover, it is necessary 
to strengthen technical exchanges with developed 
countries and introduce advanced foreign technologies 
of clean energy, such as clean coal technology and 
clean development mechanisms.  Secondary combustion 
technology of exhaust gas and CO2 recycling technology 
are two technologies under vigorous development that can 
significantly mitigate energy consumption. Government 
should encourage the R&D and use of these kinds of 
technologies.

Second, reduce the percentage of coal consumption to 
optimize the energy structure. Government should adopt 
targeted measures such as expanding the use of natural 
gas, hydropower, and nuclear power to optimize energy 
structure. In the first place, the central government is 
supposed to speed up the approval and construction of 
nuclear power plants, and strictly control the size and 
number of thermal power plants.  Nuclear energy is a 
clean and pollution-free energy source, so expanding 
nuclear energy production and consumption will 
significantly reduce coal consumption. In addition, with 
the development of science and technology, bio-energy 
has gradually become an important source of renewable 
energy consumption. Moreover, the government ought 
to gradually release coal prices to connect with the 
international market. This will encourage the related 
enterprises to seek ways to improve productivity, thereby 
reducing coal consumption and carbon emissions.

Third, a series of measures should be adopted to 
minimize the increase in carbon emissions due to the 
high-speed urbanization process. In the first place, 
increasing urban populations mean more demands for 
urban housing and infrastructure, resulting in a large 
demand for energy-intensive products such as steel, 
cement machinery, and other manufactured products. 
Therefore, the government should encourage the use 
of energy-efficient building materials and low carbon 
chemical materials. In addition, the large-scale use of 
motor vehicles in urban areas consumes a large amount 
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of fossil fuels. Thus, in order to control the emissions 
from transport at source, R&D and use of bio-fuels, 
waste oil, and pure electric vehicles must be supported 
and encouraged. Moreover, residents should be directed 
to low-carbon consumption patterns in order to reduce 
the energy consumption intensity of family life. Keeping 
in line with the “three Es” (economic, ecological, and 
equitable) and “three Rs”(reduce, reuse, and recycle) 
makes great sense in realizing green consumption. 

Finally, reduce the proportion of the second industry 
and vigorously develop the tertiary industry to optimize 
the industrial structure. On the one hand, efforts should 
be made to integrate resources of high-emission heavy 
industries. Corresponding government authorities are 
supposed to take decisive measures to adjust industrial 
structure by shutting off or combining energy-intensive, 
high-polluting small steel mill, oil refineries, and 
chemical plants. On the other hand, carbon emission of the 
tertiary industry is much lower than that of the secondary 
industry. Therefore, industrial structure optimization, 
especially the restructuring of the tertiary industry,  
is key for CO2 emissions reduction. Thus, governments 
at all levels should intensify nurturing tertiary 
industry such as the financial services and information  
technology services industries, and increase its  
proportion in the industrial structure. Policy makers 
have to keep an eye on accelerating the optimization  
and upgrading of industrial structure as well as investing 
more in high-tech industries instead of traditional 
industries. 
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