
Introduction

Examinations of density index (ID) of built-in soil are
conducted during construction, repair work, and periodic
control of technical and safety conditions of embankments
and hydraulic engineering structures. Basing on the ID of
compaction, compaction quality of non-cohesive soils in
subsoil also is determined. It also is used for control of com-
paction of non-cohesive soils built in hydraulic embank-
ments. Water economics is related to numerous hydraulic
structures and hydro-melioration systems. These are most-
ly earthen structures and different types of embankments
such as dams, flood banks, dykes, road embankments,
bridge heads, etc. Hydraulic engineering embankments
must have high load capacity, leak tightness and durability,
and low water permeability and deformability. 

Embankments gain required features during their con-
struction as a result of the application of proper soil mater-
ial and technology of earthen works. The basic technologi-
cal treatment is building in soil in successive layers with
compaction of each layer and control of compaction quali-
ty. Examinations of compaction of built-in soil are also con-
ducted during repair works and control of technical and
safety conditions of embankments and hydraulic structures.

Control of quality of embankment compaction should
lead to determination of proper compaction parameters of
every layer built in earth structure, respectively, to a type
and class of hydraulic structure [1] and soil type.
Requirements and test methods for reception of embank-
ments of hydro-melioration systems are regulated by Polish
standard PN-B-12095 [2]. Requirements related to
hydraulic engineering embankments are given in technical
conditions of construction and reception published by the
Ministry of Environmental Protection, Natural Resources
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Abstract

Density index (or relative density) is the measure of compaction of non-cohesive soils naturally com-
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and Forestry in 1994 [3]. Criteria and procedure of evalua-
tion of technical conditions and safety of earthen anti-flood
structures are given in the guidelines [4, 5].

The measures of compaction quality of material in
hydraulic structure are the following geotechnical parame-
ters: degree of compaction (Is) in the case of cohesive soils,
or density index (ID) for non-cohesive soils. Control of soil
compaction in an embankment consists of the comparison
between the obtained value of compaction measure and the
required value (Is or ID). The value of measurement of soil
compaction should be at least equal to the required value
given in Table 1.

This study refers to the possibility of simplifying the
test procedure of ID for non-cohesive soils by eliminating
laboratory examinations of minimum dry density (ρdmin)
and maximum dry density (ρdmax) of soil, which are neces-
sary for ID calculation. These parameters can be determined
based on the developed dependencies. Statistical and neur-
al methods were applied for modelling the parameters ρdmin

and ρdmax based on soil graining.

Experimental Procedures

The ID (called also relative density DR in literature [6])
is still extensively used in geotechnical engineering as an
index of the mechanical properties of coarse-grained soils.
It is evaluated either by field tests or by laboratory tests.
Field penetration tests are various kinds of sounding tech-
niques such as the standard penetration test SPT [7, 8],
dynamic penetration tests [8, 9] and cone penetration tests
[10-12]. Geotechnical engineers need to estimate the in situ
ID using empirical correlations between ID and penetration
test results. This indirect way of evaluating ID adds further
uncertainties to those already faced when determining the
ID in the laboratory [13].

This study refers to the possibility of simplifying labo-
ratory test procedures of ID of non-cohesive soils during
control of quality compaction of each layer built in an
embankment. 

ID quantity indicates position of the field void ratio (e)
between the maximum void ratio (emax) and minimum void
ratio (emin) according to the equation:

(1)

The two extreme void ratios emax and emin are therefore
not unique, but they depend on the methods used for their
determination [6, 14]. 

Dry density (ρd) of soil in embankment is calculated
according to the equation:

(2)

Volume density (ρ) and soil water content (w) should be
tested in situ and more samples should be taken for further
laboratory examinations of compaction parameters in order
to determine ID in the tested embankment layer.
Compaction parameters such as ρdmin and ρdmax are deter-
mined in laboratory [15]. Laboratory examination of ρdmin

and ρdmax consists in the examination of dry specimen at the
most loose and the most dense grain arrangement (Fig. 1).
The most loose arrangement of grains is obtained by pour-
ing sand through a funnel into a cylinder (height h=12.54
cm and diameter D=7.10 cm). The most dense arrangement
of grains is obtained by compacting the soil in the cylinder
using a vibrating fork. 

Laboratory examinations are the most time consuming
stage of the controlling process. For this reason the trials to
eliminate or simplify these examinations are undertaken.
Examinations of different types of non-cohesive soil are
described in literature. On this ground it can be observed
that the values of ρdmin and ρdmax of soil depend on different
factors, especially on soil type and graining and the method
of compaction [16, 17].

The aim of this study was developing the models for
prediction of the densities (ρdmin and ρdmax) on the basis of
graining parameters of non-cohesive soils:
a) index of graining uniformity (CU)
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Soil type
Content of grains >2mm

[%]

Required compaction

Body of earth dams
Body of new banks

I, II class of importance III, IV class of importance

Cohesive soils
0-10 Is≥0.95 Is≥0.95

Is≥0.92
10-50 Is≥0.92 Is≥0.92

Non-cohesive soils

Fine sands ID≥0.75
ID≥0.70

ID≥0.55Medium sands ID≥0.70

Coarse sands and
coarse-grained soils

ID≥0.65 ID≥0.65

Table 1. Required values of Is or ID [2].



b) grain diameters dx (in mm), below which remains x %
of soil weight, where x=10, 20, …, 90, at Δx=10%. 

Results

Examinations of the analyzed geotechnical parameters
were conducted for several groups of non-cohesive soils
(silty sands, fine sands, medium sands, coarse sands, sand
and gravel mixes, and gravels) according to PN-88/B-
04481 [15]. Laboratory examinations were made on spec-
imens of natural soils from Białystok and on soils pur-
posely prepared in order to obtain diversified graining.

The range of laboratory test results is presented in Table 2.
The analyzed set of data contained 121 cases. 

Models of Linear Regression

Statistical and neural analyses were made using STA-
TISTICA software [18, 19]. Correlations between variables
were analyzed based on matrix of coefficients of linear
regression (Table 3). It was found that there were statisti-
cally significant linear correlations between densities (ρdmin

or ρdmax) and graining parameters (CU, d10, d20, d30, d40, d50,
d60, d70, d80, d90). But the most influential grain diameters
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a)           b) 

Fig. 1. Test procedure: a) ρdmin, b) ρdmax according to PN-88/B-04481 [15].

Type of soil
Silty sands 

(Pπ)
Fine sands 

(Pd)
Medium sands 

(Ps)
Coarse sands

(Pr)
Sand and gravel mixes 

(Po)
Gravels 

(Ż)
Total

Number of
patterns 

21 47 24 13 11 5 121

ρdmin [g/cm3] 1.253-1.569 1.247-1.578 1.320-1.632 1.458-1.746 1.612-1.881 1.591-1.773 1.247-1.881

ρdmax [g/cm3] 1.643-1.849 1.604-1.903 1.701-1.869 1.751-2.019 1.850-2.112 1.982-2.124 1.604-2.124

CU 1.27-4.75 1.25-2.53 1.26-4.57 3.32-7.52 2.90-12.50 7.38-10.26 1.25-12.50

d10 [mm] 0.019-0.125 0.080-0.170 0.140-0.360 0.170-0.250 0.165-0.540 0.390-0.500 0.019-0.500

d20 [mm] 0.040-0.170 0.100-0.215 0.180-0.430 0.195-0.420 0.250-0.830 0.740-1.000 0.040-1.00

d30 [mm] 0.040-0.200 0.120-0.240 0.200-0.450 0.280-0.500 0.360-1.200 1.150-2.200 0.040-2.20

d40 [mm] 0.060-0.215 0.120-0.250 0.220-0.470 0.340-0.930 0.500-1.600 2.000-2.850 0.060-2.85

d50 [mm] 0.074-0.220 0.120-0.260 0.250-0.800 0.420-1.300 0.630-2.350 2.450-3.500 0.070-3.50

d60 [mm] 0.084-0.250 0.125-0.300 0.260-0.660 0.630-1.730 0.830-3.750 2.950-4.500 0.084-4.500

d70 [mm] 0.093-0.300 0.128-0.320 0.260-0.850 0.860-1.700 1.150-6.000 3.650-5.900 0.093-6.000

d80 [mm] 0.110-0.395 0.135-0.450 0.270-1.200 1.150-2.500 1.700-10.000 4.900-9.000 0.110-10.000

d90 [mm] 0.140-0.400 0.150-0.850 0.320-1.850 1.500-5.000 2.350-25.000 8.000-17.500 0.140-25.000

Table 2. Geotechnical parameters of tested soils. 



could not be distinguished – all diameters (dx) influence
compaction parameters to a similar degree. The analyzed
values of the correlation coefficients are given in bold. The
models of simple linear correlation have linear correlation
coefficients in the range r = 0.58 to r = 0.77. 

The graphs of linear dependencies between ρdmin or ρdmax

and index CU are given in Fig. 2.
Then the linear models of multiple regression of para-

meters ρdmin and ρdmax were developed. Graining parameters
(CU, dx) served as explanatory variables in these models.
Only CU and diameter d10 were statistically significant vari-
ables. After taking into consideration only statistically sig-

nificant variables the following multiple regression models,
which are slightly better than models of simple linear
regression, were obtained (r values are given in Table 3).
The models of multiple regression are expressed by the fol-
lowing equations:

ρdmin=1.276+0.031CU+1.238d10±0.089, 

r = 0.775                                 (4)

ρdmax=1.608+0.038CU+0.637d10±0.071, 

r = 0.816                                 (5)
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Variable ρdmin ρdmax CU d10 d20 d30 d40 d50 d60 d70 d80 d90

ρdmin 1.00

ρdmax 0.93 1.00

CU 0.58 0.71 1.00

d10 0.70 0.69 0.55 1.00

d20 0.66 0.72 0.66 0.94 1.00

d30 0.63 0.71 0.73 0.86 0.97 1.00

d40 0.62 0.72 0.78 0.84 0.95 0.99 1.00

d50 0.64 0.74 0.84 0.83 0.93 0.96 0.99 1.00

d60 0.66 0.76 0.88 0.81 0.89 0.93 0.97 0.99 1.00

d70 0.68 0.77 0.90 0.78 0.84 0.88 0.92 0.95 0.98 1.00

d80 0.67 0.75 0.86 0.74 0.77 0.80 0.85 0.89 0.93 0.98 1.00

d90 0.57 0.62 0.62 0.62 0.65 0.68 0.69 0.72 0.75 0.82 0.88 1.00

Table 3. Matrix of coefficients of linear correlation.
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Artificial Neural Networks

Artificial neural networks (ANN) are the modern infor-
mation tool that enables modelling of complex and multidi-
mensional phenomena in many fields. This new method of
data analysis is used, among other things, for modelling
complex issues in environmental protection [20-23], engi-
neering [24, 25], and in water economics [26]. 

Multilayer feed-forward networks with one hidden
layer were applied for solving the analyzed regression
problems. 

The networks were optimized with regard to the num-
ber of input variables, the number of neurons in the hidden
layer and the learning method. Selection of the optimal net-
work structure was made empirically. ANN learned on
examples, as a model based on learning data. The set of pat-
terns consisted of cases described by the values of input
variables and the corresponding output variables. The
whole set of cases (P) was randomly divided into three sub-
sets: learning subset (L) with 61 cases, validating subset (V)
with 30 cases and testing subset (T) with 30 cases. The cri-
terion for stopping the learning process was minimization
of validation root mean squared error (RMS).

The aim of the learning process was determining the
values of weights of neuron connections of all network lay-
ers in such a manner that at the given input vector (x(p)) it
was possible to obtain the values of output signals (yi

(p))
with sufficient accuracy equal to the demanded values (di

(p))
(where i is the number of input and p is the number of pat-
tern from P). Learning algorithms were of iteration type.
All cases from the learning set were given to the input in
each iteration step, called epoch. For each case the output
value was calculated. This value was compared to the true
value. The difference between these two values (i.e. error)
was used to adjust the weights in the network in such a
manner that the error had the lowest value. 

The criterion for stopping the learning process was min-
imizing RMS validation. The variable metric method
turned out to be the most effective learning method (called
Quasi Newton QN method in STATISTICA). This method
is precisely described in [27-29]. 

The best networks were selected on the basis of the low-
est value of RMS in validating and testing subsets:

(6)

...where di
(p) is the true output value, yi

(p) is the calculated value
corresponding to di

(p), i is number of input (i = 1, …M), and p
is number of pattern from the considered set (p = 1, …, P).

Other network error measurements were also analyzed,
such as:
- mean absolute error MAE, i.e. the average value from

error modulus |di
(p) – yi

(p)|,
- correlation coefficient (r) between the true and calculat-

ed values of explained variable.
In the figures presenting accuracy of prediction there

are also marked the areas of relative errors (RE) calculated
according to the equation:

(7)

At the beginning the networks with one output variable
were analyzed. ANNs with 10 inputs (CU, d10, d20, d30, d40,
d50, d60, d70, d80, d90), one hidden layer (with 4 neurons) and
one output ρdmin or ρdmax were applied. The errors of both 10-
4-1 ANNs are given in Table 4. 

ANN with one hidden layer and two outputs ρdmin and
ρdmax was used for simultaneous modelling of both com-
paction parameters. The scheme of 10-3-2 ANN is present-
ed in Fig. 3. Error measurements for each output of 10-3-2
ANN are presented in Table 4. 
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Output architecture
number of epochs

Inputs
RMS MAEi ri

L V T L V T L V T

ρdmin

10-4-1 QN 43 CU, d10,

d20, d30,

d40, d50,

d60, d70,

d80, d90

0.109 0.106 0.121 0.050 0.052 0.065 0.852 0.806 0.904

ρdmax

10-4-1 QN 134
0.108 0.145 0.131 0.040 0.055 0.047 0.859 0.842 0.838

ρdmin 0.108 0.119 0.135 0.046 0.048 0.057 0.883 0.881 0.878

ρdmax

10-3-2 QN 970
0.041 0.047 0.055 0.857 0.821 0.868

Table 4. Error measurements of analyzed ANNs.

Inputs                        Hidden layer                         Outputs
CU
d10
d20
d30
d40
d50
d60
d70
d80
d90

dmin

dmax

Fig. 3. The ANN scheme of 10-3-2 architecture.



The learning graphs of ANNs are shown in Fig. 4. During
ANN training the early stopping algorithm was applied.
This means that learning was stopped when the value of
error in the validation subset started to grow [19, 27].

Summarizing the analysis of error measurements of
ANNs combined in Table 4, it can be concluded that the
quality of ANN with one output is comparable to the qual-
ity of ANN modelling 2 parameters simultaneously. The
quality of prediction of the compaction dry densities ρdmin

and ρdmax is satisfactory. 
Comparisons between the observed values and the val-

ues predicted by both 10-4-1 ANNs and 10-3-2 ANNs (with
RE area) constitute an illustration of the above conclusions
(Fig. 5). The parameter ρdmin is predicted by ANN with RE
equal to approximately 10% and the parameter ρdmax – with
RE equal to approximately 8%. 

For comparison, prediction accuracy of the parameters
based on equations (4) and (5) are presented in Fig. 6.
Parameter ρdmin can be predicted by equation (4) with RE
equal to approximately 13%, and parameter ρdmax can be
predicted by equation (6) with RE equal to approximately
10%.

The prediction quality of the analyzed linear and neural
models can be most easily compared based on the values of
correlation coefficients and relative errors (Table 5).

Conclusions

Standard methods of ID determination are time-consum-
ing and involve several steps and a rapid method of estima-
tion would therefore be useful. The empirically derived
equations in this paper allow rapid and inexpensive estima-
tion of the ID for non-cohesive soils.

The model of multiple correlation allows determining
ρdmin with RE equal to approximately 13% and ρdmax – with
RE equal to approximately 10%. Application of ANN
allows improving the prediction quality of the analyzed
parameters. Parameter ρdmin is predicted by 10-4-1 ANN
with RE equal to approximately 10%, and parameter ρdmax

is predicted with RE equal to approximately 8%. ANN of
10-3-2 architecture models simultaneously ρdmin and ρdmax

with accuracy equal to 10% and 8%, respectively.
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a)

b)

c)

Parameter ρdmin ρdmax

Model
Linear

(5)
10-4-1 10-3-2

Linear
(6)

10-4-1 10-3-2

r 0.775 0.904 0.878 0.816 0.838 0.868

RE     [%] 13 10 10 10 8 8

Table 5. Comparison of error measurements of the analyzed
prediction models. 
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Fig. 5. Comparisons between the observed values and the values predicted by: a) 10-4-1, b) 10-4-1, c) and d) 10-3-2 ANNs.
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