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Abstract

Spatial variability of soil has an important influence on the structure and function of soil. The spatial 
distribution of soil physical properties provides basic and useful information relevant to soil management 
and ecological protection. A typical red beds basin was selected for this study, soil samples at 0-20 cm 
were taken from 150 locations in the northeast part of Nanxiong Basin, in which GIS and geostatistics 
were used to analyze the spatial variability of the soil physical properties. The results show that the 
coefficients of variation of soil bulk density, total porosity and capillary porosity are 9.82%, 4.47%, 
and 3.72%, respectively, which indicate weak variation. Pearson correlation indicated that soil bulk 
density was significantly positively correlated with soil moisture and capillary water capacity (p<0.01), 
with correlation coefficients of 0.85 and 0.91, respectively, but was significantly negatively correlated 
with total porosity, capillary porosity and non-capillary porosity, with correlation coefficients of 0.82,  
0.71 and 0.94, respectively (p<0.01). The spatial distributions of soil physical properties using ordinary 
kriging (OK) and empirical bayesian kriging (EBK) methods were subjected to comparative analysis. 
In addition, different cross-validation indicators were applied to assess the performance of different 
interpolation methods. Cross-validation demonstrated that EBK performed better than OK. And EBK 
produced smaller regions of predicted soil physical properties than OK, highlighting the necessity of 
choosing the appropriate methods in studying the spatial distribution of soil properties.
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Introduction

Soil physical properties are an important set of 
soil properties that affect many physical, chemical 
and biological processes in soils [1, 2]. One specific 
property of soil is known as the spatial variability 
of soil properties, which is caused by the complex 
formation process of soils [3]. Although the 
parent material and climate determine the spatial 
heterogeneity of soil properties on a large scale, in a 
specific ecological system soil spatial heterogeneity is 
affected by topography and biotic factors, especially at  
the finer scale. The spatial heterogeneity of soil at 
different scales has an important influence not only 
on the structure and functions of soil, but also spatial 
patterns of vegetation [6, 7]. Knowledge of soil 
variability is necessary for practical applications as well 
as for model development [8]. Therefore, understanding 
and utilizing the spatial variability of soil properties 
may help to improve land use efficiency, increase soil 
quality and benefit ecological environment protection [9, 
10].

Geostatistics is a mathematical method based on 
the theory of regionalized variables and semi-variance 
functions [11]. It provides the basis for the interpolation 
and interpretation of the spatial variability of soil 
properties [12]. This method can be used to study the 
data of both randomness and structure, which makes up 
for the defects of classical statistical spatial orientation 
analysis. In addition, geostatistics is an effective tool 
to study the spatial variability of soil properties, as 
this characteristic can be considered via the spatial 
auto-correlation among the variables [13]. The study  
of spatial variability of soil properties using  
geostatistics and GIS technology has become one of the 
hot topics in the fields of soil science and agricultural 
ecology. 

In the 1970s the theory of geostatistics was initially 
applied to soil science, and used to study the spatial 
variability of soil properties [14-16]. Based on that 
research, many geostatistical techniques have been 
developed to predict the spatial variability of soil 
properties, such as ordinary kriging (OK) [6, 17], co-
kriging [18, 19], area-to-point kriging [20], inverse 
distance weighting (IDW) [21], artificial neural 
network method [22] and pedo-transfer functions [23]. 
Among them, OK has been most widely used [24, 
25]. Meanwhile, empirical bayesian kriging (EBK) as  
a method of geostatistical interpolation automates  
the most difficult aspects of composing an adequate 
kriging model. Due to the interpolation of available 
observations, this makes the method independent of 
trends and offers hope for a significant expansion of the 
application areas [26]. Although EBK was successfully 
used for analysis of humus distribution [26] and in 
benthos mapping [27], few scholars have used this 
method to study the spatial variability of soil. Thus, this 
study attempts to apply the OK and EBK methods in  
a comparative study of soil physical properties in order 

to explore the best research methods to study the spatial 
variation of soil properties at a fine scale. 

Since the 1980s, some scholars in China have 
adopted the theory and technical system of soil spatial 
variability, and have done a lot of meaningful research 
on the spatial variability of soil properties in China, such 
as black soil in northeastern China [28], northwestern 
desert soil [29], hilly red soil [30], karst mountainous 
soil [31], loess plateau soil [32-34], croplands of  
the black soil [34], plain soil [35-37] and alpine steppe 
soil [38]. Although previous studies have looked at 
spatial variations of soil nutrient distribution [39] and 
soil organic carbon[40], few studies have been done  
on the spatial variability of soil physical properties  
in the red beds region. The exposure of red beds covers 
9.16 × 105 km2 , which accounts for 9.5% of the total 
land area of China. Among them, under the influence 
of temperature difference and moisture, the redbed 
softrock disintegrates easily [2], which causes the high 
erosion rates of purple soil [3]. The typical purple soil 
developed on red beds is particularly prone to erosion 
due to intensive cultivation and the wet climate of the  
area [41], and previous research has proven the 
relationship between soil physical properties and 
erodibility [42, 43]. Thus, more studies are needed of 
the spatial variations of soil physical properties and 
choosing the appropriate methods for interpolation in 
purple soil areas.

Considering the importance of obtaining soil 
physical properties in the red beds region, this study 
was undertaken to compare the performance of two 
interpolation methods, including ordinary kriging  
(OK) and empirical Bayesian kriging (EBK), in 
producing an accurate distribution map of soil  
physical properties in the red beds region. In addition, 
the spatial distribution of soil physical properties was 
generalized and the impact of human disturbance 
was discussed. The results can then provide useful 
information valuable for improving land management 
practices.

Materials and Methods

Experimental Site

The experimental site is located in Nanxiong 
Basin, which is a typical red-bed basin with a severe 
soil erosion problem due to its dominant purple soil 
texture (Calcaric Regosols in FAO taxonomy), fragile 
ecological environment, severe soil erosion, and the 
fact that red clay-rich sediments of the parent rock 
are mainly distributed in the central part of the basin.  
It has an elevation of 48-1421 m above sea level [44]  
with a moist, subtropical monsoon climate, and 
four distinct seasons, including a long summer and 
short winter, and a fast autumn transition. Average 
temperature is 19.6ºC, maximum temperature is 39.6ºC, 
and the extreme minimum temperature is -6.2ºC.  
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The average annual evaporation is 1678.7 mm, while  
the average annual rainfall is 1555.1 mm.

Sample Collection

The sampling distance was set at 30 m, and a total 
of 150 samples was collected by taking the field size 
and sampling uniformity into consideration. Sampling 
depth ranged from 0 cm to 20 cm. The sampling 
method corresponded to the traditional mixed sampling  
method, whereby a total of 5 sub-samples are mixed 
to form a sample for each sampling point [45].  
The distribution map of the sampling points was made 
in the ArcGIS 10.1 platform. 

Determination Methods

Ring Knife Method 

Soil bulk density, soil moisture capillary porosity 
and capillary water capacity were mainly determined 
using the methods of ring knife and oven-drying [46].

Semi-Variogram

 As the theoretical basis of geostatistics, semi-
variogram is often used to represent the spatial 
variability and correlation of regionalized variables on  
a certain scale. Also, it can determine the spatial 
structure of soil physical properties. Well-known 

theoretical models such as spherical, exponential and 
Gaussian are commonly used to calculate experimental 
semi-variograms using the observed data [11]. The 
variation function γ(h) can be defined as ½ of random 
function Z(xi). The formula is as follows:

 In the formula, h is the lag and N(h) is the number 
of pairs of sample points separated by h [6]. Z (xi) is 
the value of position xi and Z(xi +h) is the value of the 
distance xi+h.

Ordinary Kriging

As the most widely used kriging method, based on 
the weighted average of adjacent observed points within 
a given area [47], OK can provide an estimation at an 
unobserved location of variable z. Kriging interpolation 
is given a random process under the conditions of the 
measured value, and obtains the unbiased optimal 
estimation by using known sample point Z (xi) data to 
estimate the sample Z (xi + h) value, according to the 
following formula:

)()(
N
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Among them, λi is the weight of the measured sample 
points, which is determined by the analysis of variance 
function. The OK interpolation is a local linear optimal 
unbiased estimation method for a single variable.  
A detailed theoretical description of the kriging 
algorithms was provided by Webster and Oliver (2001) 
[48]. 

Empirical Bayesian Kriging

The EBK method differs from classical kriging 
methods by accounting for the error introduced 
by estimating the semi-variogram model. It is an 
interpolation method that accounts for the error in 
estimating the underlying semi-variogram through 
repeated simulations. This method is implemented 
as a module in the geostatistical analyst toobox of 
ArcGIS10.1 (ESRI) platform. This process entails the 
following steps:
(1)	 A semi-variogram model is estimated from the  

data.
(2)	Using this semi-variogram, a new value is simulated 

at each of the input data locations.
(3)	A new semi-variogram model is estimated from the 

simulated data. A weight for this semi-variogram is 
then calculated using Bayes’ rule, which shows how 
likely the observed data can be generated from the 
semi-variogram [49].  

Fig. 1. Location of the study area.
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Data Analysis 

The datasets were analyzed to determine the 
descriptive univariate statistical parameters, i.e., 
maximum, minimum, mean, median, standard 
deviation (S.D.) and coefficient of variation (C.V.). The 
Kolmogorov-Smirnov (K-S) method, together with 
skewness and kurtosis values, were used to evaluate the 
normality of the datasets [50].

The relationships among soil physical parameters 
were examined using Pearson’s correlation analysis.  
All statistical analyses were performed using the 
software SPSS Statistics Client 19.0 (SPSS, Inc., 
Chicago, USA). The semi-variance function and the 
optimal run variance model were analyzed using 
ArcGIS 10.1, while the OK and EBK interpolations were 
performed using ArcGIS 10.1 geostatistical and spatial 
analyst tools.

Results and Analysis

Classical Statistical Analysis of Soil 
Physical Properties

As shown in Table 1, the maximum value of bulk 
density is 1.44 times the minimum value. The ratio of 
maximum and minimum values of soil total porosity, 
capillary porosity and non-capillary porosity are 1.23, 
1.20 and 12.4, respectively, among which non-capillary 
porosity shows the wide range. The CV is an index 
that represents the overall variation or heterogeneity of 
a given variable [7], and is the most important factor 
in describing the variability of a soil property [29]. 
CV<10 % indicates weak variability, CV = 10-100% 
indicates moderate variability, and CV>100% indicates 
high variability [33]. Among six measured parameters 
of the physical properties, the CV of soil bulk density, 
total porosity and capillary porosity are 9.82%, 4.48% 
and 3.73 %, respectively, with all three parameters 
showing weak variation. The relatively low CV of the 
above three properties suggest that some other factors 
affecting soil physical properties should be included in 

the model, such as parent material, soil erosion and land 
management practices [4]. Soil moisture, capillary water 
capacity and non-capillary porosity show moderate 
variation with CV values of 14.60%, 19.91% and 17.59%, 
respectively. Similar results have been reported on soil 
capillary water capacity [51].

Pearson Correlation Analysis of Soil 
Physical Properties

Pearson correlation coefficient is a measure of 
the linear correlation between two variables. It has a 
value between 1 and -1, where 1 is total positive linear 
correlation, 0 is no linear correlation and -1 is total 
negative linear correlation. The Pearson correlation 
coefficients among the soil physical properties are 
shown in Table 2. Soil bulk density shows a significant 
positive correlation with soil moisture and capillary 
water capacity with correlation coefficients of 0.85 and 
0.91, respectively. However, the correlation coefficients 
of soil bulk density with total porosity, capillary 
porosity and non-capillary porosity, are -0.82, -0.71 and 
-0.94, respectively. Soil moisture and capillary water 
capacity shows a significantly positive correlation with 
a correlation coefficient of 0.84; however, soil moisture 
shows a significantly negative correlation with total 
porosity, capillary porosity, non-capillary porosity, 
with correlation coefficients of -0.76, -0.67 and -0.81, 
respectively. By analyzing the spatial heterogeneity of 
soil physical properties in the South Sichuan Bamboo 
Sea, which is covered by the same type of purples soil, 
similar results were found [51]. The trend in the above 
correlations indicates that the physical properties of 
soil are closely related to human activities. That is to 
say, due to the strong disturbances of human activities 
in cultivated land, such as renovation of soil and 
fertilization, physical and structural properties of the 
soil are greatly changed, as are significant correlations 
between soil physical properties. Moreover, other 
factors, such as soil clay content, soil pH, soil erosion 
and their interactions with precipitation and temperature, 
could also play important roles in affecting Pearson 
correlation of soil physical properties [52].

Table 1. Classical statistical results of soil physical properties.

Item Min Max Mean SD Kurtosis Skewness CV

Bulk density (g/cm3) 0.90 1.31 1.12 0.11 -0.34 -0.84 9.82

Soil moisture (%) 18.11 35.01 25.20 3.68 0.85 0.79 14.60

Capillary water capacity (%) 16.03 37.08 27.43 5.46 -0.06 -1.02 19.91

Total porosity (%) 53.09 65.12 57.86 2.59 0.59 0.49 4.48

Capillary porosity (%) 49.21 59.21 53.36 1.99 0.59 0.63 3.73

Non-capillary porosity (%) 3.22 6.32 4.49 0.79 0.326 -0.87 17.59

Descriptive statistics of bulk density, soil moisture, capillary water capacity, total porosity, capillary porosity and non-capillary 
porosity; Min = Minimum value; Max = Maximum value; SD = Standard deviation; and CV = Coefficient of variation
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Spatial Variation Analysis of Soil 
Physical Properties

Semi-Variance Analysis of Soil Physical Properties 

The spatial dependence of variables was assessed 
using the nugget effect and nugget/sill ratio. A ratio 
<25% means a strong dependence, while 25-75% 
and >75% represent moderate and weak dependence, 
respectively [53]. The variable range is the distance 
over which the semi-variance reaches to the value of 
the sill. A sampling distance greater than the value of 
the range indicates that values of the variable mutually 
independent, and it thus exhibits no spatial auto-
correlation. 

The best-fitted model parameters and some spatial 
structural index are shown in Table 3. In this study, 
spherical and gaussian models were used to describe 
the semi-variograms of soil physical properties. The 
best models analyze the spatial structure and provide  
the input parameters for interpolation [6]. 
Characterization of soil physical variability indices 
(e.g., C0, C0+C, C0/(C0+C)) describe variations in 
different aspects of soil physical properties, which 

are consistent in their expression of the effect on soil 
physical properties. The difference in degree of spatial 
dependence is caused by random and structural factors. 
Soil bulk density, total porosity and capillary capacity 
of C0/(C0+C) show strong spatial dependence with 
values less than 25 %. However, soil moisture, capillary 
porosity and non-capillary porosity of C0/(C0+C) exhibit 
moderate spatial dependence with values between 
25% and 75%. Semi-variance analysis shows that the  
C0/(C0+C) of soil bulk density, total porosity and 
capillary capacity are 0.13, 0.11 and 0.09, respectively, 
which are less than 25%. The results show strong 
spatial auto-correlation, and are affected by soil type, 
parent material, topography and other structural factors. 
The C0/(C0+C) of soil moisture, capillary porosity and 
non-capillary porosity were 0.67, 0.28, and 0.69, 
respectively, which show moderate spatial auto-
correlation. Similar results were obtained by 
Bhanthumnavin et al. [54], who showed that spatial 
dependence was affected by natural factors such as 
parent material, topography, soil type and altitude, 
and that soil physical indicators had the direction of  
a homogenization trend. In addition, the coefficients  
of determination (R2) of the soil physical parameters 

Table 2. Pearson correlation analysis of soil physical properties.

Item Bulk density 
(g/cm3)

Soil moisture 
(%)

Capillary water 
capacity (%)

Total porosity
(%)

Capillary 
porosity

(%)

Non-Capillary 
porosity

(%)

Bulk density (g/cm3) 1

Soil moisture (%) 0.85** 1

Capillary water capacity (%) 0.91** 0.84* 1

Total porosity (%) -0.82** -0.76** -0.79** 1

Capillary porosity (%) -0.71** -0.67** -0.66** -0.97* 1

Non-capillary porosity (%) -0.94** -0.81** -0.94** -0.81* 0.66** 1

Descriptive statistics of bulk density, soil moisture, capillary water capacity, total porosity, capillary porosity, and non-capillary 
porosity. Number of samples is 150.
*The correlation was significant at the 0.05 level.
**The correlation was significant at the 0.01 level.

Table 3. Semi-variogram model types and parameters of soil physical properti.

Item Model C0 C0+C C0/C0+C Range R2 Transformation

Bulk density (g/cm3) I 0.03 0.23 0.13 167 0.92 None

Soil moisture (%) I 0.02 0.03 0.67 234 0.81 Log

Capillary water capacity (%) I 0.14 1.27 0.11 189 0.73 Log

Total porosity (%) II 0.58 6.44 0.09 298 0.93 None

Capillary porosity (%) I 0.25 0.89 0.28 121 0.91 None

Non-Capillary porosity (%) II 0.36 0.52 0.69 166 0.92 None

Descriptive statistics of bulk density, soil moisture, capillary water capacity, total porosity, capillary porosity and non-capillary 
porosity; Model I: Gaussian model; Model II: Spherical model
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Table 4. Cross-validation of prediction errors for ordinary kriging (OK) and empirical bayesian kriging (EBK) methods.

Item Methods ME RMSE MSE RMSSE ASE

Bulk density (g/cm3)
OK -0.0002 0.0282 -0.0081 1.1046 0.0257

EBK 0.0001 0.0278 -0.0017 0.9426 0.0294

Soil moisture (%)
OK 0.0095 1.1136 0.0098 1.0723 1.0415

EBK 0.0045 1.0595 0.0069 0.9831 1.0651

Capillary water capacity (%)
OK -0.0013 1.4146 0.0032 1.4886 0.9383

EBK -0.0539 1.3134 -0.0317 0.9285 1.3335

Total porosity (%)
OK 0.0053 1.1425 0.0160 1.0246 1.1084

EBK -0.0062 1.1095 -0.0044 1.0146 1.0871

Capillary porosity (%)
OK 0.0157 1.1196 0.0106 0.9505 1.2244

EBK -0.0138 1.1283 -0.0119 1.0329 1.0825

Non-Capillary porosity (%)
OK 0.0009 0.1728 0.0076 1.8841 0.0928

EBK 0.0004 0.1669 0.0063 1.1094 0.0497

Descriptive statistics of bulk density, soil moisture, capillary water capacity, total porosity, capillary porosity, and non-capillary 
porosity, ME = Mean-Error; RMSE = Root-Mean-Square-Error; MSE = Mean-Standardized-Error; 
RMSSE = Root-Mean-Square-Standardized-Error; ASE = Average-Standard-Error

Fig. 2. Cross-validation of OK of soil physical properties.
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are close to 1, indicating that high accuracy was 
achieved in the simulation of the theoretical models.

Comparisons of Cross-Validation between 
OK and EBK

Different scatter distribution patterns suggest that 
different methods could predict different values for the 
same point [4]. Table 4 shows the results of the cross-
validation of the OK and BEK methods. In theory, the 
best predicted results should be equal to the actual 
measured values. Because of the smoothing effect 
during the spatial interpolation process, the slope of 
the linear regression of the measured value against the 
predicted value are usually less than 1. Cross-validation 
is a model validation technique for assessing how the 
results of a statistical analysis will generalize to an 
independent data set. It is mainly used in scenarios 
where the goal is prediction, and one seeks to estimate 
how accurately a predictive model will perform in 
practice. Therefore, statistical indices of error prediction 
can reflect the interpolation accuracy very well by 
cross-validation. A mean error (ME) value close to 0 

indicates that the predicted value is unbiased, whereas 
a mean standardized error (MSE) value close to 0 and 
a root mean square standardized error (RMSSE) value 
close to 1 indicate that the standard error is accurate.  
A root mean square error (RMSE) value and an average 
standard error (ASE) value close to 0 indicate that the 
deviation between the predicted value and the measured 
value is small. 

In order to compare the performance of the different 
interpolations, the ME, RMSE, MSE, RMSSE and ASE 
were calculated for the OK and EBK methods (Table 4). 
The results shows that the ME values of the two methods 
were all close to zero, which indicates that they were 
all relatively unbiased in interpolating the soil physical 
properties [4]. The ME values of soil bulk density, soil 
moisture, capillary porosity and non-capillary porosity 
obtained by the EBK method in this study were 0.0001, 
0.0045, -0.0138 and 0.0004, respectively, and are thus 
closer to 0 than those by the OK method. In addition, 
the RMSE values of soil bulk density, soil moisture, 
capillary water capacity, total porosity, capillary porosity 
and non-capillary porosity obtained by the EBK method 
were lower than those by the OK method, which proves 

Fig. 3. Cross-validation of EBK of soil physical properties.
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that prediction by the EBK method obtained values 
with negligible deviation. The RMSSE values derived 
obtained by the EBK method are closer to 1 than those 
by the OK method, indicating that the standard error 
obtained by the EBK method was more accurate than 
those by the OK method. The RMSSE for total porosity, 
capillary porosity and non-capillary porosity obtained 
by the EBK method were lower than those by the OK 
method. The results indicate that the EBK interpolation 
method is more suitable for predicting the heterogeneity 
of the spatial distribution of the soil physical properties 
in the red beds region. In the prediction of soil physical 
properties the EBK method has the advantage of high 
precision over the OK method. 

Low value of RMSE and ME indicated a good match 
between observed and predicted soil physical properties. 
Although OK methods offer better interpolation for 
estimating values of unmeasured locations [55-57], this 
research proved that the performance of EBK was better 
in comparison with OK interpolation models in spatial 
interpolation of soil physical properties in a red beds 
region.

Fig. 2 shows the cross validation interpolation graphs 
using the OK and EBK methods, and the relationship 
between measured values and predicted values for the 
sampling points. Matching points from the results of 
bulk density, water content, capillary moisture and  
non-capillary porosity were concentrated around the  
1:1 reference line, which indicates that the predicted 
values in this range were very close to the measured 
values and achieved high precision in prediction. The 
slopes of the linear regression lines are similar, having 
values of bulk density of 0.9031 (OK) and 0.9034 
(EBK), soil moisture of 0.9085 (OK) and 0.9228 (EBK), 

capillary water capacity of 0.9559 (OK) and 0.9544 
(EBK), total porosity of 0.7584 (OK) and 0.7908 (EBK), 
capillary porosity of 0.6125 (OK) and 0.6931 (EBK) 
and non-capillary porosity of 0.9592 (OK) and 0.9745 
(EBK). In other words, the slopes of the total porosity 
and capillary porosity regression functions were less 
than those of the bulk density, soil moisture, capillary 
water capacity and non-capillary porosity, and indicate 
relatively low precision in prediction. Related research 
showed that low correlations were found between 
the predicted and measured data because of a non-
probabilistic design [58]. What can be seen from the 
regression function and the cross-validation map of 
these two methods, is that the EBK method can be used 
to obtain more accurate interpolation results of spatial 
variability of soil physical properties in the red beds 
region. However, the scatter points lying outside of 
the 95% prediction intervals differed for the different 
interpolation methods [4]. Therefore, the appropriate 
method to study the variability of soil can effectively 
improve the characterization of soil in the study area, 
and provide a more scientific basis for the precise 
management of soil.

Spatial Distribution Pattern of Soil 
Physical Properties 

The number of soil samples, the distance between 
sampling locations and the choice of interpolation are 
factors that affect the prediction of spatial distribution 
for soil properties [59, 60]. Generally, the larger the 
number of soil samples, the more accurate the kriging 
maps of soil properties [60, 61]. The original datebase 
(150 soil samples) that we used in this study was 

Fig. 4. Patterns of spatial distribution of OK of soil physical properties.
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collected from a small area, thus the sample number for 
spatial interpolation when compared with other research.

As shown in Figs 4 and 5, the spatial distribution 
patterns of the soil physical properties obtained from 
OK and EBK are broadly consistent and exhibit a block 
and ladder-shaped spatial distribution pattern. There 
were also differences between the two methods. The 
results generally show an increasing trend in soil bulk 
density, soil moisture and capillary water capacity with 
zonal distribution from northeast to southwest, while  
a decreasing trend of soil total porosity, capillary 
porosity and non-capillary porosity with zonal 
distribution from northeast to southwest. Among the 
former three soil properties, the distribution pattern of 
soil bulk density and soil moisture have the features of 
zonal and island, with the highest values in study area 
occurring in the southwestern corner. The distribution 
pattern of soil capillary water capacity shows a ladder 
distribution, and the low values occurred in the 
northeastern corner. The distribution pattern of soil total 
porosity and capillary porosity shows island shape, with 
low values seen both southwest and west of the map. The 
non-capillary porosity shows ladder-shaped distribution, 
with the highest values in the northeastern corner. These 
results are mainly because the southern part of the area 
is farmland, which shows the importance of land use as 
the main influential factor and is in accordance with the 
conclusion that land use is a important factor in spatial 
variability in soil pH [4]. Spatial Variability in Soil pH 
and Land Use as the Main Influential Factor in the Red 
Beds of the Nanxiong Basin, China. Peer J. 7: e6342, 
2019. Soil is often affected by fertilization, tillage and 
other human activities, which lead to increased soil 
fertility and improving soil structure. Therefore, the 

porosity and water-holding capacity of the soil in the 
northeastern region is also suitable for agricultural soil. 
However, further study at smaller scales in this area is 
needed to clarify this issue.

The OK interpolation produced many small patches 
and surface irregularities (Fig. 3e), while EBK created a 
smoother surface. There were some points on the map 
produced by OK attributed to noise, or which may be 
caused by human disturbance. Gao et al. (2016) also 
arrived at a similar conclusion, and considered that 
human disturbance is one of the main reasons for the 
spatial distribution of soil physical properties. 

Taking into account the comparison of interpolation 
performance discussed in sect. comparisons of cross-
validation between OK and EBK, we concluded that 
the map produced by EBK is more accurate than by the 
OK method. Therefore, the spatial distribution pattern 
of soil physical properties obtained by the EBK method 
had higher precision. The EBK method did provide the 
best linear unbiased estimations and information on the 
spatial patterns of estimation errors.

Conclusions 

Soil physical properties in surface soils were 
investigated in a relatively small area in the red 
beds region of Nanxiong Basin, China. According to 
analysis with Pearson correlation, soil bulk density was 
significantly positively correlated with soil moisture and 
capillary water capacity (p<0.01), where the correlation 
coefficients were 0.85 and 0.91, respectively, but were 
significantly negatively correlated with total porosity, 
capillary porosity and non-capillary porosity, where 

Fig. 5. Patterns of spatial distribution of EBK of soil physical properties.
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the correlation coefficients were 0.82, 0.71 and 0.94, 
respectively (p<0.01), indicating that soil physical 
properties were controlled by both intrinsic and 
extrinsic factors. Soil bulk density and total porosity 
showed weak variation and strong spatial dependence at 
this regional scale, as indicated by the low CV values 
and nugget-to-sill ratios. 

Two spatial interpolation methods were compared: 
OK and EBK. Spherical and Gaussian models performed 
well in describing the spatial variability of soil physical 
properties. Although OK is relatively simple and user-
friendly, the interpolation by OK is less accurate than by 
EBK. Cross-validation analysis demonstrated that EBK 
performed better than OK for the spatial interpolation 
of soil physical properties in a smaller area of the red 
beds region. Areas of high soil total porosity, capillary 
porosity and non-capillary porosity were located in the 
northeast of the region, and were possibly associated 
with human factors. The interpolation accuracy of the 
soil physical properties could be further improved 
by including more information on these ancillary 
variables with more kriging methods. The OK and EBK 
methods showed similar spatial distribution of the soil 
physical properties in the study area, demonstrating 
the reasonable suitability of OK and EBK in spatial 
interpolation of soils. In addition, comparison of 
the maps of the spatial distribution of soil physical 
properties indicated that EBK can provide a more 
accurate distribution map of soil physical properties 
for the study area. EBK exhibits better performance 
in interpolation of soil physical properties at relatively 
smaller scale than by the OK method. EBK produced 
finer areas of predicted soil physical properties than 
OK, highlighting the necessity of choosing the most 
appropriate method in studying the spatial distribution 
of soil properties. 
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