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Abstract

Deteriorating water quality in urban areas has drawn wide interest in China. In our study, water quality
was monitored monthly during December 2009-November 2011 from 16 sites located in a trans-urban river.
The spatial pattern showed that the concentrations of EC, Ca?*, Mg?*, BOD,, COD_, TP, and NH,"-N were
higher midstream and downstream than upstream, while measured pH and DO upstream were higher than

cr’

measurements midstream and downstream. The temporal pattern showed that the concentrations of EC, TP,
BOD,, NH,-N, Mg*, and Ca’" in the wet season were lower than in the dry season, while the concentra-
tions of COD _ in the wet season were higher than in the dry season. Receptor-based source apportionment
revealed that most of the variables were influenced by domestic sewage, cropland, and woodland runoff pol-
lution. Therefore, the best method to prevent water quality degradation is to manage the domestic sewage,
cropland, and woodland runoff.

Keywords: water quality, urban river, spatial and temporal pattern of water quality, water pollution

source apportionment

Introduction

A critical step toward effectively controlling river
pollution is the development of water quality monitoring
programs to track environmental conditions and determine
spatio-temporal trends. But such monitoring systems
result in voluminous data, which are difficult to analyze

*e-mail: wangxk@rcees.ac.cn

and interpret because of the latent interrelationships
between the parameters and monitoring sites [1-2]. Thus
the application of advanced statistical methods to these
datasets is required to interpret spatial and temporal
patterns, to identify significant parameters and potential
pollution sources, and to quantify source contributions.

In recent years, multivariate statistical methods such
as cluster analysis (CA), factor analysis (FA), principal
component analysis (PCA), and multivariate linear
regression (MLR) have been effectively applied to the
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Fig. 1. The study area and water quality monitoring sites.

assessment of surface water quality, evaluation of spatial
or temporal variations in groundwater and coastal water,
as well as identification of the latent pollution sources in
marine sediments. For instance, Zhou et al., Ouyang et al.,
and Simeonov et al. classified the sampling sites by CA and
identified the main pollution sources by PCA [3-6]. Su et
al. determined the significant variables affecting temporal
and spatial variations in the Qiantang River (China) by
DA [7]. Simeonov et al., Huang et al. and Huang et al.,
quantified source contributions using APCS-MLR [6, 8-9].
Yesilirmak analyzed the temporal and spatial variations
in Buyuk Menderes River by using statistical methods
[10]. Multivariate analyses are sensitive to outliers and
the non-normal distributions of geochemical datasets;
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Fig. 2. Temporal variations of rainfall and temperature for 2010-11.

thus, appropriate data pretreatment, including estimation
of missing data, examination of normal distributions, and
data transformation should be taken into consideration.
This is a principle often ignored in most environmental
studies [4].

The main aim of this study is to apply multivariate
methods (CA, PCA, FA and APCS-MLR) to evaluate
spatial and temporal patterns in trans-urban river water
quality and to apportion river water pollution in Chong
Qing. Specifically, CA was used to determine the similar
or dissimilar relationships between sampling sites; PCA
and FA were used to identify underlying pollution sources
and their continuous spatial and temporal impacts for the
entire study area over different periods, and APCS-MLR
was introduced to further estimate source distributions for
each pollution variable.

Materials and Methods
Study Area and Sampling Sites

The Panxi River Basin is located in northern Chongqing,
China (Fig. 1). It is an area of approximately 35 km? (from
29°34'11.22" to 29°37'54.08"N and 106°28'26.75" to
106°31'45.68" E) and has a population of 0.2 million. It
belongs to a subtropical monsoon climate with a mean
annual temperature of 17.5~18.7°C, and a mean annual
precipitation of 1100~1300 mm. Most of the precipitation
occurs during the period between April and July, and the
highest temperature occurring during the period between
July and September (Fig. 2). Land use within the basin
largely consists of residential, commercial, industrial,
lawns, crops, and water (Fig. 1).

To accurately represent the water quality of the river
systems, a sampling strategy was designed to cover a wide
range of determinants at the key sites. In the present study,
a total of 16 sampling sites were selected (Fig. 1).

Sampling and Chemical Analysis
In our study, water samples were collected twice

a month during December 2009-November 2011
from 16 monitoring stations (Fig. 1). The following
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Table 1. Water quality parameters.

Parameters Abbreviation Analytical method and equipment
pH pH pH meter (Hach, USA, Sension 156)
Electrical conductivity EC Electrometric method (Hach, USA, Sension 156)
Dissolved oxygen DO Electrochemical probe method (Hach, USA, Sension 156)
Biochemical oxygen demand BOD Dilution and seeding method
after 5 days g (Thermo Scientific Orion, USA, 850A+)
. Rapid digestion and spectrophotometric method
Chemical oxygen demand oD, (Hach, USA, DRB200, Shimadzum, Japan, UV-1700)
Persulfate digestion spectrophotometric method
Total phosphorus P (Shimadzum, Japan, UV-1700)
L . Spectrophotometric method with Nessler's reagent
Ammonia nitrogen NH,-N (Shimadzum, Japan, UV-1700)
. . i Spectrophotometric method with phenol disulfonic acid
Nitrate nitrogen NO;-N (Shimadzum, Japan, UV-1700)
. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES)
2+
Calcium Ca (Leemans, USA, Prodigy)
. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES)
2+
Magnesium Mg (Leemans, USA, Prodigy)
Sulphate SO Ion chromatograph (Dionex, USA, ICS-1000)

11 physiochemical parameters were analyzed: pH,
conductivity (EC), dissolved oxygen (DO), five day
biochemical oxygen demand (BOD),), chemical oxygen
demand (COD_), total phosphorus (TP), ammonia
nitrogen (NH,"-N), nitrate-nitrogen (NO,-N), sulfate
(SO,%), calcium (Ca**), and magnesium (Mg*").

At each site water was sampled from a bridge over
the river using a stainless steel bucket and a plastic
bottle. Buckets and bottles were rinsed three times with
river water before samples were collected. The water pH,
EC and DO were measured by a portable water quality
analyzer (Hach, USA, Sension 156) in situ. Immediately
after collection, samples were brought to the laboratory
for analyses of the other water quality parameters. The
analysis methods followed national quality standards for
surface waters, China [11], and the specific method used
is presented in Table 1.

Data Pretreatment

The values of kurtosis and skewness beyond the
range of —2 to +2 suggested significant departures from
normality [12].The statistical analysis of data showed that
the kurtosis and skewness values were —0.57 to 1.08 and
—0.97 to 1.28, respectively. Therefore, all variables were
normally distributed. For CA and PCA/FA, all variables
were further z-scale standardized (mean = 0, variance = 1)
to avoid misclassification due to wide differences in data
dimensionality.

Multivariate Statistical Methods

River water quality data sets were subjected to five
multivariate techniques: cluster analysis (CA), principal

component analysis (PCA), factor analysis (FA), and
absolute principal component score-multiple linear
regression (APCS-MLR). All mathematical and statistical
computations were made using Microsoft Office Excel
2003 and SPSS 19.0.

Cluster Analysis

CA is a group of multivariate techniques whose
primary purpose is to assemble objects based on the
characteristics they possess. CA is used to develop
meaningful aggregations, or groups, of entities based on a
large number of interdependent variables [ 13]. Hierarchical
agglomerative clustering is the most common approach,
which provides intuitive similarity relationships between
any one sample and the entire data set, and is typically
illustrated by a dendrogram (tree diagram). In the study,
hierarchical agglomerative CA was performed based on
the normalized dataset (mean of observations over the
whole period) by means of Ward’s method using squared
Euclidean distances as a measure of similarity [14]. The
spatial and temporal variations in water quality were
determined from hierarchical CA using linkage distance.

Principlal Component Analysis /Factor Analysis

Factor analysis, which includes PCA, is a very powerful
technique applied to reduce the dimensionality of a dataset
consisting of a large number of interrelated variables,
while retaining as much as possible the variability
presented in the dataset. PCA includes correlated variables
with the purpose of reducing the numbers of variables
and explaining the same amount of variance with fewer
variables (principal components). Factor analysis attempts
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Table 2. Water quality parameters and summary basic statistics of the Panxi River between 2009-12 and 2011-11.

Parameters Mean S. D. Min Max Standard Below standards for all sites (%) Units
pH 8.16 0.371 7.53 9.13 6~9 6.0 pH units
EC 545.11 117.151 | 300.00 | 772.75 — - us/cm
DO 5.80 2.487 1.82 15.02 >2 7.0 mg/L

BOD, 12.05 5.190 2.89 28.35 <10 51.6 mg/L
COD,_, 62.28 24.680 5.57 138.27 <40 79.2 mg/L
TP 0.82 0.338 0.10 1.79 <0.4 82.3 mg/L
NH,"-N 7.25 4.226 0.14 17.00 <2.0 85.2 mg/L
NO,-N 1.64 0.914 0.04 4.85 — - mg/L
Ca* 60.21 11.977 28.48 80.97 — - mg/L
Mg* 10.89 2.509 5.98 16.34 — - mg/L
NoJe 77.52 12.410 42.87 107.61 <250 0 mg/L

Mean: average value; S.D: standard deviation; Min: minimum value; Max: maximum value. Standardis Class V surface water

standard developed by China (GB3838-2002) (SEPB 2002b)

to explain the correlations between the observations in
terms of the underlying factors, which are not directly
observable [15].

Principal component analysis extracts eigenvalues and
related loadings from the covariance matrix of original
variables to produce new orthogonal variables through
Varimax rotation, which are linear combinations of the
original variables [16]. Using PCA we can identify the
unobserved latent pollution sources [17]. In our study, PCA
of the normalized variables (water quality dataset) was
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Fig. 3. Dendrogram showing spatial similarities of monitoring
sites produced by CA.

performed to extract the significant principal components
and to further reduce the contribution of variables with a
minor significance. These PCs were subjected to varimax
rotation (raw) generating original variables. Following
Pekey et al. eigenvalues>1 were selected as the new
orthogonal variables [18]. According to Liu et al. the factor
loadings as “strong)’ “moderate’ and “weak” correspond
to absolute loading values of >0.75, 0.75-0.50, and

0.50-0.30, respectively [19].

Absolute Principal Component Score-Multiple Linear
Regression (APCS-MLR)

Absolute principle component score, a proven approach
to effectively supply quantitative information regarding
the contributions of each source type [4, 18], was applied
to calculate source contributions after determining the
number and characteristics of possible sources by PCA.
After determination of the number and identity of possible
sources influencing the river water quality in Panxi River
using PCA, source contributions were computed through
the APCS-MLR technique in this paper.

Results and Discussions
Water Quality Properties of Panxi River

As shown in Table 2, the mean water pH and DO
were 8.16 and 5.80 mg/L, respectively, 6.0% of pH and
7.0% of DO samples exceeded the Grade V for pH (6-
9) and DO (2.0 mg/L) when compared to the national
quality standards for surface waters, China [20]. The mean
water NO,-N, NH,"-N, and TP were 1.64, 7.25, and 0.82
mg/L, respectively, 85.2% of NH,"-N and 82.3% of TP
samples exceeded Grade V for NH,*-N (2.0 mg/L) and TP



The Spatial-Temporal Pattern...

845

(0.4 mg/L) when compared to the national quality standards
for surface waters in China [20]. The mean water BOD, and
COD_, were 12.05 and 62.28mg/L, respectively. 51.6% of
BOD; and 79.2% of COD_ samples exceeded Grade V for
BOD,; (10 mg/L) and COD_ (40 mg/L) when compared to
chinese national quality standards for surface waters [20].
Mean water EC, Ca®*, and Mg?" were 545.11us/cm, 60.21
mg/L, and 10.89 mg/L, respectively. There are no stated
limits by the State Environmental Protection Bureau
of China [20] for EC, Ca*, and Mg*". The mean water
SO,* was 77.52 mg/L, with all SO, samples meeting
the drinking water standard limit value of 250 mg/L
[20]. Based on the above results, the water quality of the
trans-urban river indicated that it was seriously polluted
by organic pollutants (BOD; and COD_) and nutrient-
related impacts (TP and NH,"-N), which indicated that the
water quality was affected by human activity. This result
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concentration (mg/L)
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concentration (mg/L)

was similar to earlier studies, such as Suthar et al., who
reported that the Buyuk Menderes River was polluted by
BOD, (37.02mg/L) and COD_(170.21 mg/L) [21]. Zhou
et al. (2007) found that the Hong Kong River (China) was
seriously polluted by BOD, (19.68mg/L), COD_ (34.83
mg/L), TP (1.92 mg/L), and NH,"-N (7.12 mg/L) [22].

The Spatial Variation of Water Quality
Spatial Similarities and Grouping

CAproduced a dendrogram grouping the 16 monitoring
stations into four clusters (Fig. 3). Group A (sites 1-3) were
located in the upstream section of the Panxi River in an area
that has extensive forest cover and fewer human activities,
thus the water quality was relatively less polluted. Group
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Fig. 4. Spatial variations of 11 water parameters in the Panxi River.
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Table 3. Loadings of 11 selected variables on varimax rotated
factors in the Panxi River.

Table 4. Source contribution (in %) to each variable in the Panxi
River.

B (sites 4-6) were located in the midstream section of the
Panxi where the river received pollutants from municipal
wastewater, which represented moderately polluted parts
of the river. Groups C (sites 7-15) and D (site 16), located
in the downstream section of the river, were strongly
influenced by untreated domestic and cropland wastewater
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Fig. 5. Dendrogram showing temporal similarities of monitoring
periods produced by CA.

Variablos Factors Parameters | Sl S2 S3 Us R?
PC1 PC2 PC3 PH — 42.10 — 57.90 0.735
NH,'-N 0.938 -0.038 -0.098 EC 50.37 22.08 2.11 25.44 0.898
EC 0.911 -0.183 -0.187 DO 15.79 59.35 1.10 23.76 | 0.632
TP 0.890 -0.032 0.231 BOD; 40.58 19.98 4.03 35.41 0.678
Ca> 0.856 -0.230 0.009 COD_, 6.40 5.91 49.21 38.47 0.750
Mg 0.811 -0.190 -0.259 TP 64.77 — 3.42 31.80 | 0.845
BOD,; 0.670 0.151 0.326 NH,™-N 61.19 — 1.31 37.50 | 0.889
pH -0.069 0.858 0.045 NO,-N | 741 6.81 33.68 | 52.11 | 0.672
DO -0.394 0.677 -0.134 Ca® 42.36 24.85 — 32.79 0.785
SO 0.019 -0.318 0.008 Mg* 44.98 23.03 2.93 29.06 | 0.762
NO,-N -0.162 -0.337 0.730 SO — 26.21 — 73.79 0.301
COD_ 0.149 0.524 0.673
Egenvalue 71 L7 L2l runoff and represented highly polluted parts. In addition,
% Total variance 42.83 15.77 11.03 the accumulating pollutants from upstream and midstream
Cumulative % 42.83 58.60 69.63 combined with the discharge of domestic sewage along

the downstream river further aggravated the impact on
water quality in the downstream river.

The spatial distribution of different pollution zones
was the same as the majority of earlier studies. Shrestha
and Kazama found that in the Fuji River basin (Japan),
less polluted areas were situated mainly at the upstream
sites and higher levels of pollution were mainly situated
at the downstream sites [14]. Zhou et al. found that in
eastern Hong Kong (China) the relatively high-pollution
zones were adjacent to the coastline and the relatively
low-pollution zones were far from human impact [4].

The Spatial Variation of Water Quality

The curves for NH,"-N and TP showed the increasing
trend from upstream to downstream (Fig. 4). One
explanation for this effect is that upstream of the Panxi
River is mainly covered by woodland and lawn. However,
in the midstream and downstream sections of Panxi River
the surrounding land is mainly covered by residential,
commercial, and cropland. An increased amount of
sewage discharge leads to a significantly increased
concentration of pollutants. High concentrations of
NH,"-N and P were also reported from wastewater by
Almeida et al. [23], and agricultural activities by Singh
et al. [24]. NO,-N concentrations were higher at site 5,
increased from site 8 to site 16, and were related to the
large domestic wastewater discharge into the river at site
5 and downstream sites. Nestler et al. reported that the
nitrate nitrogen in the surface water of an urban ecosystem
may be derived from sewage [25].

The BOD; and COD_ concentrations showed an
increasing trend from upstream to downstream (Fig. 4),
mainly due to high population density, and commercial
and agricultural activity. Our results are also consistent
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with earlier research showing that the organic pollution
was mainly from domestic wastewater and nonpoint
source pollution [23, 26].

The pH and DO were both higher upstream than in the
midstream and downstream (Fig. 4). It is understandable
that high levels of dissolved organic matter consume large
amounts of oxygen, leading to anaerobic fermentation
processes and the formation of ammonia and organic acids.
Hydrolysis of these acidic materials causes a decrease of
water pH value [27]. Therefore, the average pH value is
higher upstream than in the midstream and downstream.
With increasing organic matter decomposition, DO
decreased upstream to midstream and downstream. Boyle
and Fraleigh and Kirchner et al. have reported that the
DO decrease was mainly caused by the decomposition of
organic compounds [28-29].

The EC, SO,*, Ca*, and Mg*" increased upstream to
downstream (Fig. 4) mainly because of the constant influx
of forest and cropland runoff. Boyacioglu and Boyacioglu
found that the high concentrations of Mg?*, Ca*", and EC
usually originate from local parent rock and agricultural
pollution [30].

The Temporal Variation of Water Quality
Temporal Similarities and Grouping

As an exploratory method, temporal CA produced a
dendrogram grouping the 12 months into two clusters
(Fig. 5). Group A consisted of the months January-May
and December, corresponding to the local hydrological
conditions for dry periods, and with relatively high
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water pollution. Group B consisted of June-November,
corresponding to the local hydrological conditions for wet
periods with less polluted water due to rainfall dilution. This
result is consistent with the studies of Varol and Sen for the
Behrimaz Stream (Turkey), and Varol et al. for the Tigris
River (Turkey) [31-32]. They distinguished the seasonal
variation of water quality into wet and dry periods.

The Temporal Variation of Water Quality

Seasonal variation in the water quality of rivers is
largely determined by natural processes (precipitation
rate, weathering process) and anthropogenic influences
(urban, industrial, and agricultural activities and
increasing exploitation of water resources) [33-34].
Results from the Kolmogorov-Smirnov tests showed
significant seasonal differences (P<0.05) for TP, BOD,,
NH,-N, EC, Mg** and Ca*" between the dry and wet
seasons, the remaining parameters saw no significant
seasonal differences (P>0.05). As shown in Fig. 6, the
concentrations of TP, BOD,, NH,*-N, EC, Mg*, and Ca*'
in the wet season were significanly lower than those in the
dry season (Fig. 6). This is mainly because the pollutants
were diluted by rainfall runoff in the wet season. Although
the COD_ showed no significant seasonal differences
(P>0.05), the concentrations of COD_in the wet season
were higher than those in the dry season. This might be
influenced by pollution from urban stormwater runoff
[35]. The concentrations of pH and DO were higher in
August and September. This is probably ascribed to higher
temperatures during August and September. Kannel
et al. found that the DO concentration in the river was
temperature-dependent due to its easy saturation in the
warmer water [36].

Identification of Potential Pollution Sources

PCA was performed to identify the characteristics of
water quality variables in three clusters, and the factor
loading matrix is listed in Table 3. The results of Kaiser-
Meyer-Olkin (KMO) and Bartlett’s sphericity test were
0.747 and 1499.673 (P<0.05), respectively, indicating that
PCA would be useful for providing significant reductions
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in dimensionality. Based on eigenvalues >1, FA evolved
three varifactors (VFs) comprising 69.63% of the total
variance.

The first varifactor (VF1) accounted for 42.83% of
the total variance, had strong and positive loadings on
NH,"-N, EC, TP Ca*", and Mg**, and a moderately positive
loading on BOD.. Thus the VF1 was named as the nutrient
and ionic pollution. In our study, the land uses are mainly
woodland and lawn in the upstream and agricultural
and residential in the downstream. Therefore, PC1 may
be identified as a domestic sewage and agricultural and
woodland runoff source.

The second varifactor (VF2), accounting for 15.77%
of the total variance, had strong and positive loadings on
pH and a moderately positive loading on DO and COD,.
In our study, the DO concentration was higher in March to
September than other months. Kannel et al. found that the
DO concentration in the river was temperature-dependent
due to its easy saturation in warmer water [36]. Simeonov
et al. reported that the pH, DO, and EC was attributed
to the “physicochemical” source of the variability [6].
Zhou et al. thought that the pH and TEMP represents the
“physicochemical” source of the variability [4]. Therefore,
PC2 may be identified as the “physicochemical” source.

For VF3, accounting for 11.03% of the total variance,
it had moderate and positive loadings of NO,-N and
COD,. In general, stormwater runoff could also carry solid
substances that usually had high concentrations of organic
pollution. In our study, the COD_ concentration was
higher in July to September than other months, indicating
the polluting effect of urban stormwater on river water
quality during the rainy season. Therefore, PC3 may be
identified as an urban runoff source.

The pollution sources in the river system can be
identified by representation of the factor scores in the factor
analysis [37-38]. The high factor scores corresponded to a
high influence of the factor [39]. As shown in Fig. 7A, a
factor score 1 was significant to the condition of sites 13-
16 and 9, which were polluted by domestic sewage and
cropland runoff. The increasing trend in factor scores 1
along the trans-urban river indicated the impact of human
activities on the river. Factor score 2 was significant to the
condition of sites 1-3, which are three reservoirs, located
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Fig. 7. Scatter plot of the first two factor scores for the 16 sampling sites and 12 months.
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in the upper reaches of the Panxi River with higher pH and
DO, reflecting the influences of the internal factor of the
river. As shown in Fig. 7B, a factor score of 1 distinguished
the months January-March and December from the other
months. Due to December-March being in the dry season
(Fig. 2A), pollutants are not diluted by rainfall; therefore,
the concentrations of pollutants were higher than for other
months. Factor score 2 mainly influenced the water quality
in August and September. Due to higher temperatures in
August and September (Fig. 2B), the internal reaction in
the river is relatively fast. In short, the integrated factor
scores recognized sites 13-16 and 9, and the months
January-March and December as sites and periods of high
pollution, respectively.

Source Contribution Based on APCS-MLR

After determining the number and characteristics of
possible sources by PCA, source contributions were then
assessed using APCS-MLR. The results (Table 4) indicated
that APCS-MLR was relatively accurate, based on
correlation coefficients (R?), except for SO, (0.301). Most
variables were primarily influenced by domestic sewage,
cropland, and woodland runoff pollution (accounting for
50.37%, 40.58%, 64.77%, 61.19%, 42.36%, and 44.98%
of the variations in EC, BOD,, TP, NH,"-N, Ca*", and Mg*
concentrations, respectively), “physicochemical” source
pollution (42.10% and 59.35% of pH and DO, respectively)
and urban runoff pollution (49.21% and 33.68% of COD_
and NO,-N, respectively). The unidentified sources (US)
in Panxi River, attributed to river water pollution for most
of the water quality variables (23.76-73.79%). Zhou et al.
found that in eastern Hong Kong (China), most variables
were primarily influenced by soil weathering and organic
pollution, nutrient pollution (or cropland runoff), and
mineral pollution. Unidentified sources (US) in both areas
attributed to coastal water pollution for most of the water
quality variables (2.6-36.9%) [4]. Su et al. found that in
the Qiantang River (China), most variables were primarily
influenced by domestic sewage and agricultural pollution,
industrial wastewater discharge, vehicle exhaust and sand
mining, and mineral weathering. The unidentified sources
(US) in all groups, contributed to pollution in Qiantang
River for most of the water quality variables (1.4-
29.4%) [40]. In our study, the unidentified sources were
significantly higher than other studies, mainly because
the pollutants in urban rivers were typically from mixed
sources and it was difficult for the multivariate method,
such as APCS-MLR, to clearly identify the detailed
sources. Because the unidentified sources account for a
large proportion of sources, further study is necessary to
identify these unknown sources.

Conclusions
Based on two years of monitoring, more than 50% of

the samples exceeded Grade V of the Chinese National
Quality Standards for Surface Waters (GB 3838-2002,

2002) for NH,™-N, TP, BOD,, and COD _ concentrations
— indicating that water quality was seriously polluted by
organic pollutants (BOD, and COD, ) and nutrient-related
impacts (TP and NH,*-N).

The Panxi River is characterized by high spatial and
temporal variations in water quality. The concentrations
of EC, Ca*’, Mg*, BOD,, COD_, TP, and NH,"-N were
significantly higher midstream and downstream than
upstream; however, the concentrations of pH and DO
were higher upstream than midstream and downstream.
The seasonal variation of the water quality of rivers is
largely determined by hydrological conditions (dry and
wet seasons). The concentrations of TP, BOD,, NH,"-N,
EC, Mg?, and Ca’' in the wet season were lower than the
dry season, but the concentrations of COD_ in the wet
season were higher than the dry season.

The PCA and APCS-MLR were applied to identified
pollution source and source apportionment. Results from
the PCA showed that domestic sewage and cropland
and woodland runoff pollution, “physicochemical”
source pollution, and urban runoff pollution could
explain 69.63% of the total variances in water quality in
the Panxi. Receptor-based source apportionment
through APCS-MLR revealed that most variables were
primarily influenced by domestic sewage and cropland
and woodland runoff pollution in the trans-urban
river. However, the significant contributions of uniden-
tified sources in the Panxi for most of the water quality
variables indicated other latent sources or complicated
processes.

Discharge of domestic sewage into the river is still an
important contributor to water pollution, so it is necessary
for the local government to rebuild sewage pipelines
for collecting domestic sewage in order to restore the
degraded water quality. In addition, because of the
unidentified sources accounting for a large proportion of
sources, further investigation is needed to identify these
unknown sources.
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