Pol. J. Environ. Stud. Vol. 24, No. 4 (2015), 1507-1515

Original Research

Artificial Neural Network Modeling of Dissolved
Oxygen Concentrations in a Turkish
Watershed

Adem Bayram*, Murat Kankal

Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering,
61080 Trabzon, Turkey

Received.: 13 September 2013
Accepted: 14 January 2014

Abstract

This paper presents the application of artificial neural networks (ANNs) and regression analysis (RA)

for predicting dissolved oxygen concentrations (DO, mg/L) from water quality (WQ) indicators, namely

stream water pH and temperature (t, °C). For this purpose, three diverse models are used in our analysis,

considering the functional relationship between in situ-measured WQ indicators and DO concentration. The

WQ data are semimonthly obtained from nine monitoring sites in the Harsit Stream watershed in the Eastern
Black Sea Basin of Turkey, from March 2009 to February 2010. As a result of model prediction, this study
proposes a suitable ANN model, including two independent variables to efficiently predict DO concentra-

tion from WQ data, with the root mean square error of 0.9442 mg/L and mean absolute error of 0.6965 mg/L.
The proposed model predicts the DO concentration better than the RA and the other two ANN models. The

results may reduce the time and cost necessary to determine DO concentrations.

Keywords: artificial neural networks, dissolved oxygen concentration, Harsit stream watershed, pH, re-

gression analysis, water temperature

Introduction

A sufficient supply of dissolved oxygen (DO) is vital
for all higher aquatic life. The problems associated with
low concentrations of DO in rivers have been recognized
for over a century. The impacts of low DO concentrations
or, at the extreme, anaerobic conditions in a normally well
oxygenated river system, are an unbalanced ecosystem
with fish mortality, odors, and other aesthetic nuisances
[1].

Natural waters in equilibrium with the atmosphere
typically contain DO concentrations in the range from 5
to 15 mg/L O, depending on water temperature, salinity,
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and altitude [2]. The DO concentration present in water
reflects atmospheric dissolution, as well as autotrophic
and heterotrophic processes that produce and consume
oxygen, respectively. A fluctuation of DO near saturation,
with diurnal variation due to temperature and metabolism,
implies relatively healthy waters. By contrast, a marked
depression of DO below saturation indicates a stream
receiving untreated wastewater or an excessive amount of
nutrients from non-point source pollution [3, 4].

Analysis of DO is extremely important in determining
water quality. It provides information on the biological
and biochemical reactions occurring in a water body, and
is, therefore, an important indicator of stream metabolism
[5]. In situ measurements of this parameter can be used
as a primary indicator of water quality, and regulatory
agencies recommend a minimum DO requirement
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for maintenance of fish populations, e.g. DO>6 mg/L
measured over at least one diurnal cycle [6]. For decades,
DO concentrations have been used as a primary indication
of water quality standards in aquatic environments. Much
research has been devoted to understanding DO dynamics
in streams [4].

The temperature of water is a very important parameter
because of its effect on chemical reactions and reaction
rates, aquatic life, and the suitability of the water for
beneficial uses. Increased temperature, for example, can
cause a change in the species of fish that can exist in the
receiving water body. In addition, oxygen is less soluble
in warm water than in cold water. The increase in the rate
of biochemical reactions that accompanies an increase in
temperature, combined with the decrease in the quantity of
oxygen present in surface waters, can often cause serious
depletions in DO concentrations in the summer months
[7]. Temperature decreases cause an increase in the
saturation concentration of DO. Changes in the saturation
concentration affect the DO deficit and ultimately the
reaeration driving force [8, 9].

Artificial neural networks (ANNs) are able to detect
relationships in multi-dimensional data and organize this
dispersed information into a nonlinear classification model
[10, 11]. Recently, the neural networks approach has
been applied to many branches of science. The approach
is becoming a strong tool for providing hydraulic and
environmental engineers with sufficient details for design
purposes and management practices. The technique has
a growing body of applications for river engineering
and water resources [12-17]. ANN employment in
DO estimation and prediction has been worked out for
river water quality. Sengorur et al. examined the potential
of ANN in estimating the DO concentration from limited
data, namely nitrite nitrogen (NO,-N), nitrate nitrogen
(NO,-N), biochemical oxygen demand (BOD), water
discharge (Q), and temperature (t) measured monthly in
the Melen River, Turkey, at 11 sampling points over a
period of one year by employing feed-forward-type ANN
for computing monthly values of DO concentration [18].
Basant et al. applied partial least squares regression and
feed-forward back propagation ANN modeling methods
to predict the DO and BOD levels using 11 input variables,
namely pH, total alkalinity (T-Alk), total hardness (TH),
total solids, chemical oxygen demand, ammonium
nitrogen (NH,-N), NO,-N, chloride (CI), phosphate
(PO,»), potassium (K*), and sodium (Na‘) measured
monthly in the Gomti River, India, at eight different sites
over a period of 10 years [19].

Ay and Kisi aimed to examine the accuracy of two
different ANN techniques — the multilayer perceptron
(MLP) and radial basis neural network — to estimate DO
concentration using four input variables, namely pH, t,
electrical conductivity (EC), and Q measured daily at the
upstream and downstream of the Foundation Creek, El
Paso County, Colorado, USA [20]. Wen et al. developed
an ANN to simulate the DO concentrations using eight
input variables, namely NH,*-N, calcium (Ca*"), CI,, EC,
NO,-N, pH, T-Alk, and TH measured monthly in the

Heihe River, Northwestern China, at three water quality
(WQ) monitoring stations over a period of six years [21].
Antanasijevic et al. created an ANN model using WQ
indicators, namely pH, t, EC, and river flow measured
monthly or semimonthly in the Danube River, north
Serbia, at 17 WQ monitoring stations over a period of five
years for prediction of DO concentrations [22].

The aim of this study is to research whether stream
WQ indicators can produce a sufficient prediction of DO
concentrations. A stream WQ monitoring study including
20 indicators was conducted on a semimonthly basis
from March 2009 to February 2010 in the Harsit Stream
watershed in the Eastern Black Sea Basin of Turkey. Of
these indicators, by factor analysis, only two — namely pH
and t — were selected as model input vectors.

Artificial Neural Network Approach

ANNSs are human attempts to simulate and understand
what goes on in the nervous system, with the hope of
capturing some of the power of these biological systems.
ANNSs are inspired by biological systems with a large
number of neurons that collectively perform tasks that
even the largest computers have not been able to match.

The function of artificial neurons is similar to that of real
neurons; they are able to communicate by sending signals
to each other over a large number of biased or weighted
connections. Each of these neurons has an associated
transfer function that describes how the weighted sum of
its input is converted to an output (Fig. 1).

Different types of ANNs have evolved based on neuron
arrangement, their connections, and training paradigm
used. Among the various types of ANNs, the MLP trained
with back propagation algorithm has proven to be most
useful in engineering applications. Back propagation is a
systematic method for training MLP.

The MLP network comprises an input layer, an
output layer, and a number of hidden layers (Fig. 2). The
presence of hidden layers allows the network to present
and compute more complicated associations between
patterns. Basic methodology of ANNSs consists of three
processes: network training, testing, and implementations.

The connection weights of the ANN are adjusted
through the training process, while training effect is
referred to as supervised learning. The training of ANNs
usually involves modifying connection weights by means
of learning rule. The learning process is done by giving

a= ) WX, Summation

y=f(a) Transfer

Output E

Input x Weights w

Transfer

Processing

Fig. 1. Artificial neuron.
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weights and biases computed from set training data or by
adjusting weights according to a certain condition. Then,
other testing data are used to check the generalization. The
purpose of the bias input of a back propagation network is
to stabilize the origin of activation function for providing
better learning [23]. The initial weights and biases are
commonly assigned randomly. As input data are passed
through hidden layers, sigmoidal activation function is
generally used. The data are uniformly selected during
the training process. A specific pass is completed when
all data sets have been processed. Generally, several
passes are required to attain a desired level of estimation
accuracy. Training actually means for each input pattern,
and then compares it with the correct output. The total
error based on the squared difference between predicted
and actual output is computed for the whole training set.
The adjustment of the weight corrections has been carried
out using the standard error back propagation algorithm
minimizing the total error (E) with the gradient decent
method [24, 25].

Weight update formula in the back propagation
algorithm is given as follows:

— k Jk
Wj(L—1)hL(t + 1) = Wj(L—1)hL(t) + aShLXj(L—l)

+n [Wj(L—1)hL(t) - Wj(L_l)hL(t - 1)]
(1)

...where a, 1, L, and x* are the learning rate, momentum
parameter, layer number, and output vector, respectively.

The total sum squared error (TSSE) is calculated as
follows:

1 N
2

TSSE = EZ(y}; —x%‘)
=1 @)

... where y* is a desired output vector [26].

The foregoing algorithm used in this study updates the
weights after an epoch is presented. (Epoch is one cycle
through the entire set of training patterns.)

The Study Area

There are 26 hydrological basins in Turkey. With a
recharge area of 24,077 km?, the Eastern Black Sea Basin
is one of the most important in Turkey, and is a major
part of the Caucasus Ecological Region, together with
the Coruh and Aras Basins. The Eastern Black Sea Basin
consists of sub-watersheds such as Melet, Pazar, Karadere,
Firtina, and Harsit streams, of which Harsit is the largest.
The length of the main branch of the Harsit is 143 km; the
catchment area is 3,280 km? [27-29].

The Harsit is formed by small streams that originate
from the Vauk Mountains in eastern Gumushane Province.
After it is formed, the Harsit passes through the settlements
of Tekke, Gumushane, Torul, Ozkurtun, Kurtun, and
Dogankent before emptying into the Black Sea at the city
of Tirebolu [27-29].

The stream WQ monitoring studies were conducted
every 15 days from March 2009 to February 2010 at
10 longitudinal stations from the upstream (H1) to the
downstream (H10) in the Harsit watershed (Fig. 3), and
their spatial information is given in Table 1.

Experimental Procedures

In situ DO, pH, and t measurements

The stream DO concentration (mg/L), pH, and t (°C)
were measured with a portable field meter (Horiba U-10).

Moreover, these measurements were verified by another
portable field meter (HQ40d).
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Fig. 2. Architecture of back propagation network model.
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Fig. 3. The Harsit watershed and the locations of water quality monitoring stations.
Table 1. Location of the water quality monitoring stations in Harsit watershed.
Stations Coordinates Altitude (m) Km of the course
HI 40°24°07.4” N—-39°38°29.3" E 1,274 0.0
H2 40°24°54.0” N -39°34"37.6" E 1,234 6.5
H3 40°25°23.6”N-39°31"37.7"E 1,190 12.5
H4 40°29°36.6" N —-39°27"30.4" E 1,100 24.0
HS5 40°32° 557N —-39°18’52.5" E 939 39.5
H6 40°33°56.7°"N—-39°17"54.6" E 910 45.0
H7 40°38°41.1”’N-39°11"014"E 642 67.5
HS8 40°42° 18.5”N—-39°04"11.8”E 497 84.0
H9 40°49° 18.6” N —38°54’42.5" E 154 107.0
H10 41°00°16.1” N - 38°50°59.7” E 4 137.0
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Table 2. Regression coefficients and R? value for regression analysis.

Model no c b, b, b, R?
1 10.277750 -0.767324 0.000000 0.012921 0.275
2 9.729723 0.560693 -0.067181 0.001921 0.324
3 2.073186 1.178817 -0.076864 - 0.388
Prediction of DO Concentration S NG,
- AR - .
Regression Model § .'.;I’_H,f.;._—“?.:i{.—{!ﬁf % [ .‘..;_—».'\':_E_{j_—»"'_tié', ‘
Multiple linear and nonlinear (exponential, power, = .,.z' - ) 52' <
[ %

logarithmic, inverse, joint, growth, and S functions)
regression analyses were performed. Three models
producing satisfactory results are presented as follows:

Model 1: DO concentration = ¢
+b, pH+b, pH* + b, pH’
(3)

Model 2: DO concentration=c +b, t+b, t* +b, £
4

Model 3: DO concentration=c +b, pH +b, t
)

In these equations, b , b,, b, and ¢ are the regression
coefficients, estimated by the least squares method for all
of the models. The R? values for the models are given in
Table 2.

ANN Model

The main objective of this section is to develop an
ANN model that predicts the DO concentration from given
pH and T data. When designing an ANN, it is important
to choose the proper network size. If the network is too
small, it may not have enough free parameters to represent
the data adequately. If the network is too big, it can either
fail to classify the data as meaningful categories or reject
new patterns as too dissimilar from the training set. In
general, finding a suitable network structure is a matter
of trial and error, although an educated guess can be
made by comparing the size of the training data set to the
number of free parameters in the network. As shown in
Fig. 2, a three-layer, feed-forward network is selected for
this study. Each layer is fully connected to the next, but
no connections exist between neurons in the same layer.
The first and third layers contain the input and output
variables, respectively. Three different models were used
to train the neural network (Fig. 4). The DO concentration
is the output variable for all models. The order of variables
in the input layers is pH and t.

The stream WQ data from the eighth station (HS),
where the stream DO concentration was unusually
positive correlated with stream t were excluded, and the

.3

MODEI

Fig. 4. ANN architectures used for the prediction of the DO
concentration.

rest of data set 216 was divided into 162 training (75%),
36 testing, and 18 validation patterns. Input values for the
testing, training, and validation data are shown in Table 3.

Before the training of the network, the data are
normalized to range [0.1, 0.9] since the sigmoid activation
function is used.

The selected network size represents a compromise
between generalization and convergence. Convergence
is the capacity of the network to learn the patterns in the
training set, and generalization is its capacity to respond
correctly to new patterns. One hidden layer is sufficient
for most applications [30]. Since determining the number
of'nodes in the hidden layer is not an exact science, several
networks with different numbers of hidden nodes are
tested. The parameters of the optimum ANN structures are
given in Table 4. To begin the training process, all of the
training patterns are introduced to a network initialized
with random weights. All the computations were
conducted using MATLAB software (The MathWorks,
Inc., Natwick, MA).

In this study, the weights are initialized into random
values between -0.5 and +0.5, according to commonly
accepted procedure. The factors a and 1 in Eq. (1) also
influence the convergence. The learning rate (a) is the
constant of proportionality for the generalized back
propagation rule. The larger its value, the greater the
changes in the weights. The momentum term () is used
to prevent the network from oscillating around a local
minimum in the parameter space. Several combinations
of o and n are tested in order to find a neural network with
good convergence (Table 4).

Memorization (over training) is a fundamental
problem encountered in training of ANN. To prevent
this, the training is terminated when the network begins
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Table 3. Semimonthly water quality data set used in the ANN models.

Water quality monitoring period: March 2009—February 2010
The stations
Spring Summer Autumn Winter

H1 o | o | o |A (o |0 0|0 A |eo o | um 0|0 A|eo oe|e e |m (e e e A
H2 o | o |A|o o |m ([0o|0 e | A e | e m |0 0 A | e|oeo o|0o o | A e e
H3 o | o | o o0 |A o | A e o o | o |A|o o |0 e |A e |0 0|0 |m

H4 o | A|o|o(m |00 |0 0| 0o 0o A o e o m 06|A e|o o | A e o
H5 o | o o |0 A|eo e |m o | o |A|eo o |m o | o |A o | o |0 |A |0 e e
Hé6 A | o = o | o | o |A|o| e |0 |0 |0 |A|e e e m o | o | o | 0|0 | A | e
H7 o | m o A|o| o |0 |0 |0 | A |0 |0 0o |0 A e o o o0 A e m o | o
HS8 -

H9 o |A|o(m (0|0 o e e e A o o o0 e o0 e A e A e e (m o
H10 o | e o |e|e|A|e | A|e m |e|/e|e|A|lo|e e|e m |o|e| o e A

e = training set, A = testing set, m = validation set

to memorize by using the cross-validation patterns
[31]. In this situation, training set error continues to
decrease, although testing set error does not change. The
performance of a network may be enhanced by increasing
the number of training samples, the length of training
(number of epochs), or the number of hidden layer nodes.
Choosing different values for a and n may also change the
performance of a network. However, all of these methods
increase the computation time required to train the
network. It is very important to strike a balance between
performance and training time. Table 5 shows the ANN
structures that yield the best results.

The root mean square error (RMSE) and the mean
absolute error (MAE) were used to provide an indication
of goodness of fit between the monitored and modeled
values.

The RMSE is calculated as follows:

1
2

N
1
RMSE = [NZ(H —0,)?
= ©)

Table 4. Parameters used for different ANN structures.

The MAE is calculated as follows:

N
1
MAE = NZKH — 0y)|
i=1 ™)

...where N is the number of observations, O, is the i"
observed value, and P_ is the i predicted value.

Results and Discussion

When the ANN analysis was performed with models 1,
2, and 3, the minimum error in the testing set was obtained
as 0.371 for the third model (o= 1.00 and = 0.10) (Table
5). The errors may be reduced if the stopping criterion, the
epoch number, is increased. Besides, conjugate gradient or
scaled conjugate gradient methods may be used to reduce
maximum relative error instead of generalized delta rule
in learning. Also, different network structures with one or
more hidden layers or nodes with different learning rates
and momentum terms may produce less error.

Table 5. Characteristics of ANNs yielding the best results.

Number of hidden | Learning rate Momentum
layer unit (o) m)
0.10 0.10
3
0.25 0.25
5
0.50 0.50
7
0.75 0.75
10
1.00 1.00

Number . .
Model of hidden u n | Epoch Training | Testing
no . error? error?
layer unit
1 7 0.50 | 1.00 | 9301 | 1.65635 |0.53629
2 3 0.25 1 0.50 | 20000 | 1.57270 | 0.40900
3 2 1.00 | 0.10 | 14625 | 1.16183 [ 0.37107

2 Error values are calculated from Eq. 2.
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Fig. 6. The comparison of the observed DO concentrations with the predicted ones for validation set.

Figs. 5 and 6 display the performances of the ANN
and regression analyses for the testing and validation data,
and the accuracy of the ANN approach for the best-fitting
model (the third model). Each quad sign stands for testing
and validation vectors in both figures. Also, the results
obtained from RA for the same values are shown with
multiple signs in the same figures. The nearer the points
gather around the diagonal, the better the learning results.
The RMSE and MAE of the points on the diagonal are
zero. While the RMSE and MAE values obtained from the
testing set for the ANNSs in the third model are 0.944 and
0.697 mg/L, these values for the RA in the same model are

Table 6. The error values for each method in terms of mg/L.

1.027 and 0.759 mg/L, respectively. Similarly, the RMSE
and MAE for the validation set in the ANNS in the third
model are 0.623 and 0.710 mg/L, and the same values for
the RA are 0.967 and 0.787 mg/L, respectively (Table 6).

Conclusions

The preceding sections have dealt with the development
of regression analysis (RA) and artificial neural network
(ANN) models to predict dissolved oxygen concentration
(DO, mg/L) using water quality (WQ) indicators, namely

RMSE MAE RMSE MAE
Model no for testing for testing for validation for validation
ANNs RA ANNs RA ANNs RA ANNs RA
1 1.13511 1.13390 0.82643 0.82739 0.717751 1.00233 0.83683 0.82637
2 0.99166 0.99201 0.69022 0.69327 0.725334 1.04627 0.78599 0.79651
3 0.94415 1.02703 0.69652 0.75859 0.623321 0.96730 0.70961 0.78700
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water pH and temperature (t, °C) in the Harsit watershed

of northeastern Turkey. For this purpose, three different

models are constructed, considering the variety of
independent variables. The following conclusions are
drawn:

— This paper proposes a suitable ANN model including
two independent variables: pH and t. The model has
a root mean square error of 0.9442 mg/L and a mean
absolute error of 0.6965 mg/L.

— Among the RA models, the model considering t in the
input vector can be suggested as a prediction tool for
the DO concentration.

— The ANNs model provides satisfactory prediction of
the DO concentration using a limited number of the
WQ indicators. This may imply that the model can be a
useful tool for the prediction of the DO concentration in
Turkish streams and rivers. Therefore, the ANNs model
may provide great convenience in water research and
for environmental managers.
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