
Introduction

As a limited macronutrient, phosphorus (P) is widely 
used in agriculture to maintain a high crop yield. Due 
to poor fertilizer management and the variations in 
soil properties, overfertilization is common around the 
world. Excess P in the environment can cause water 
eutrophication, threaten human health, and endanger the 
ecosystem [1, 2]. At the same time, other areas suffer 
from severe yield limitations due to low P availability 
in soils [3, 4]. Great efforts have been made to improve 

the accuracy of soil testing methods for predicting the 
plant P requirements before seeding, aiming to reduce 
the extra P input while optimizing the crop yield.  
A water/chemical extraction procedure is usually the 
main process in the traditional method for measuring 
the soil available P; i.e., an air-dried soil sample is mixed 
with chemicals at a certain ratio, and the mixture is 
shaken for a period of time to allow an equilibrium of P 
between the solution and soil solid phase to be reached. 
The amount of P extracted in the solution is used to 
express the available P amount in soils. However, even 
for the most acceptable extraction method, Olsen P, the 
fertilization recommendations can vary by up to 3 times 
the amount for soils with the same Olsen P status [5]. 
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Abstract
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Compared to the traditional extracting methods, 
the diffusive gradients in thin films (DGT) technique 
is a promising tool for testing the available elements in 
a solution. The method has been mostly used to assay 
metal elements in water, such as Cd, Cu, Fe, Mn, Ni, 
and Zn [6-9], and it has been successfully used to assay 
Cd and Zn in sediments [10] and N and K in soils  
[11-15]. Greater accuracy was found for predicting  
plant-available P, for which the dominant uptake 
mechanism by plant roots is diffusion, using the DGT 
method compared to the traditional extraction methods 
[16-20]. This accuracy has also been proved by recent 
findings. For example, it was reported that the DGT 
P result was highly correlated to the maize P uptake 
in a pot experiment corresponding to an application 
of sewage sludge-based P fertilizer [21], and to that 
of wheat [22]. DGT also showed great accuracy in 
predicting the barley leaf P concentrations in both pot 
and field experiments [23]. 

The DGT device consists of two parts. The first part 
is a plastic piston and a plastic cap with a window of area 
A. The function of this part is to hold together the gel 
assembly. The gel assembly contains two polyacrylamide 
gels (the diffusive gel and the binding layer) and an 
additional membrane filter that acts as a protective 
barrier for the gels. The theory behind using DGT to 
assess the available elements in soil environments has 
previously been described by Zhang et al. [10], Mason 
et al. [24], and Degryse et al. [25]. Simply put, when a 
DGT device is deployed in water-saturated soil samples, 
the target element in the soil solution diffuses through 
the diffusive gel and accumulates in the resin gel. 
When the element’s concentration at the DGT surface 
is lowered by the resin gel uptake, the element from 
the soil solid phase desorbs to replenish this depletion. 
Therefore, the fraction of an element measured by the 
DGT is assumed to incorporate the soluble pool and part 
of the insoluble pool from the soil solid phase and is 
identical to the pools of P uptake by plants. 

The routine processes of preparing a soil sample 
for a DGT test include air-drying and sieving (≤2 mm) 
to maintain the homogeneity and representativeness of 
soil samples. However, it is widely accepted that the 
air-drying process may cause changes in soil P fraction 
and its availability to plants. It is reported that the 
drying and wetting cycle significantly increases the soil 
dissolved inorganic P in beech and spruce forest soils 
[26], glasshouse soils [27], and crop fields [28]. As the 
DGT P results are assumed to be more closely related 
to plant P uptake compared to the results of traditional 
extraction methods, the effects of the drying process on 
measured DGT P concentration in different soil types 
are not clear yet. 

The effects of air-drying on available P extracted 
by traditional methods have been extensively reported, 
but there is a lack of information on the DGT P results.  
To accurately predict the plant-available P using the 
DGT method, it is important to understand how the air-
drying process affects the diffusion process of element 

uptake by the DGT device and the DGT P concentration 
in soils. The aims of this study are: 1) to investigate 
the relationship of DGT P values in air-dried and moist 
samples and 2) to reveal the factors affecting the DGT P 
values in air-dried and moist samples. 

Material and Methods 

Study Area and Sampling Sites

The study area is in the Loess Plateau (34-40°N, 
101-114°E) in China (Fig. 1), which belongs to a warm, 
or temperate, continental monsoon climate. The annual 
precipitation ranges from 200 mm in the northwest  
to 750 mm in the southeast, and the rainy season 
(June-September) accounts for 60-70% of the total 
annual precipitation. The Loess Plateau is typified 
by its fragile ecosystem. Therefore, it is important to 
precisely manage the P nutrient levels in this area using 
an accurate soil-testing method. Soil samples (0-20 cm) 
were collected from the Loess Plateau areas. The moist 
samples were stored at 4ºC in a refrigerator before soil 
testing. 

Soil Testing 

Basic Soil Properties 

Soil pH was measured using a soil-to-solution ratio 
of 1:2.5 by a pH meter (PHS-3C, Shanghai) [29]; EC 
was measured at a soil-to-water ratio of 1:5 (DDS-307A, 
Shanghai) [30]; CEC was measured in an extraction 
solution of 1 mol L-1 NaOAc [30]; SOM were measured 
using a dichromate oxidation method [31]; and the 
CaCO3 content was estimated as weight reduction of 
the soil sample after acid washing procedures: 10 g 
of the soil sample was washed with 0.05 mol L-1 HCl 
continuously until there was no carbonate reaction. 
Particle size was measured using the method described 

Fig. 1. Sampling sites. 
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by J. Benton Jones [32]. The basic properties are 
summarized in Table 1. 

Soil P Measurement

Solution P was extracted at a soil-to-water ratio of 
1:5 for 30 min [33]. Olsen P was extracted at a soil-
to-solution (NaHCO3 solution, pH 8.5) ratio of 1:20 
for 30 min [34]. Inorganic P contained Ca2-P, Ca8-P, 
Ca10-P, Fe-P, Al-P, and O-P, and the extracting methods 
were described by Jiang and Gu [35]. Total P (TP) was 
extracted using an HClO4 solution at approximately 
350ºC [33], and organic P was estimated as the 
difference between TP and inorganic P. DGT P was 
extracted according to previously published procedures 
[36] using diffusive gels with a thickness of 0.78 mm. 
For those moist soil samples, water was added until 
the point of saturation (assessed visually) overnight to 
allow the soil aggregates to disperse. Plant root debris 
and other substances were carefully separated and 
discarded using tweezers and a small rake before DGT 
deployment. Phosphorus concentration in the extraction 
solution, obtained using the solution P-method, was 
measured using a UV-VIS spectrophotometer (UV-2450, 
Japan) at λ = 620 nm. 

Difference in Olsen and DGT P Values 
on Air-Dried and Moist Soil Samples

Olsen and DGT P were measured in air-dried and 
moist soil samples, respectively. The discrepancy 
between soil available P values before and after the 
air-drying process reflects the degree to which the air-
drying process affected the results using a specific soil 
testing method. ΔOlsen P and ΔDGT P were calculated 
using equations 1 and 2 as follows: 

ΔOlsen P =        (1)

ΔDGT P =            (2)

Relative discrepancy of DGT was termed to be: 

Relative discrepancy =  

        (3)

According to the relative discrepancy of DGT P, 
the soils were divided into 3 groups: Group 1 (≤-20%); 
Group 2 (-20% - 20%); and Group 3 (≥20%). The main 
factors were identified according to the significantly 
different factors among the 3 groups. 

Statistical Analysis 

Correlations between the values obtained from the 
different soil P test methods and soil properties were 
assessed using the Spearman correlation method in 
the SigmaPlot 12.0 software. A paired sample T test 
was carried out to test the significance between soil P 
values obtained before and after the air-drying process 
using the Olsen and DGT P methods using IBM SPASS 
Statistics 20. Analysis of variance (ANOVA) was 
performed using IBM SPASS Statistics 20 to assess 
whether the selected soil parameters were significantly 
different between different groups of soils varying in 
discrepancies in DGT P values in air-dried and moist 
samples.

Results and Discussion

Relationships of Olsen P and DGT P 
on Air-Dried and Moist Samples

Significant differences in soil-available P values 
using Olsen P and DGT P methods were found between 
samples obtained before and after the air-drying process 
(P<0.01), irrespective of excluding the outliers (open 
symbols in Fig. 2) or not. Compared to the results from 
the Olsen P method, the correlation relationship obtained 
using the DGT P method was poorer, suggesting that 

Soil texture
pH EC (μs cm-1) CEC  (cmol kg-1) SOM (g kg-1) CaCO3 (%) Clay (%)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Sand (n = 3) 8.23 0.14 60 13 1.43 0.09 3.28 1.47 1.39 0.04 1.97 0.62

Loamy sand (n = 7) 8.16 0.08 135 82 2.67 0.99 10.80 6.23 2.35 0.23 5.38 1.81

Sandy loam (n = 5) 8.00 0.16 192 97 4.35 0.57 15.00 4.46 1.56 0.60 5.44 2.80

Silt (n = 1) 7.91 NA 374 NA 3.64 NA 21.44 NA 1.96 NA 3.20 NA

Silt loam (n = 33) 8.03 0.25 277 212 3.10 1.04 16.85 8.69 1.49 0.69 13.98 6.26

Loam (n = 3) 7.99 0.12 234 50 2.11 0.27 10.72 0.89 1.78 0.25 18.30 6.76

Silty clay loam (n = 5) 8.07 0.09 290 97 3.35 0.91 12.49 3.06 1.03 0.30 32.46 3.92

Clay loam (n = 1) 8.02 NA 197 NA 2.84 NA 9.57 NA 2.12 NA 32.04 NA

Table 1. Basic soil properties categorized by soil texture; “n” refers to the number of soil samples, “SD” means standard deviation, “NA” 
means not available.  
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the air-drying process has more impact on the DGT P 
results than the traditional Olsen P results. 

There was a strong positive correlation relationship 
between Olsen P values using air-dried and moist 
samples (R2 = 0.95) while excluding 2 outliers. 
Therefore, Olsen Pmoist can be calculated using equation 
(4): 

      
(4)

The slope was larger than 1, illustrating that the 
air-drying process decreased extractable P from soils 

using the Olsen P method. Obalum and Chibuike [37] 
reported that the process of soil air-drying increased and 
decreased the available P in upland and lowland soils 
respectively, and attributed the reason to the release of 
mobilized P by Fe (III) oxyhydroxides via the redox 
reaction in soils [38, 39]. Soinne et al. [40] reported 
that drying changed P distribution in soil particles with 
different sizes. In our study, the air-drying process did 
not affect Olsen P results to a large extent. However, 
due to the high correlation between the Olsen P values 
in air-dried and moist soil samples, we assumed that the 
effects of the air-drying process on Olsen P could be 
neglected. 

Fig. 2. Relationships between soil P values on air-dried and moist samples using Olsen P (a and b) and DGT P (c and d) methods; the 
equations were obtained using soil samples, excluding the outliers.

Soil property Soluble P
/inorganic P

Olsen Pdry
/inorganic P

DGT Pdry
/inorganic P Soluble P/TP Olsen Pdry/TP DGT Pdry /TP Inorganic P/TP

pH 0.192 -0.132 0.119 0.196 -0.191 0.115 -0.122

EC -0.162 0.214 0.011 -0.163 0.253 0.032 0.23

CEC -0.307* 0.049 -0.059 -0.282* 0.035 -0.058 -0.280*

SOM -0.023 0.288* 0.276* 0.018 0.302* 0.292* 0.071

CaCO3 -0.045 0.116 0.067 -0.066 0.09 0.054 -0.376**

Clay -0.102 0.460** -0.118 -0.087 0.474** -0.09 0.196

Table 2. Pearson correlation between soil properties and measured ratios of P to inorganic or TP using different soil P extraction methods; 
“*” means significant correlation at P≤0.05 level and “**” means significant correlation at P≤0.01 level. 
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Compared to the Olsen P method, the correlational 
relationship between DGT P values using air-dried  
and moist samples was poorer (R2 = 0.73) while 
excluding 8 outliers (open symbols). DGT Pmoist was 
calculated using equation (5): 

  (5)

The slope was smaller than 1, illustrating that the 
air-drying process increased DGT-extractable P amount 
from soils. A lower correlational relationship between 

DGT P values using air-dried and moist samples and 
obtaining more outliers using the DGT method than the 
Olsen P method indicated that the air-drying process 
had greater effects on the DGT P results than the Olsen 
P results in relation to other soil properties. 

Soil Properties and Soil P Measured 
Using Different Methods

We analyzed the relationships between the soil 
properties and ratios of soil P to inorganic P and TP. 

Fig. 3. Soil property parameters in different groups of soils varied with the relative discrepancy of DGT P values; Group 1 represents soils 
with a relative discrepancy ≤ -20%; Group 2 represents soils with a relative discrepancy between -20% and 20%; and Group 3 represents 
soils with a relative discrepancy ≥ 20%; different letters mean significant differences at the P≤0.05 level.
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The results showed that soil pH had no correlation with 
any proportion of P pools in soils (Table 2). The reason 
was probably that the soil pH in the Loess Plateau did 
not vary greatly. Similarly, it was reported that soil 
pH and CaCO3 had little or no effect on the dynamics 
of phosphate ions in acidic and none-acidic soils [41]. 
High correlations were observed between the ratios of 
Olsen P/inorganic P and Olsen P/TP with SOM and 
clay content in soils (P≤0.01). Soils with high SOM 
and clay content usually have more binding sites for 
phosphate ions. No correlation was observed between 
CaCO3 content and ratios of different soil P pools, but 
a negative correlation was observed between the content 
and the ratio of inorganic P/TP (P≤0.01). 

Significant correlations were observed between soil 
P testing values using different methods (R2≥0.329, 
P≤0.01, Table 3). The differences in coefficients of 
determination were due to the different amounts of 
extractable P that were measured using different 
methods. The high correlation between inorganic P and 
TP (R2 = 0.957, P≤0.01) indicated that inorganic forms 
of P dominated in the Loess Plateau area. Thus, it is 
important to explore the utilization of inorganic P in 
this area. There were high correlations between SOM 
and soluble P, Olsen Pdry, DGT Pdry, inorganic P, organic 
P, and TP (R2≥0.303, P≤0.01). It was reported that P 
sorption capacity is determined by the SOM content in 
soils [42]. ΔOlsen P was positively correlated to soil pH 
(R2 = 0.262, P≤0.05) but negatively correlated to SOM 
(R2 = -0.380, P≤0.01). ΔDGT P was highly correlated 
to SOM (R2 = 0.313, P ≤ 0.05), soluble P (R2 = 0.803, 
P≤0.01), Olsen Pdry (R2 = 0.652, P≤0.01), DGT Pdry 
(R2 = 0.776, P≤0.01), inorganic P (R2 = 0.335, P≤0.05), 
organic P (R2 = 0.452, P≤0.01), and TP (R2 = 0.417, 
P≤0.01). The DGT method measures P diffused from the 
soil solution and resupplied from the soil solid phase, 
which is associated with the P desorption rate. The P 
desorption rates and resupply from the soil solid phase 
were affected by the P status, as reflected by their high 
correlation with available P in soils, e.g., FeO strips, 
Olsen, and water-extractable P [43]. This explained the 
high correlation between ΔDGT P and soluble P, Olsen 
Pdry, and DGT Pdry.

Factors Affecting the Discrepancy 
of ΔDGT P

As the ΔDGT P increased from group 1 to 3, 
significant differences were observed among the 3 
groups in organic P concentrations in soils (Fig. 3). 
Increases in CEC and CaCO3 as ΔDGT P increased were 
also observed, but the differences were not significant. 
A significant increase in organic P among the 3 groups 
of soils indicated that the concentration of organic  
P in soils was the main factor affecting the difference 
between using air-dried and moist soil samples to 
calculate DGT P. Molybdate reactive P in the acid eluent 
measured colorimetrically was used to calculate DGT 

P values in a DGT test. However, the main P fractions 
extracted by the DGT method using the traditional 
acrylamide diffusive gel included inorganic P and parts 
of organic P from soil samples [43], where the organic 
P (accounting for a larger proportion than inorganic P) 
cannot be included in the results. It was also reported 
that air-drying may increase the fragility of organic P 
in soils [44]. Therefore, we concluded that the larger 
discrepancy between DGT P values measured using air-
dried and moist soil samples was due to the conversion 
of easily mineralized organic P into inorganic P forms, 
which were then measured as part of inorganic P. Achat 
et al. [45] reported that the drying process (exposing 
samples to a temperature of 105ºC) reduced the total 
organic P and increased inorganic P in soils, especially 
in soils with high SOM. However, we did not observe 
a significant effect of SOM on ΔDGT P values. This is 
probably due to the temperature during the air-drying 
process being much lower than that in Achat et al.’s 
research. We also did not find any differences in other 
parameters. 

Although many results indicated that the DGT P 
results were highly related to plant uptake in most cases, 
some research suggested that DGT P was not the most 
accurate soil test for predicting plant P uptake [46]. The 
above results suggested that the discrepancy between 
DGT P values obtained using air-dried and moist 
samples increased with an increase in the soil organic P 
concentration. This discrepancy might be the reason for 
the inaccuracy found by some researchers. 

Conclusions

The study reported here has the unique feature 
of utilizing 58 different soils to investigate the effects 
of the air-drying process on soil P results obtained by 
traditional extraction and DGT methods. The difference 
in predicting soil available P using the Olsen P results 
obtained from air-dried and moist samples can be 
neglected due to their high correlational relationship, 
although significant difference was observed. However,  
a larger discrepancy between DGT P results was 
obtained from air-dried and moist samples. Specifically, 
the relative discrepancy between DGT P values increased 
as soil organic P increased. As the DGT method 
measures P in both inorganic and organic forms and the 
organic P measured by the DGT method was not stable,  
we concluded that a proportion of easily mineralized 
P was converted into its inorganic form during the  
air-drying process. Therefore, it is necessary to be 
cautious when measuring the plant available P in air-
dried soils using the DGT method, especially in soils 
with a high organic P content. In addition, care should be 
taken when using a DGT P test on soils with high CEC 
and CaCO3 contents. Further work needs to be carried 
out to identify these diffusive organic P compositions 
and their bioavailability to plants. 
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