
Introduction 

“Land degradation” is a composite term referring to 
a loss in productivity and land resources, such as soil, 
water, and biodiversity [1-2]. The term is often used 
interchangeably with “soil degradation,” and the two 
are closely linked because soil degradation processes 

constitute the most significant land-degradation 
processes. Degraded soil must be understood as the 
failure of all or some of the soil functions [3], such as the 
filtration of water [4] and retaining vegetation [5].

Estimating soil quality or degradation depends on 
a large number of physical, chemical, biological, and 
biochemical properties. It is very important to choose 
indicators that respond rapidly to changes in environ-
mental factors. The microbiological and biochemical 
properties of soils are known to be very sensitive 
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Abstract
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indicators of soil quality or degradation [6-7]. There 
is a direct relationship between soil microbiological 
and biochemical properties, and that soil function and 
sustainability, and suitable microbial activity is required 
to maintain soil quality. 

Iran, with an area of 1.64 million square kilometers, 
is located in the arid and semi-arid zone. Approximately 
73% of the country has an arid and semiarid climate 
[8], which is vulnerable to land degradation and, in 
consequence, desertification due to the increasing 
population pressure on the land due to grazing and the 
consumption of water resources [9]. While the quality of 
a soil is related to its physical, chemical, and biological 
properties, only physical processes and the biology of 
soil flora and fauna have been relatively well studied in 
the semiarid areas of Iran [10-14]. Knowledge about soil 
microbial properties remains unclear and fragmentary in 
these semiarid areas [15-16]. The purpose of this study 
was to determine and compare the effects of site, season, 
and grazing on microbial population size (bacteria 
and fungi), microbial biomass carbon (MBC), and 
dehydrogenase activity, as a general index for microbial 

activity, over two seasons in two semiarid areas located 
in Khabar National Park and Ruchun Wildlife Refuge, 
Kerman province, Iran.

Material and methods

Study area and soil sampling

The studied area is located in the center of Iran within 
the semiarid steppe region of Khabr National Park and 
Ruchun Wildlife Refuge (Fig. 1). This national park 
extends from 28°28´ to 28°58´ N and from 56˚02´ to 
56°38´ E. The mean annual temperature ranges between 
17.5 and 21.0ºC, and precipitation ranges between  
200 and 350 mm per year. Initially, two plots in cold sites 
and two plots in warm sites were selected. The altitude 
of the warm sites is 1,707 m a.s.l and is dominated  
by Artemisia siberi. The cold sites have an altitude 
of 2,365 m a.s.l. The ecosystem at the cold sites is 
dominated by Stipa hassknechti and A. siberi. At both the 
cold and warm sites, grazed and not-grazed areas were 

Fig. 1. Khabr National Park and Ruchun Wildlife Refuge in Baft, Kerman province, Iran.

Fig. 2. Precise location of grazed and not-grazed areas in cold sites (left) and warn sites (right). 
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selected (Fig. 2). Thus, in the analysis, four treatments 
were considered as follows: (1) cold grazed (CG), (2) cold 
not-grazed (CNG), (3) warm grazed (WG), and (4) warm 
not-grazed (WNG).

Soil sampling was performed from a plot area of 
100×100 m for the four mentioned treatments in the 
spring and autumn. Eight composite soil samples were 
collected from the top 10 cm of soil for each treatment, 
sieved (2 mm mesh) to remove plant tissues, and kept at 
4°C until further analysis. The soil texture was sandy 
loam with an average of 10% clay, 30% silt, and 60% 
sand. The soil’s chemical properties (pH, electrical 
conductivity, total nitrogen, available phosphorous, 
extractable potassium, soil organic carbon, soil organic 
matter, and soil moisture) were measured according to 
standards methods of soil analysis.

Bacteria and fungi count

The plate count method was used to estimate the 
number of aerobic heterotrophic bacteria and filamentous 
fungi. Ten grams of fresh soil sample were added to 
90 ml of 0.9% (w/v) sodium chloride solution. After 
homogenization for 30 min, this solution was decimally 
diluted (10−1 to 10−7), and 0.1 ml of the resulting solution 
was plated on suitable media and spread uniformly. 
Nutrient Agar (MERCK) and Saburo Dextrose Agar 
(MERCK) were used for culturing aerobic heterotrophic 
bacteria and filamentous fungi, respectively. The 
incubation time for bacteria and fungi was 3 and 4 days, 
respectively. Each dilution was plated in duplicate, and 
the population was expressed as the number of colony-
forming units (CFUs) per 1 g of oven-dried soil [17]. 

Microbial biomass carbon 

The microbial biomass carbon (MBC) was estimated 
via the chloroform fumigation-extraction method.  
The fumigated and non-fumigated soils (equivalent  
to 10 g of oven-dried soil) were extracted with K2SO4 

(0.5 M) solution and filtered. The MBC in the extract  
was determined via the wet oxidation-titration method 
[18].

Dehydrogenase activity 

Dehydrogenase activity was determined based on a 
method described by Schinner et al. [19]. Briefly, 5 g of 
moist soil were weighed in glass vials and treated with 
2.5 ml of 1% triphenyltetrazolium chloride (TTC)-Tris 
buffer. The suspensions were then incubated in the dark 
at 25ºC for 16 h. After incubation, the triphenylformazan 
(TPF) was extracted with acetone and estimated 
colorimetrically. All measurements were carried out in 
triplicate with one blank.

Statistical analysis

The measured properties were subjected to analysis 
of variance (ANOVA), and the means were compared  
via the least significant difference (LSD) test (p<0.05). 

Results and discussion 

In this study, soil variables, including chemical 
properties, microbial count, microbial biomass carbon 
and dehydrogenase activity, were measured to determine 
the effects of site, season and grazing. There were 
significant effect on the part of site and season on soil 
chemical and microbial properties and dehydrogenase 
activity. Grazing affected soil microbial properties  
and dehydrogenase activity, but not soil chemical 
properties. 

Soil chemical properties

Table 1 summarizes the chemical properties of the 
soils. There were significant effects on the part of site and 
season on soil chemical properties. Although the values 

Site Season Grazing

Chemical Properties Cold Warm Autumn Spring Not-grazed Grazed 

pH 1:2.5 water soluble 7.75a 7.85a 8.3b 7.9 a 8.75a 7.852a

Electrical Conductivity 99.66a 100.57a 99.62a 100.26a 100.02b 99.85a

Total Nitrogen (%) 0.083a 0.051b 0.071a 0.062b 0.074 a 0.078 a

Available Phosphorous (mg/kg) 35a 35.05b 31b 34a 33.1 a 34.2 a

Extractable Potassium (mg/kg) 237.59a 183.44b 223.92a 202.72b 220.35a 224.11a

Soil Organic Carbon (%) 0.65a 0.29b 0.39a 0.45a 0.51a 0.55 a

Soil Organic Matter (%) 1.11a 0.49b 0.67a 0.77a 0.87 a 0.94 a

Soil Moisture (% ) 4.44a 1.32b 4.83a 0.93b 3.02 a 3.12a

Soil organic matter (%) calculated by soil organic C% × 1.72. Different letters show significant difference determined by LSD test 
(p<0.05).

Table 1. Mean comparison among site, season and grazing treatments. 
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of the soil chemical properties were higher in the grazed 
area as compared to the not-grazed  area, the observed 
differences were not statistically significant (Table 1). 

Soil pH and electrical conductivity (EC) are the 
principal indicators of the chemical characteristics 
of a particular soil, playing a significant role in soil 
biogeochemical processes, the solubility of soil nutrients, 
plant growth, and microbial and enzyme activity in the 
soil [20-21]. Soil showed alkaline reaction, which are 
normally found in arid/semiarid regions because little 
leaching and high evaporation causes ions to concentrate 
in the soil. Our results indicate that pH and electrical 
conductivity did not change easily due to site and grazing 
effects, as is supported by other studies [22-23]. The 
low pH values of the spring samples may be explained 
by production of CO2 via more active plant roots and 
bacteria, which can temporarily lower the pH value of 
natural soils [24-25].

Total nitrogen (TN), available phosphorous (AP), 
extractable potassium (EK), soil organic carbon (SOC), 
and soil organic matter (SOM) are used as important 
indicators of soil quality [26-27]. Regardless of season,  
at the cold sites, the values of TN, AP, EK, SOC, SOM, 
and soil moisture were higher than at the warm sites  
(Table 1). The higher TN, AP, EK, SOC, and SOM 
values at the cold sites (Table 1) may be attributed to 
their increased plant cover, which adds nutrients to 
the soil. In addition, there is some evidence that plant 
cover decreases nutrient loss from the soil as well [28]. 
The soil organic carbon threshold for sustaining soil 
quality is widely suggested to be about 2%, below which 
potentially a serious decline in soil quality will occur 
[29]. The studied sites had low soil quality based on their 
SOC content (less than 2%). The lower SOC values at 
warm sites as compared to cold sites likely result from 
the faster turnover of organic carbon and the negative 
correlation between temperature and soil organic carbon 
[30].

There was no temporal variation in SOC, but TN, 
AP, and EK changed seasonally (Table 1). The temporal 
alteration of AP occurred differently than that of total 
nitrogen and EK. Plants uptake more phosphorous  
with increasing temperature [31], thus depleting the 
available phosphorus in the soil from spring to autumn, 
which is in accordance with our results. In the spring, 
the observed reductions in the amounts of TN and EK 
may be related to the higher demands on the part of the 
soil biological community due to its metabolic activity. 

In addition, the higher levels of TN seen in autumn can 
be related to the increased activity of nitrogen fixing 
bacteria [32]. The observed seasonal differences in soil 
nutrients are due to changes in soil pH, moisture, and 
temperature as well [33].

Soil microbial population count 

Soil microbial communities are primarily 
composed of bacteria and fungi. Changes in soil 
bacteria and fungi are expected to affect soil fertility 
and productivity [34]. The effects of site, season and 
grazing were significant (p<0.05) on both bacterial and 
fungal counts. The bacterial CFUs/g soil ranged from 
5.68×105 at cold sites to 2.73×104 at warm sites, from 
5.25×105  in spring samples to 4.30×105 in autumn 
samples, and from 2.66×105 at not-grazed areas to 
3.27×105 at grazed areas (Table 2). Regardless of season 
and grazing, increased bacterial counts were detected  
in the soil from the cold sites (Table 2). The fungal 
CFUs/g soil varied from 5.43×103 at the cold sites to 
2.33×103 at the warm sites, from 3.45×103 in spring 
samples to 2.55×105 in autumn samples, and from 
3.35×103 in not-grazed areas to 4.41×103 in grazed areas 
(Table 2). This value was increased for cold sites, spring 
samples, and not-grazed areas as compared to warm 
sites, autumn samples, and not-grazed areas, respectively.  
The increased microbial population size at cold sites  
may be related to their increased organic matter, plant 
cover, and moisture (Table 1), which all affect microbial 
growth [35-36]. Our findings regarding increased  
bacterial counts in not-grazed areas are supported by 
Anguita et al. [37]. However, some reports stand in 
contrast with our findings. Increased bacterial and  
fungal counts have been reported in intensively grazed 
areas, indicating that intensive grazing favors the 
proliferation of bacteria and fungi due to the increase 
of organic matter caused by animal excreta [38-39]. The 
lower fungal CFUs/g values seen in our study may be 
explained by the higher soil pH (Table 1), which is not 
favorable for fungal growth [39].

Microbial biomass carbon 

Soil microbial biomass (MBC) plays a crucial 
role in nutrient cycling and is a sensitive indicator of 
the dynamics of the soil C and N cycles. Among the 
microbiological indicators of soil quality, microbial 

Table 2. Mean comparison among sites, sampling times, and grazing on soil microbial properties. 

Site Season Grazing

Microbial  Properties Cold Warm Spring Autumn Grazed Not-Grazed 

Bacterial Count (CFU/g soil) 5. 68×105 a 2.55×104 b 5.25×105 a 4.3×105 b 2.66×105 b 3.27×105 a

Fungal Count (CFU/g soil) 5.43×103 a 2.33×103 b 3.45×103 a 2.55×103 b 3.35×103 b 4.41×103 a

Microbial Biomass Carbon (µg/g soil) 713.98 a 516.96 b 645.12 a 522.15 b 755.519 a 475.44 b

Different letters show significant difference determined by LSD test at P<0.05 level.  
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biomass carbon (MBC) is one of the most promising 
and most commonly used due to its higher sensitivity as 
compared to physical and chemical properties, including 
soil organic carbon [40-41]. In addition, soil microbial 
biomass is an important indicator of soil fertility in 
soil ecological studies and sustainable environmental 
management [42-43]. 

The analysis of the microbial biomass carbon (MBC) 
data showed the significant effects on the part of site, 
season, and grazing on MBC value. MBC value was 
significantly higher for cold sites, spring samples and 
grazed areas than for warm sites, autumn samples, and 
not-grazed areas, respectively (Table 2). The higher MBC 
values at the cold sites represent an advantage in terms 
of maintaining soil quality. Thus, it has been proved 
that MBC values are affected by various environmental 
parameters. The effects of organic matter, temperature, 
moisture content, and pH on soil microbial biomass value 
have been reported [44-45]. The increased microbial 
biomass at cold sites can be explained by their increased 
plant cover, resulting in the increased accumulation 
of litter and fine roots at the cold sites as compared to 
warm sites. Many studies indicate the effect of plant 
cover density and plant diversity on MBC [46]. The 
increased organic matter inputs from plant litter and 
root exudates may have enhanced the rate of MBC 
production at the cold sites via the improved growth 
of microbial populations and the accumulation of C 
in the microbial biomass [47]. In addition, the positive 
correlations between total nitrogen and soil organic 
C and MBC have been proven in many studies [35-36, 
48], which could explain the increased MBC at the cold 
sites as well (Table 1). Soil moisture is another important 
factor in microbial biomass values in soil [49-50]. The 
increased MBC observed in the soils taken from the cold 
sites may be related to the increased moisture at the cold 
sites (Table 1). Although some studies that have found 
no significant relationship between soil water content and 
microbial biomass carbon [51-52], other studies are in 
agreement with our findings, indicating increased MBC 
values as soil water content increases [53-54]. We also 
found increased MBC values in grazed areas, potentially 
due to the addition of organic matter via animal excreta 
and thus improved microbial growth. The soil microbial 
biomass response to grazing by livestock or other large 
animals is not constant and has been reported to increase 
or decrease in response to grazing [55]. Increased MBC 
values have been reported in areas with low grazing 
intensity [35], which supports our findings. It seems the 
effect of grazing depends on grazing intensity. Heavy 
grazing destroys the soil structure, disturbing microbial 
growth and the metabolism of microorganisms and thus 
decreasing MBC values [56-58].

Dehydrogenase Activity (DHA)

Dehydrogenases are intracellular enzymes involved 
in the oxidative processes of viable microbial cells. 
Therefore, their activity is considered a measure of overall 

soil microbial activity and microbiological quality of soils 
[59-60]. Generally, these enzyme activities in the soil  
are closely related to organic matter content in the soil  
[61-62]. Our results indicated more dehydrogenase  
activity for the cold sites, spring samples, and grazed  
areas as compared to the warm sites, autumn samples, 
and not-grazed areas (Table 2 and Fig. 3). Generally, 
the enzyme activities in the soil were closely related 
to organic matter content, indicating greater biological 
activity in the soil and the stabilization of extracellular 
enzymes through complexation with humic substances 
[63]. The increased dehydrogenase activity at the cold 
sites may be explained by the increased organic matter 
and moisture (Table 1) at the cold sites, which is in 
agreement with other studies [64-66].

Variation in dehydrogenase activity was observed, 
with increased dehydrogenase activity being seen 
in the spring samples. Seasonal changes in enzyme 
activities are not entirely understood and depend on 
numerous factors, such as aeration, soil moisture, 
soil temperature, flora, and microflora [67]. Seasonal 
variation in dehydrogenase activity has been reported  
by others [68-69], which is in agreement with our 
findings. Higher levels of dehydrogenase activity in the 
spring is due to the better environmental conditions for 
microbial activity, especially temperature and moisture, 
in the spring, favoring the active proliferation of microbes 
as compared to autumn [70].

There was more dehydrogenase activity in the grazed 
areas as compared to the not-grazed areas (Table 2) due 
to the increased microbial biomass in the grazed area 
[50]. There are inconsistent results regarding the effect 
of grazing on dehydrogenase activity. Reductions of 
dehydrogenase activity have been reported with increased 
stocking rates in arid grazed areas [71-72], while others 
have reported increases or no change in dehydrogenase 
activity in the grazed area [73]. It seems that grazing 
intensity determines grazing effect on dehydrogenase 
activity.

Fig. 3. Dehydrogenase activity in soil of different sites during 
different seasons and under grazing treatment; different letters in 
each treatment show significant differences determined by LSD 
test at p<.05 level; a, A, A´ indicate more dehydrogenase activity 
at the cold site, spring samples, and the grazed area as compared 
to warm sites (b), autumn samples (B), and the not-grazed area 
(B´), respectively.
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Conclusion 

We have concluded that microbial biomass, the 
abundance of bacteria and fungi, and dehydrogenase 
activity in the surface soil were strongly influenced by 
various environmental factors, including organic matter, 
moisture, and plant cover. Grazing affected only soil 
microbial properties, indicating the greater sensitivity of 
these properties when used in soil monitoring. Based on 
the chemical and microbial properties and dehydrogenase 
activity, the quality of the soil at the warm sites is lower, 
and these warm sites are at risk of losing their function 
and becoming degraded. The warm sites require more 
consideration with regard to conservation programs.
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