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Abstract

Soil erosion is a devastating land degradation process that needs to be spatially analyzed for 
identification of critical zones for sustainable management. Geospatial prediction through susceptibility 
analysis assesses the occurrence of soil erosion under a set of causative factors (CFs). Previous studies 
have considered majorly static CFs for susceptibility analysis, but neglect dynamic CFs. Thus, this study 
presents an evaluation of erosion susceptibility under the influence of both non-redundant static and 
dynamic CFs using multivariate logistic regression (MLR), remote sensing and geographic information 
system. The CFs considered include drainage density, lineament density, length-slope and soil erodibility 
as static CFs, and land surface temperature, soil moisture index, vegetation index and rainfall erosivity 
representing the dynamic CFs. These were parameterized to establish geospatial relationships with 
the occurrence of erosion. The results showed that length-slope had the highest positive impact on the 
occurrence of erosion, followed by lineament density. During the MLR classification process, predicted 
accuracies for the eroded and non-eroded locations were 89.1% and 83.6% respectively, with an overall 
prediction accuracy of 86.6%. The model’s performance was satisfactory, with 81.9% accuracy when 
validated using the area-under-curve method. The output map of this study will assist decision makers in 
sustainable watershed management to alleviate soil erosion.
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Introduction

Soil erosion has been identified as one of the most 
devastating phenomena threatening soil sustainability. 
It is a natural geomorphic process involving  
detachment and displacement of soil particles causing 
adverse impacts on the watershed [1-4]. This is 
responsible for about 80% of current land degradation 
on agricultural land worldwide [5]. Soil erosion is a 
product of complex interactions of some biophysical 
factors such as climate, topographic nature, soil 
characteristics and land-use/land-cover management. 
Among these, Rahman et al. [2] highlighted that 
soil and topographical characteristics of a particular 
location strongly influence erosion rates. This is due 
to diverse hydrological processes, rainfall patterns, 
land-use and land management practices in different 
locations [3, 6]. Anthropogenic activities such as 
urbanization, inappropriate farming activities, mining 
and deforestation exert great pressure on natural 
ecosystems, thereby accelerating soil erosion processes 
[7]. The resultant impacts of extensive soil erosion 
include depleting agricultural productivity, water quality 
deterioration, landslide risk on the steep slope and 
sedimentation of reservoirs, which may result in flood 
risk and reduced hydropower generation. Sustainable 
management practices that will dampen these challenges 
require indices to quantify soil erosion, analyze its 
spatial distribution and identify critical areas through 
susceptibility analysis [8]. Erosion susceptibility analysis 
evaluates the probability of occurrence of erosion events 
based on its past spatial distribution under the influence 
of specific causative factors (CFs) [9]. In recent times, 
remote sensing, geographic information system 
(GIS) and statistical techniques have been applied 
for this purpose. The former is often used for the 
provision of moderate resolution spatial data required 
for the analyses. Logistic regression is one of the 
commonly used multivariate (statistical) techniques for 
susceptibility modeling, which analyzes the interactions 
among the erosion CFs. 

In susceptibility analysis, there exist subjectivity 
issues in the selection of CFs as various researchers 
used varying numbers and types of CFs. This is due 
to the absence of specific framework in the existing 
literature [10-12]. The variability in the number of 
CFs considered in previous studies was reported 
by Abdulkadir, et al. [13]. Magliulo [14] cited other 
researchers who argued and recommended that the 
selection of CFs should not have double consequences 
on the results. In other words, CFs should be “non-
redundant” as the inclusion of “redundant” factors 
could cause overweighting of the results [15]. The 
researchers further highlighted that simultaneous 
consideration of some factors such as slope angle with 
length-slope (LS-factor), plan curvature, stream power 
index, slope aspect and topographic wetness index 
as CFs is considered “redundant.” This is because 
they have mathematical connections with slope angle, 

although they might have different geomorphological 
and hydrological significances. A critical survey of the 
literature indicated that most of the factors considered 
in the previous studies were majorly static in nature. 
These set of factors often remain the same throughout 
the months of the year and even up to decades despite 
the change in rainfall cycle. However, some dynamic 
CFs that respond to rainfall cycles, such as land surface 
temperature (LST), rainfall erosivity (R-factor) and soil 
moisture index (SMI), are sometimes neglected due to 
unavailability of the data [14] or the absence of such 
in the existing literature. In spite of their significance, 
their impacts on soil erosion susceptibility are yet to be 
investigated. Consequently, there is a need to investigate 
the addition of such dynamic CFs to frequently used 
non-redundant static CFs in susceptibility assessment. 
Hence, this study evaluates erosion susceptibility in 
Cameron Highlands watershed under the influence 
of both non-redundant static and dynamic CFs using 
multivariate logistic regression, remote sensing and GIS 
techniques. Cameron Highlands, located in the Pahang 
State of Malaysia, is a complex watershed characterized 
with extensive vegetable cultivation on the hillslope, 
high rate of urbanization and deforestation resulting 
in incessant soil erosion risks [16, 17]. Some of the 
negative impacts of soil erosion currently experienced 
include deterioration of water quality via increased 
water turbidity [18, 19], siltation of rivers and built 
water bodies that could trigger flood risk and reduced 
hydropower generation [20, 21]. Hence, accurate and 
acceptable soil erosion susceptibility assessment is 
crucial for sustainable watershed management. 

Material and Methods

Erosion CFs in Susceptibility Assessment

It has been established that the quality of selected 
CFs and method of the analysis could influence model 
accuracy [22, 23]. Hence, it is pertinent to consider 
non-redundant CFs in the analysis. A total of four non-
redundant static CFs were considered with four dynamic 
factors. The static CFs include drainage density, 
lineament density, K-factors and LS-factor, while 
dynamic CFs are NDVI, R-factor, LST and SMI. The 
static CFs have been identified to trigger soil erosion and 
applied by many researchers in susceptibility studies. 
For instance, drainage density [8, 24-26], lineament 
density [8, 27, 28], LS-factor [9, 29-33], K-factor [34-
36], and NDVI [25, 28, 37] were implemented in those 
studies. However, some dynamic CFs such as R-factor, 
LST and SMI are rarely considered despite their roles 
in the soil erosion process. R-factor is a climatic factor 
that strongly impacts soil characteristics through type, 
intensity and amount of rainfall [14]. It measures the 
aggressiveness of raindrops to induce soil erosion 
by actions of rainfall and runoff [27, 38, 39]. LST is 
another dynamic CF that measures the degree of heat 



3421Multivariate Logistic Regression Model...

energy exchange between the earth and atmosphere 
[38]. Its spatial distribution is affected by some terrain 
characteristics that impact the ascending solar radiation 
[41, 42], and it controls the distribution of soil moisture 
[43]. Removal of vegetation exposes the soil surface 
to high surface radiant energy that dries up the soil 
[44]. Such dried soil has the following properties as 
highlighted by Xue, et al. [45]: “high apparent density 
(compaction), low porosity, low permeability to air and 
water, low soil aggregates, and low water storage,” 
which promote soil erosion. Magliulo [14] highlighted 
that soil moisture is a significant factor that influences 
erosion processes. It affects both soil aggregate stability 
and shear strength. Karnieli and Ben-Asher [46] noted 
that soil erosion rate is dependent on rainfall intensity 
and soil moisture during daily runoff modeling in Marl 
watersheds, USA. Thus, R-factor, LST and SMI (which 
are scarcely used) were considered in this study in order 
to evaluate their roles in erosion susceptibility results.

Extraction of Erosion CFs

The overall procedures adopted in this study are 
illustrated in the methodological flowchart in Fig. 1. 
The erosion CFs were obtained from different sources 
and prepared in an ArcMap environment. Digital 
elevation model (DEM) is the digital representation of 
topography and other ground features on a watershed. 
Drainage density and LS-factor were extracted from 
hydrologically corrected DEM of 5m resolution. The 
stream network of the study area was supplied as the 
input file in the “Focal Statistics” platform of spatial 

analyst tool of ArcMap for the extraction of drainage 
density map in Fig. 2b). LS-factor comprises slope 
gradient and slope length factors derivable from DEM. 
It was evaluated based on Equation (1), provided by 
Parveen and Kumar [47], and the resulting layer is as 
shown in Fig. 2c). 

 (1)

A soil map of Cameron Highlands was extracted 
from the digital soil map of the world (DSMW). 
William’s approach in Equation (2) was applied for 
the computation of K-factor [48]. The extracted soil 
map and the component factors were processed in 
GIS environment for development of the K-factor map  
(Fig. 2d).

 (2)

…where fcsand = factor for high coarse-sand content, 
fcl–st = factor for high clay-to-silt ratios, forgc = factor 
for high organic carbon content, fhisand  = for soils with 
extremely high sand content.

Landsat-8 data was acquired on 3 July 2016 from the 
USGS Earth Resource Observation Systems Data Center 
for the location (Row/Path: 57/127) on a relatively clear 
day with about 3.96% cloud cover. Lineaments were 
extracted from atmospherically and radiometrically 

Fig. 1. Methodological flowchart for soil erosion susceptibility mapping.
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Fig. 2. a) Soil erosion inventory map, b) Drainage density map, c) LS-factor, d) K-factor, e) Lineament density map, f) R-factor,  
g) NDVI map, h) LST, and i) SMI.
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corrected Landsat-8 with the use of ArcMap 10.0, 
ENVI 5.3 and Geomatica 2016 software. The output 
shapefile was processed in ArcMap using the split-line 
model to split the compounded lines into simple lines. 
Subsequently, a lineament density map (Fig. 2e) was 
developed using “Line Density” of spatial analyst tool. 
Furthermore, R-factor was estimated from monthly 
average rainfall records using the popular expression 
proposed by Wischmeier and Smith [49] in Equation 
(3). Rainfall records (2006-2016) for the synoptic 
weather stations within and around the study area were 
obtained from the Malaysian Department of Irrigation 
and Drainage for the evaluation of R-factor map in 
Fig. 2f). The NDVI map (Fig. 2g) was extracted from 
bands 4 and 5 of Landsat-8 images. For the avoidance  
of negative values, Equation (4) was adopted in this 
study.

        (3)

…where Pi = monthly average of rainfall for month 
i (mm) and P = annual average of rainfall (mm)

          (4)

Thermal infrared sensors (TIRS; i.e., bands 10 and  
11 of Landsat-8) were utilized for the retrieval of LST. 
The respective specific thermal conversion constants  
(K1 = 774.89, K2 = 1321.08) and (K1 = 480.89, 
K2 = 1201.14) for thermal bands 10 and 11 were used 
for estimating brightness temperature (BT). This, 
along with land surface emissivity (e) and proportion 
vegetation (Pv), were used for estimating LST in 
Equation (5) [50]. The procedure for the estimation 
and development of LST map (Fig. 2h) can be found in 
Abdulkadir, et al. [51] and Teerawong, et al. [52]. Lastly, 
an SMI spatial distribution map (Fig. 2i) was extracted 
from Landsat-8 using an NDVI-LST space technique 
as described by Sandholt, et al. [53], Sruthi and Aslam, 
[54] and Potić et al. [55]. After the preparation of CFs, 
they were resampled to have the same projection (i.e., 
UTM 47 North, WGS 84), same grid sizes (30x30 m) 
and the same numbers of columns by rows (1025x1112).

             (5)

…where w = wavelength of emitted radiance 
(11.5 µm), and p is defined as p = h * c/s in which 
h = Plank’s constant (6.626x10-34 Js), c = velocity of light 
(3.0x108 m/s), s = Boltzmann constant (1.38 *10-23 J/K).

Application of Multivariate Logistic 
Regression Model

Logistic regression is a multivariate technique 
applied to establish a relationship between the 

occurrence of soil erosion and a set of CFs [8, 56]. It 
involves one or more predictor variables (i.e., CFs) 
to predict the probability of a binary or categorical 
response [24, 57]. The response variable (erosion) could 
be binary (presence or absence) or categorical, and 
the predictor variables could be binary, continuous, 
categorical, or a combination [58]. The method can 
be applied without variables necessarily satisfying 
the normality, linearity and homogeneity of variance 
assumptions as in the case of other techniques [58]. The 
extensive descriptions of multivariate logistic regression 
(MLR) can be found in Hosmer and Lemeshow [57]. In 
MLR analysis, an approximate equal number of binary 
cases (i.e., erosion-present points and erosion-absent 
points) are recommended [10]. The inventory map in 
Fig. 2a) shows the spatial distribution of soil erosion, 
which was prepared from information obtained from 
documentary sources, model and field campaign. The 
map contains 159 erosion-present points. Using slope 
map as a guide, a total of 159 erosion-absent points were 
randomly created through the use of a “fishnet tool” 
of ArcMap for building the MLR model. The erosion-
present and erosion-absent points totaling 318 data 
points (response class) were used to extract equivalent 
values for each of the eight CFs. The information 
obtained was used to build MLR model in RStudio 
environment. This evaluated the weights for each CF 
and produced other relevant statistics for performance 
evaluation of the model. The weights were applied 
to evaluate erosion susceptibility for all the locations 
within the watershed of Cameron Highlands in the GIS 
environment. The performance of the MLR model was 
evaluated using receiver operating characteristics (ROC) 
curve analysis. The area under the curve (AUC) of the 
ROC describes the performance of classification models. 
It is a graphical plot that illustrates the diagnostic ability 
of a binary classifier whose acceptable value ranges 
between 0.5 and 1.0 [26].

Results and Discussion

This section presents the results obtained from the 
evaluation of erosion CFs and susceptibility analysis. 
Spatial distribution maps for the CFs were prepared in 
a GIS environment and the resulting maps are presented 
in Figs 2(b-i). The map in Fig. 2b) indicates that northern 
and southern regions of the study area are characterized 
by low and high drainage densities, respectively. This 
indicates that the southern region has relatively high 
relief compared to the northern region. The LS-factor 
map in Fig. 2c) sees its values range from 0 to 282.75 
with respective mean and standard deviation of 2.85 
and 6.26. Processing the soil map of the study area 
showed that the mapping units have basically two soil 
types and the watershed is predominately filled with soil 
type coded as “Ao90-2/3c.” This can be distinguished 
as shallow soils with low potassium content and can  
be found on the steep slopes. The mapping unit is 
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composed of about 70% mountainous terrain and the 
available soil type is classified as Orthic Acrisols by the 
U.S. Food and Agricultural Organization (FAO). Also, 
about 70% of the dominant soil is made up of 65% 
and 35% of medium and heavy texture, respectively. 
The percentage of sand, silt, clay and organic carbon 
obtained from the DSMW database were 51.6%, 15.8%, 
30.6% and 2.25%, respectively. This information was 
implemented for the computation and development  
of the K-factor map. The K-factor map obtained (in 
Fig. 2d) showed that its values ranged between 0.0143 
and 0.020 ton ha/MJ/mm. The extracted lineament 

density in Fig. 2e) had minimum and maximum values 
to be 0.0899 and 0.4766, respectively. High and low 
lineaments were found in the southeast and central 
regions of the watershed.

The dynamic CFs such as R-factor map was 
prepared from rainfall data while SMI, NDVI and LST 
were obtained from atmospherically and radiometrically 
corrected Landsat-8 data. Estimated R-factor values 
with known weather station coordinates were imported 
into ArcMap and interpolated for other areas within 
the watershed. The minimum, maximum, average and 
standard deviation for R-factor (in Fig. 2f) were 2015.22, 
2604.00, 2285.13 and 111.12 MJ mm/ha/yr, respectively. 
For vegetation index, the NDVI map in Fig. 2g) had 
its values between 0.9844 and 1.7585. The distribution 
across the watershed gives information about the 
degree of greenness and health of vegetation. Locations 
(pixels) with the lowest NDVI values are likely to 
be built-up/urban areas with little or no presence of 
unhealthy vegetation in the watershed. The NDVI 
values indicate that the region had fairly abundant 
vegetation that protect the earth’s surface. The spatial 
LST distribution map in Fig. 2h) saw its values range 
between 9.47ºC and 30.61ºC, with an average value of 
18.13ºC. By comparing LST and NDVI maps, it shows 
that regions with the lowest NDVI values have the 
highest LST values. This may be a result of land-use 
change that exposes the earth’s surface in those areas 
[51, 59]. A spatial distribution map of SMI (in Fig. 2i) 
with its values ranged between 0.8516 and 1.3577 had 

Table 1. Multicollinearity diagnostic test index for CFs.

 *Multicollinearity statistics

Variables Tolerance VIF

Drain density 0.743 1.346

Lineament density 0.993 1.007

LS-factor 0.823 1.215

LST 0.933 1.072

NDVI 0.528 1.895

R-factor 0.588 1.701

K-factor 0.812 1.231

SMI 0.646 1.549

  Drainage 
density

Lineament 
density LS-factor LST NDVI R-factor K-factor SMI

Drainage 
density

Pearson Correlation 1

Sig. (1-tailed)  

Lineament 
density

Pearson Correlation 0.037 1

Sig. (1-tailed) 0.245  

LS-factor
Pearson Correlation 0.006 0.093* 1

Sig. (1-tailed) 0.454 0.043  

LST
Pearson Correlation -0.235** -0.289** 0.096* 1

Sig. (1-tailed) 0 0 0.038  

NDVI
Pearson Correlation 0.206** 0.190** -0.192** -0.518** 1

Sig. (1-tailed) 0 0 0 0  

R-factor
Pearson Correlation -0.420** -0.284** 0.104* 0.368** -0.443** 1

Sig. (1-tailed) 0 0 0.028 0 0 0

K-factor
Pearson Correlation 0.245 0.405 -0.225 0.035 0.145 0.045 1

Sig. (1-tailed) 0 0 0.01 0 0 0 0

SMI
0.408 -0.057 -0.033 0.106 0.237 -0.150 0.224 1.000

Sig. (1-tailed) 0 0.01 0 0.02 0 0 0 1

**Correlation is significant at the 0.01 level (1-tailed), *Correlation is significant at the 0.05 level (1-tailed).

Table 2. Correlations matrix for CFs.
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average and standard deviation values of 1.0965 and 
0.0438, respectively. This range of SMI values showed 
a relatively high soil moisture in the watershed as the 
value is a bit far from +1. Most locations within the 
watershed have SMI values greater than 0.3. This 
suggests that such locations have favorable soil moisture 
or no drought conditions as classified by Parida, et al. 
[60]. 

In MLR modeling, Ozdemir and Altural [58] 
reported Hosmer and Lemeshow [57] that model 
fitting is sensitive to multicollinearities among the 
predictor variables (i.e., CFs). Thus, erosion CFs 
were analyzed with respect to tolerance and variance 
inflation factor (VIF) to check for multicollinearities. 
According to Menard [61], tolerance value smaller 
than 0.1 or VIF more than 10 for any CFs signifies a 
serious multicollinearity issue and such should be 
excluded from the analysis [58]. Diagnostic analysis 
for multicollinearity in Table 1 showed that there was 
no multicollinearity issue. Hence, all the CFs were 
implemented in building the MLR model. Correlation 
matrix among erosion CFs was evaluated using Pearson 
correlation method for 1-tailed test statistics. The 
results are presented in Table 2 showing their respective 
correlation at 0.01 and 0.05 confidence intervals. The 
weights for erosion CFs and some other useful statistical 
parameters are presented in Table 3. 

The weights indicate that all the CFs were significant 
and positively impacting on erosion except NDVI. 
Since the Cameron Highlands watershed is majorly 
occupied by forest, this could be responsible for the 
higher negative NDVI relationship with the occurrence 
of soil erosion. This is because the forest protects the 
soil against erosion [2, 25]. LS-factor had the highest 
positive effect on the occurrence of soil erosion, followed 
by lineament density. The LS-factor, K-factor and 
R-factor also played significant roles in the development 
of erosion. Heavy rainfall characterized by the study 
area coupled with its topographic nature increases the 

aggressiveness of rainfall to initiate erosion [62]. The 
lower weight of R-factor obtained in the model suggests 
relatively little influence on the development of erosion. 
This may be due to higher NDVI values attributed to 
the study area that provides protection to many locations 
within the watershed against water-induced erosion. The 
presence of lineaments in a watershed has been reported 
by many researchers to trigger erosion [9, 63]. The 
result of this study conformed with the description of 
Cameron Highlands [64]. Analysis of soil characteristics 
showed the presence of two soil types. The weight of 
the K-factor indicated a positive correlation with the 
occurrence of soil erosion, although its lower value 
suggested that it has a relatively low impact on soil 
erosion. Furthermore, the results also indicate that LST 
and SMI were significant in triggering erosion. 

The Cox and Snell pseudo-R2 and Nagelkerke-R2 
values in Table 4 indicate that the CFs account for 52% 
and 69.5% probability of occurrence of soil erosion. In 
most studies, Nagelkerke-R2 value often appears higher 
than the Cox and Snell pseudo-R2. To further ascertain 
the model’s performance, classification summary of 
the observed and predicted occurrence of soil erosion 
was evaluated using 50% of correct prediction as 
the cut-off value [56]. The classification results show 
that the predicted accuracies for the eroded and non-
eroded were 89.1% and 83.6%, respectively, while the 
overall predicted accuracy was 86.6%, as presented in  
Table 4. Analysis of Cohen’s kappa index (k), whose 
formula is presented in Equation (6), was carried out to 
further assess the model’s performance. This measures 
the inter-rater agreement between two raters as to the 
presence or absence of soil erosion. In other words, it 
is a metric that compares an observed accuracy with 
an expected accuracy (random chance). Some of the 
criteria used for its estimation are true positive (TP), 
false positive (FP), true negative (TN) and false negative 
(FN) [11, 65] with respect to Table 4.

Table 3. Variable of importance in MLR.

α S.E. Wald df Sig. Exp(α)

Drainage density 0.101 0.373 0.142 1 0.706 1.151

K-factor 1.876 14.422 0.599 1 0.439 6.527

Lineament density 2.039 3.177 0.497 1 0.481 9.388

LS-factor 2.254 0.016 92.978 1 0.000 1.167

LST 0.331 0.067 24.216 1 0.000 1.393

NDVI -6.278 1.399 20.140 1 0.000 0.002

R-factor 0.102 0.002 0.968 1 0.325 1.002

SMI 1.189 4.346 4.666 1 0.031 3.284

Constant -14.178 6.105 5.393 1 0.020 -

α = coefficients, S.E. = standard error, Wald = Wald chi-square values, df = degree of freedom, 
Sig. = Significance, Exp(α) = Exponential of coefficients.
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                       (6)

…where observed agreement (OA) = (TP+TN) 
represents the fraction of pixels/points that are correctly 
classified as eroded and non-eroded while agreement by 

chance (AC) = ((TP+FN)(TP+FP)+(FP+TN)(FN+TN)). 
This represents the fraction of locations (pixels) for 
which the agreement is expected by chance [11]. The 
value of k ranges between 0 and 1, in which the value 
of 1 indicates a complete agreement and 0 indicates no 
agreement at all. The analysis of k index yielded a value 
of 0.73, indicating a substantial agreement between the 
two raters.

Based on the weights of the CFs, the susceptibility 
map presenting the probability of occurrence of erosion 
was produced as shown in Fig. 3. For better presentation 
and visualization, susceptibility level of the watershed 
to erosion was classified into five classes using the 
natural breaks method. The classes are very low, 
low, moderate, high and very high susceptible zones 
constituting 3.4%, 71.4%, 24.0%, 1.0% and 0.2% of the 
total area of Cameron Highlands, respectively. In this 
study, the soil erosion susceptibility map was validated 
with the use of the area-under-curve (AUC) method. 
“This measures the quality of probabilistic model 
describing its ability to reliably predict the occurrence 
or non-occurrence of events” [66]. AUC has been 
widely accepted and adopted by several researchers 
for evaluating susceptibility mapping accuracy [8, 11, 
58, 67, 68]. Its values range between 0 and 1, where its 
closeness to 1 indicates perfect prediction and closeness 
to 0.5 indicates that the model is inaccurate [69, 70]. The 
AUC value for MLR analysis was estimated to be 0.819 
with the ROC curve shown in Fig. 4. This indicates that 
multivariate logistic regression performed excellently in 
erosion susceptibility assessment under both static and 
dynamic CFs. 

Conclusion

Adequate soil erosion susceptibility assessment 
is critical for implementing sustainable watershed 
management approaches especially in complex 
watersheds like the Cameron Highlands. The accuracy 
of erosion susceptibility mapping could be affected 
by the quality and number of CFs considered in the 
analysis. Further investigations are thus required in 
this aspect as many previous studies implemented 
majorly static CFs and left out dynamic CFs. In order to 
geospatially predict susceptible locations and develop an 
accurate susceptibility map, both static and dynamic CFs 

Table 4. Classification accuracy measure.

Observed

Predicted

Absent Present Total % Correct

Absent 133 26 159 83.6

Present 20 164 184 89.1

Total 153 190 343

Overall Percentage 86.6

Fig. 4. ROC for validation of the susceptibility map.

Fig. 3. Soil erosion susceptibility map for Cameron Highlands.
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were included in the modeling procedure. Redundant 
CFs were excluded in the analysis as recommended in 
the literature [14]. Hence drainage density, lineament 
density, LS-factor and K-factor were considered as static 
CFs, and LST, SMI, NDVI and R-factor as dynamic 
CFs. The MLR model, GIS and remote sensing were 
applied to establish a geospatial relationship between 
the CFs and the occurrence of soil erosion in the study 
area. The results showed that the selected CFs were 
positively impacting on soil erosion with the exception 
of NDVI. LS-factor had the highest positive effect on 
the occurrence of soil erosion, followed by lineament 
density. The values of Cox and Snell pseudo-R2 and 
Nagelkerke-R2, respectively, indicated that CFs account 
for 52% and 69.5% probability of occurrence of soil 
erosion in the study area. During the classification, 
predicted accuracies for the eroded and non-eroded 
points were 89.1% and 83.6%, respectively, with an 
overall prediction accuracy of 86.6%. This indicates that 
the model correctly predicted the occurrence of erosion 
in the study area. Furthermore, analysis of Cohen’s 
kappa index produced a 73% classification agreement 
between the presence and absence of soil erosion during 
the modeling, which can be regarded as a substantial 
agreement. The predictive accuracy of the model was 
validated by using area-under-curves technique, and 
the accuracy was found to be 81.9%. This indicates 
that the medium-scale erosion susceptibility map was 
accurate and acceptable. The map could be used by 
watershed planners and decision makers for sustainable 
development, optimal land-use planning and prevention 
of erosion.
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