
Introduction

China has pledged to the world that the intensity 
of energy consumption and the intensity of CO2 
emissions are used as binding indicators, and that the 

carbon intensity of GDP in 2020 will be reduced by 
40-45% compared with 2005. In order to achieve the 
early arrival of carbon emission peaks, the Chinese 
government has formulated another constraint indicator. 
The 13th Five-Year Plan for controlling greenhouse gas 
(GHG) emissions requires that the carbon intensity of 
the Beijing-Tianjin-Hebei region (BTH) in 2020 fall by 
20.5% from 2016. BTH is China’s political and cultural 
center and an important core area of northern China’s 
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economy, which includes Beijing, Tianjin, and Hebei. 
China’s central government has recently rolled out 
several national strategies encompassing the BTH, such 
as “BTH coordinated development” and “Air pollution 
prevention and control action plan.” The carbon 
emissions in BTH are mainly affected by Hebei. In 2016, 
the energy consumption of Hebei reached 298.74 million 
tons of standard coal, which accounted for 6.83% of 
the total energy consumption in China, and accounted 
for 66.51% in BTH. The CPC Central Committee 
and the State Council established the Hebei Xiong’an 
New District, which has been hailed as a “millennium 
plan.” To become an ecological benchmark, new 
requirements are placed on carbon emissions in Hebei. 
Meanwhile, Hebei is facing new opportunities, its future 
development may be complex and diverse, and there 
are many aspects of studying the significance of carbon 
emissions. Therefore, when we study the BTH carbon 
reduction policy, we should focus on Hebei. Urban 
areas and the rapid progress of industrialization and 
technology are leading to serious air pollution in urban 
areas [1-2]. China’s urban development inevitably leads 
to more direct and indirect pollution and has an impact 
on carbon emissions. In particular, human beings trying 
to maintain urban life harm health. Population growth 
and industrialization have led to air pollution in some 
cities that reaches levels that threaten human health. 
This has become one of the most important topics of 
our day. In particular, carbon dioxide (CO2) and other 
pollutants, which provide global warming, have recently 
attracted attention; because CO2 is one of the most 
searched gases. Recent studies show PM10, PM2.5 
and CO2 air quality indices. There are a lot of studies 
for carbon emissions, including indoor and outdoor  
– especially urban cities and parks. They show that 
PM2.5 affects human health [3-8]. Therefore, it is urgent 
to study carbon emissions and a control path.

In view of the claims mentioned above, it is 
necessary to find the main impact factors and future 
trends of carbon emissions in Hebei. Combining the 
future strategic positioning has important practical 
significance for promoting the carbon emission 
reduction in the entire BTH and reaching the carbon 
peak in advance under the new normal. This is also the 
fundamental method for solving resource bottlenecks 
and improving the quality of the environment.

Looking at recent literature, there are many ways 
to predict carbon emissions, which can be divided into 
two major categories. One is to directly predict carbon 
emissions based on the decomposition formula, and 
the other is to establish mathematical models based 
on influencing factors to predict. The first category is 
the direct decomposition of carbon influencing factors, 
and the decomposition method is subdivided into three 
types: Structure Decomposition Analysis (SDA) [9-
11], Index Decomposition Analysis (IDA) [12-13], and 
Production Theory Decomposition Analysis (PDA) [14].
Compared to SDA and IDA, PDA requires less data 
and only needs to summarize panel data [15]. IDA 

mainly includes Laspeyres decomposition and Divisia 
decomposition [16], and the LMDI method [17] is a 
further improvement. Based on LMDI, Moutinho et al. 
[18] studied the major factors affecting carbon emissions 
in Europe. Lin and Long [19] adopted the LMDI method 
to study the methods to promote emission reduction of 
chemical industry in China. In addition, kaya model is 
widely used in carbon emission prediction research. The 
urbanization factor is introduced into the Kaya identity 
formula to predict the possible carbon emissions of 
China in 2020 under three different urbanization policy 
models [20].

In the second category, there are a large number of 
studies, such as the computable general equilibrium 
(CGE) model [21]. In addition, the most widely used 
model is IPTA. Wang and Lin [22] used VAR and 
STIRPAT models to study the main influencing factors 
of carbon emissions during the period 1980-2014 in the 
commercial sector in China. Meng and Niu [23] used 
logistic functions to simulate carbon emissions based 
on energy consumption and China’s empirical analysis 
shows that the simulation of Logistic equation is 
effective. Wang and Ye [24] introduced the exponent of 
the relevant variables as an exogenous variable into the 
multivariate grey model in order to quantify the future 
carbon emissions of China’s fossil energy consumption 
from 2014 to 2020. Ding et al. [25] designed a new 
optimized grey multivariable model that modifies the 
background values, to predict China’s carbon emissions 
from fossil fuel combustion in 2014-2020, laying a solid 
foundation for formulating policies. 

However, compared with the above models, due 
to the simplicity, robustness, suitability for parallel 
processing, high efficiency and practicality, artificial 
intelligence technology has been widely used in carbon 
emission prediction in recent years. Support vector 
machine (SVM) and least squares vector machines 
have been proved to be excellent in solving small 
sample, nonlinear and high dimensional estimation 
problems. Sun and Liu [26] used LSSVM to predict 
carbon emissions of China’s three major industries, and  
the final simulation proved the effectiveness of LSSVM. 
Sun and Xu [27] analyze factors affecting carbon 
emissions in Hebei using an improved BP algorithm. 
Zhao et al. [28] used the Whale Optimization Algorithm 
(WOA) combined with the LSSVM model to predict  
that it had a wide range of application prospects. 
Sulaiman et al. [29] used the Bees algorithm to trace in 
a deregulated power system, but did not overcome the 
shortcomings of neural networks, such as premature and 
overfitting.

On the one hand, most of the current research has 
innovations in forecasting methods, and to verify the 
reliability of the methods through past data, but these 
studies lack prospective analysis of future trends to 
some extent. On the other hand, existing studies mostly 
set the scenarios for controlling single-factor variables 
to predict, and often did not take into account the effects 
of all factors combined. This paper innovates in the 
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following aspects. Firstly, we proposes a new hybrid 
IPSO-SVM algorithm using non-linear decreasing 
inertia weight and selective mutation strategy, which 
can provide a basis for the subsequent carbon emission 
reduction path. Secondly, we set up 64 scenarios to 
predict carbon emissions, so we not only determine the 
key influencing factors and ranks of carbon emission, 
but also verify the previous views and identify the 
characteristics of Hebei itself. Thirdly, analyze the 
mechanism of carbon emissions in 64 scenarios, explore 
the changes in the contribution of key factors, and find 
out the differences between scenarios, which helps to 
analyze the pathways that can reduce carbon emissions 
in Hebei as soon as possible. Lastly, this paper 
contributes to a more objective consideration of the 
various situations of regional development and targeted 
meaningful urban development proposals.

The remainder of the paper is structured as follows. 
In Section 2, we calculate the carbon emission of Hebei 
from 1990 to 2016, and propose the new model that 
combines improved particle swarm optimization (IPSO) 
and support vector machine (SVM). Section 3 obtains 
the influence factors of carbon emissions through the 
STIRPAT model, and sets up 64 scenarios. Section  
4 predicts the results of carbon emissions in base and 
low-carbon development, and ranks the main influencing 
factors of Hebei’s carbon emissions. Section 5 concludes 
the analysis results and makes policy recommendations.

Material and Methods

Data Conversion and Calculation 
of CO2 Emissions

The data used in this paper all come from China 
Energy Statistical Yearbook and Hebei Statistical 
Yearbook. In order to eliminate the impact of price, 
GDP and energy intensity are calculated using fixed 
prices of 2005, which is the base year.

According to IPCC guidelines (IPCC, 2006), carbon 
emissions can be calculated by calculating each specific 

type of energy consumption and its corresponding 
converted standard coal coefficient, and the CO2 
emissions conversion coefficient. Thus, the method used 
to estimate CO2 emissions from 1990-2016 in Hebei is 
expressed in Eq. (1):

            (1)

…where C is the annual total amount of CO2 emissions;   
i denotes 9 energy categories, including coal, coke, 
crude oil, gasoline, kerosene, diesel oil, fuel, natural 
gas and electricity. Ci is CO2 emission of the ith energy; 
Pi is the total final usage of the ith energy, Si is standard 
coal conversion coefficient of the ith energy; Ei is 
the CO2 emission conversion coefficient of the ith 
energy. Therefore, the CO2 emissions calculated by 
Eq. (1) from 2000 to 2016 in Hebei are shown  
in Fig. 1.

Improved Particle Swarm Optimization 
Algorithm

Particle swarm optimization (PSO) is an evolutionary 
computation technology. It comes from a study of the 
behavior of birds hunting. The advantage is that it is 
simple and easy to implement and does not have many 
parameters to adjust. In this paper, we have made two 
improvements to the PSO algorithm.

(1) One is to introduce the selective mutation 
strategy in the genetic algorithm (GA) into the PSO 
algorithm, that is, to reinitialize certain variables with a 
certain probability. The mutation operation expands the 
population search space that is continuously narrowed in 
the iterations, enabling the particles to jump out of the 
previously searched optimal value positions, conducting 
searches in a larger space while maintaining the 
diversity of the population and improving the possibility 
of finding better values. 

(2) The second improvement is the addition of 
nonlinear inertia weights. Shi.Y and Eberhart [30] first 

Fig. 1. CO2 emissions in Hebei from 1990 to 2016.
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introduced the inertia weights into the PSO algorithm, 
and pointed out that a larger inertia weight favors a 
global search, while a smaller inertia weight is more 
helpful with a local search. In order to better balance 
the algorithm’s global search and local search ability, 
this study uses nonlinear decreasing inertia weights 
(NLDW) [31].

The mathematical model of the PSO algorithm 
is: assume that in a D-dimensional search space, 
the particle population consists of N particles; the ith 
particle is represented by Xi = (Xi1, Xi2,..., XiD) and it also 
represents the search space. According to the objective 
function, the corresponding fitness value of each particle 
position Xi can be calculated. 

The ith particle velocity is expressed as 
Vi = (Vi1, Vi2,..., ViD); the individual extremum is 
Pi = (Pi1, Pi2,..., PiD); the population global extremum is 
Pg = (Pg1, Pg2,..., PgD).

By iterating to find the optimal fitness value, the 
particles update the speed and position according to  
Eq. (2):

 
(2)

                (3)

The updated equation for the nonlinear decreasing 
inertia weight coefficient is:

 
(4)

The NLDW is neither a constant nor a linear 
gradient, but it is non-linearly decreasing with the 
number of iterations, speed, and position.

Where ω is the inertia weight, r1 and r2 are the 
random numbers distributed uniformly from 0 to 1; 
c1 and c2 are acceleration constants. lmax represents the 
maximum number of iterations; p represents a nonlinear 
modulation index, equal to 1.2. 

A Novel Hybrid Support Vector Machine 
Algorithm based on IPSO

Support Vector Machine (SVM) was originated by 
Cortes and Vapnik (1995) [32]. As a kind of machine 
learning algorithm, SVM has outstanding performance 
in solving high-dimensional, nonlinear, and small sample 
problems. However, SVM still has disadvantages such 
as being vulnerable to local extremes and overfitting. 
We can see that the prediction accuracy of SVM is 
highly dependent on parameters, and two improvements 
can effectively improve the accuracy of the IPSO-SVM 
algorithm. The IPSO-SVM model calculation steps are 
shown in Fig. 2.

To verify the accuracy of the improved model, we 
selected 23 groups of data from 1990 to 2016 in Hebei 
as the training set for testing, and the remaining 4 sets 
of data were tested as test sets. The results show that 
the values of MAPE, MaxAPE, and MdAPE are 0.92%, 
1.15%, and 0.41%, respectively. This shows that the 
model can meet the forecast demand of the future.

   (5)

     (6)

    (7)

        (8)

This paper uses the Libsvm3.22 toolbox in Matlab 
R2015b to train SVM based on radial basis function 
(RBF). The main initial parameters used in the 
algorithm are shown in Table 1.

Fig. 2. CO2 emissions prediction of Hebei from 2012 to 2016.

Table 1. Parameter setting of IPSO-SVM algorithm.

Parameters Setting

c1 1.5

c2 1.7

Generations 300

Population size 30

Mutation probability 0.5

Non-linear decreasing inertial weight 0.9
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Results and Discussion

Influence Factors of CO2 Emission 
Prediction Model

IPAT identity is one of the important methods 
in energy economic research and carbon emission 
peak prediction. In order to solve the limitations of 
the independent variables in the IPAT model on the 
dependent variables, York et al. (2003) [33] established 
the STIRPAT model on the basis of the IPAT model, 
whose formula is as follows:

              (9)

…where I is the total amount of CO2 emissions; a 
represents the intercept term; b, c, and d are the 
coefficients of environmental effects with respect to P, 
A, and T; i means the year; and ei means the random 
error term.

This paper intends to improve three factors in the 
STIRPAT model. We chose resident population and 
urbanization level as the P factor, GDP as the A factor, 
and energy intensity as the T factor. In addition, we 
introduced new factors to explain carbon emissions. 
We chose coal consumption to represent the energy 
structure, and the proportion of secondary industry to 
represent industrial structure.

The second step is to apply SPSS 21.0 to conduct 
binary correlation analysis and significant test  
and Pearson coefficient calculation on the CO2 
emissions preselected factors in Hebei, which are shown 
in Table 2-4.

Scenario Description

Economic Growth

This paper chooses total GDP growth rate to 
measure economic growth. Combined with the 
experience of developed countries, when the economy 
develops rapidly, economic growth will generally tend 
to be gradual. The 19th National Congress confirmed 
that China would transform from high-speed growth to  
high-quality development, which is a strategic change. 
Under the current “new normal economy,” the future 
economy in Hebei will turn to healthy and green 
growth. The undertake non-capital function from the 
Beijing-Tianjin-Hebei integration, the establishment 
of the Xiong’an New District and the development of 
the Belt and Road will further stimulate the economic 
development speed and development quality of Hebei. 
Therefore, the economic growth rate of Hebei will 
remain as shown in Table 5.

Table 2. Bivariate correlation.

Factor Pearson c
oefficient

Significant 
(bilateral) Factor Pearson 

coefficient
Significant 
(bilateral)

GDP 0.957** 0.000 Coal consumption 0.999** 0.000

Resident population 0.966** 0.000 Proportion of secondary industry 0.715** 0.000

Urbanization level 0.968** 0.000 Energy intensity -0.838** 0.000

Note: **indicates a significant correlation at the bilateral significance level of 0.01.

Table 3. Model summary.

R R-squared Adjusted R-squared Standard estimated error

1.000a 0.999 0.999 281.39712

a. Predictive variables (constants): GDP, resident population, urbanization level, coal consumption, proportion of secondary industry, 
energy intensity.

Table 4. Anovab .

Model Quadratic sum df Mean square F Sig.

Regression 1738161742 6 289693623.7 3658.471 .000a

Residual 1583686.788 21 79184.339

Total 1739745429 26

a. Predictive variables (constants): GDP, resident population, urbanization level, coal consumption, proportion of secondary industry, 
energy intensity.
b. Dependent variable: carbon emissions.
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Resident Population Growth

In light of the statistical yearbook of Hebei, since 
2011 the annual growth rate of the resident population 
in Hebei has been around 0.6%, and the annual increase 
has remained above 400,000. In 2014, BTH was 
implemented as a national strategy in various fields, 
Hebei inherited the transfer of Beijing and Tianjin 
industry, and the entry of labor-intensive enterprises 
also brings a corresponding population. Since 2016, the 
implementation of the “two-child” policy has increased 
the birth rate in Hebei by 1.1 percentage points to 
12.42%, and further increased to 13.2% in 2017. The 
establishment of the Xiong’an New District in 2017 
will attract a large number of talents. According to 
the plan, the new district will accommodate 5 million 
people by 2040 and increase the matching population 
in the surrounding cities (Baoding City). Therefore, the 
resident population of Hebei will continue to increase 
for the foreseeable future. Considering the implications 
of these policies, the resident population growth rate 
will remain as shown in Table 6.

Urbanization Level

The development of urbanization will bring high 
CO2 emissions due to expansion of building area and 
the demand for transportation. At the global level,  
global cities occupy 50% of the world’s population. 
But the carbon emissions will account for 3/4 of the 
world’s total emissions by 2030 [34]. The National 
New Urbanization Plan (2014-2020) proposes 
the citizenization mechanism of the agricultural 
transfer population, and reforms the development of  
urbanization. The report of the 19th CPC National 
Congress pointed out that urban agglomerations  
should be the main body to construct the pattern of 
coordinated development of various scale cities, so as  
to accelerate the urbanization of the agricultural 
transfer population. There is no doubt that the 

establishment of BTH urban agglomeration has driven 
the pace of urbanization (Table 7).

Energy Structure

This paper chooses coal consumption to measure the 
energy structure. In recent years, the implementation 
of residents’ heating “change coal to gas” (Energy 
Development Strategic Action Plan, 2014-2020), 
industrial and commercial clean heating [35], and rail 
transit development have promoted the elimination 
of coal in some cities and increased rural scattered 
coal governance. The efforts will further reduce the 
consumption of coal. In addition to the full use of 
electric vehicles, and Hebei is expected to form 500,000 
new energy vehicle production capacity by 2020 (the 
13th Five-Year Plan for Developing New Energy Vehicle 
Industry in Hebei Province, 2016-2020) will also 
increase the clean energy absorption capacity (Table 8).

Industrial Structure

This paper uses the proportion of secondary  
industry to measure. The industrial sector is currently 
the most important contributor to carbon emissions; 
their share of contributions has never been lower than 
40% since 2001. However, the process of Beijing-
Tianjin-Hebei industrial transfer will lead to a new 
round of industrial structure optimization in Hebei,  
and economic development is accelerating the 
transformation of the dominant form of the tertiary 
industry, helping to reduce carbon emissions. The 
establishment of Xiong’an New District will also 
continue to enhance the upgrade. In 2015, the Central 
Financial Leading Group Meeting proposed that 
“supply-side structural reforms” will help improve the 
quality and efficiency of the supply system, promote 
the effective elimination of excess production capacity, 
and promote the optimization and reorganization of 
industries (Table 9).

Table 5. Parameters of economic growth rate.

Table 6. Parameters of resident population growth rate.

Table 8. Parameters of energy structure adjustment rate.

Table 7. Parameters of urbanization level growth rate

Table 9. Parameters of industry structure adjustment rate.

Table 10. Parameters of technical level growth rate.

 Year Medium Growth Rate Low Growth Rate

2017-2020 7% 6.5%

 Year Medium Growth Rate Low Growth Rate

2017-2020 0.65% 0.55%

 Year Medium Growth Rate Low Growth Rate

2017-2020 -2.5% -1.9%

 Year Medium Growth Rate Low Growth Rate

2017-2020 5.0% 3.7%

 Year Medium Growth Rate Low Growth Rate

2017-2020 -2.1% -3.0%

 Year Medium Growth Rate Low Growth Rate

2017-2020 -6.0% -4.0%
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Technical Level

Energy intensity is used to measure technical level. 
During 2016 to 2002, the government will keep on 
vigorously developing efficient production methods 
and improve energy efficiency [36]. In undertaking 
the transfer of industries from Beijing and Tianjin, 
it will also undertake energy-saving equipment 
and technologies. Also, the transferred talents have 
correspondingly heightened the management of 
energy production and consumption. Energy-efficient  
buildings, electric vehicles and agglomeration effects of 
emerging industries all increase the level of technology 
(Table 10).

Therefore, the final scenario includes six factors 
divided into two categories: base development scenarios 
and low-carbon development scenarios. A total of 64 
scenarios are shown in Table 11.

Prediction Results in the Base 
Development Scenario

The carbon emissions prediction results of the 32 
base development scenarios are shown in Fig. 3. The 
economic development rate of these scenarios is set 
to low speed. From the results, we can see that the 
overall carbon emission trend in Hebei is increasing. 
The carbon emissions growth rate in 2020 will fluctuate 
between 12% and 15% relative to 2017, and the average 
annual growth rate will be 4.4%. This is in line with 
Hebei’s development status, industrial sector accounts 
for a relatively large proportion and is still in the period 
of industrial upgrading. Therefore, in the short term, 
carbon emissions will continue to increase, and carbon 
intensity will decline. Carbon emissions will reach the 
maximum value in scenario BS8, in which the resident 
population growth rate, urbanization level, industry 
structure and energy structure adjustment remain the 
medium rate, while technical progress will remain low. 
In contrast, carbon emissions will reach the minimum 
value in scenario BS25, five corresponding factors are at 
the level of low, low, high, high, medium.

By comparing BS8 with BS7, BS4, BS6, BS16 and 
BS24, following five carbon emission prediction values 
are in descending order, and each scenario parameter 
setting value changes one factor compared with the 
highest value BS8. From this, we can conclude that 
when the single-factor effect, the economic growth is at 
a low speed, the role of the population is the greatest, 
followed by the industrial structure, urbanization level, 
energy structure, and technical level. Using the quotient 
of emission reductions and BS8 carbon emissions to 
define a factor’s contribution (like (BS8-BS7)/BS8), the 
contribution of these five factors to carbon reduction is 
1.90%, 1.49%, 1.31%, 0.55%, and 0.30%, respectively. 
At the same time, the increase in population and 
urbanization is a positive factor leading to an increase 
in CO2, while industrial structure, energy structure 
adjustment, and technical level can inhibit CO2.Ta
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With the GDP growth rate kept at a low speed, the 
changes in the contribution of five other factors each 
year are shown in Fig. 4.

This result is in line with the status quo in Hebei. 
First of all, Hebei has a large population and is the sixth 
most populous province in the country. The population 
(especially the urban population) will directly 
increase the consumption of industry, transportation, 
and construction, and the latter three are the main 
contributors to carbon emissions. In 2015, the Chinese 
government proposed a “two-child policy” that will 
change the population structure and increase the number 
of laborers, which may lead to a continued increase in 
carbon dioxide emissions.

Second, the proportion of secondary industry of 
Hebei is large, with the policy for the integration of the 
BTH, Hebei will accelerate the upgrading of industry 
in a short time. In 2017, the assembly manufacturing 
industry surpassed the iron and steel industry as the 
first pillar industry, the service industry contributed 
more to economic growth than secondary industry, and 
carbon emissions slowed down during the same period, 

indicating that the adjustment of industrial structure to 
carbon reduction is effective.

Urbanization has a strong positive impact on 
carbon emissions. Urban expansion requires more 
infrastructure, transportation and personal resource 
consumption, all of which increase energy consumption. 
In 2000, the urbanization rate in Hebei is 19.6%, 
which reached 53.3% in 2016. The migration of a large 
number of people from rural areas to cities has also 
reduced the proportion of primary industries. In 2016, 
the government put forward “Enforced Opinions on the 
Implementation of New Urbanization Construction” 
and actively facilitated the urbanization of agricultural 
transfer population. Therefore, due to the acceleration 
of urbanization, it has gradually become one of the 
main factors that increase carbon emissions, which is 
consistent with the findings of Yang et al. [37].

Finally, we can find that the technical contribution 
to carbon reduction in Hebei is not very high, which is 
related to the long cycle of technology from development 
to introduction and popularization, such as energy 
auditing and energy efficiency supervision, which all 

Fig. 3. Flowchart for IPSO-SVM model.

Fig. 4. Flowchart for IPSO-SVM model.
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take a relatively long time to accumulate, so as to have 
higher contribution, so the contribution of technical 
level in the short term is not very great. From previous 
research, the conclusion is different from Wang et al. 
[38]. He believes that technology is an important factor 
in four major Chinese cities: Beijing, Tianjin, Shanghai 
and Guangzhou. This paper deems that the differences 
in the development stages of the cities have resulted 
in different levels of technical contribution. Beijing 
and Tianjin have unique geographical advantages; 
Shanghai and Guangdong are located in the urban 
agglomeration named the Yangtze River Delta and Pearl 
River Delta that were developed earlier in China. Earlier 
introduction of advanced technologies and the exchange 
of energy-saving and emission-reduction technologies 
with foreign countries are more frequent in these cities. 
Hebei is located in China‘s inland, where the Beijing-
Tianjin-Hebei urban agglomeration started late and the 
level of city development is still at an immature stage, 
resulting in the current technology being less important 
for carbon reduction. This coincides with the view of 
Shuai et al. [39], that the higher the income, the greater 
the technical impact on carbon emissions.

By comparing BS3 and BS5, BS4 and BS6, BS11 and 
BS13, BS14 and BS16, BS19 and BS21, BS22 and BS24, 
BS29 and BS31, and BS28 and BS30, we can further 
see that the industrial structure and energy structure 
have different effects on carbon emission inhibition. 
The former has an inhibitory effect 1.36 times that of 

the latter. Similarly, comparing BS1 and BS19, BS2 and 
BS20, BS5 and BS21, BS6 and BS22, BS9 and BS27, 
BS10 and BS28, BS10 and BS28, BS14 and BS30, we 
can find that the effect of reducing the population growth 
rate on the suppression of carbon emissions is obvious, 
which is 1.41 times that of industrial restructuring.

Prediction Results in the Low-Carbon 
Development Scenario

The predicted CO2 of 32 low-carbon scenarios 
in Hebei during 2017-2020 are shown in Fig. 5. The 
economic development of these scenarios is set to 
medium-speed, with an annual growth rate of 7.0%. 
Compared with the base scenario, the growth rate of 
CO2 has dropped significantly. The average growth rate 
fluctuates between 4% and 7%, and the average value is 
close to 2.0%. Carbon emissions will reach their peak 
in scenario LS8, in which the population, urbanization 
level, industry structure and energy structure 
adjustment rate are at the medium level, while technical 
remains low. In contrast, carbon emissions will reach 
the minimum value in scenario LS25, in which five 
corresponding factors are at the level of low, low, high, 
high, medium. Through the comparison between LS8 
and LS7, LS4, LS6, LS16, LS24, it is still concluded 
that the role of population is the most important in the 
single factor effect, followed by industrial structure, 
urbanization level, energy structure, and technical level. 
The effect of the five factors of reducing emissions was 
1.45%, 0.92%, 0.91%, 0.45%, and 0.44%, respectively. 
From the prediction results of low-carbon scenarios, 
we can see that the speed of economic development has 
slightly increased by 0.5%, the overall importance of the 
remaining five factors will not be changed, but it will 
affect the contribution of each factor.

By comparing LS3 and LS5, LS4 and LS6, LS11 and 
LS13, LS14 and LS16, LS19 and LS21, LS22 and LS24, 
LS29 and LS31, LS28 and LS30, it is further seen that 
Industrial structure and energy structure have different 
impacts on carbon emission inhibition once again. The 
former has an inhibitory effect 1.38 times that of the 
latter. Similarly, comparing LS1 and LS19, LS2 and 
LS20, LS5 and LS21, LS6 and LS22, LS9 and LS27, 
LS10 and LS28, LS10 and LSS28, LS14 and LS30, we 

Fig. 5. Contributions of 5 factors in the base development 
scenario.

Fig. 6. 32 scenarios of CO2 emission prediction of Hebei in the low-carbon development scenario.
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can see that the effect of reducing the population growth 
rate to suppress carbon emissions is more pronounced, 
which is 1.72 times that of industrial restructuring.

With the GDP growth rate kept at a medium speed, 
the changes in the contribution of five other factors each 
year are shown in Fig. 6.

Comparison of Base Development Scenario 
and Low Carbon Scenario

By comparing the carbon emissions of above two 
major scenarios, we can find that the economic factor is 
the most paramount in the decline of CO2, which verifies 
the view of Shuai et al. [40]. In the base scenario, the 
growth rate of economic indicators is 6.5%, and the 
annual average increase rate of carbon emissions in 
Hebei is 4.4%; the two ratios in low carbon scenarios 
are 7.5% and 2.0%, respectively. This result shows 
that under the low-carbon development requirements, 
the economy has gradually decoupled from energy 
consumption. The path of technical progress is highly 
related to the economy, agreed to Kang et al. [41], and 
its contribution rate has increased from 0.30% to 0.44%. 
It shows that the more economically developed, more 
funds can be introduced to develop new technologies, 
use energy-saving machines, which can reduce carbon 
emissions fundamentally. The Beijing-Tianjin-Hebei 

region, as an emerging urban agglomeration, currently 
has strong policy support. Hebei will continue to inject 
large amounts of funds and human capital from the 
two mega cities, Beijing and Tianjin, and will have 
a relatively impressive economic growth rate in the 
future. The direct effect is to improve energy efficiency, 
and the indirect effect is to promote the progress of the 
high-tech industry, optimize the industrial structure, 
and jointly reduce carbon emissions. Therefore, 
economic development can increase the inhibitory effect 
of technology on carbon emissions. At the same time,  
Fig. 7 illustrates that the speed of the industrial  
structure adjustment is smaller than technical level 
improvement; however, the total contribution of the 
industrial structure is higher than that of technology. 
This indicates that the existing “industrial structure 
bias” in Hebei is the main problem.

Comparing the 64 scenes, the importance of 
industrial restructuring is greater than the adjustment  
of energy structure. It might be the fact that their  
average contribution values are 0.65% and 0.25%, 
respectively. It is related to the industrial upgrading 
and optimization efforts of Hebei in recent years. In 
2017, the equipment manufacturing industry surpassed 
the iron and steel industry both in terms of scale and 
growth, as well as the proportion of industry and 
growth, and become the province’s first pillar industry. 
The gradual transition from a heavy industry that relies 
extremely on energy consumption to a technology-
oriented industry will greatly reduce the consumption 
of coal. Therefore, there is a causal relationship between 
industrial restructuring and energy structure adjustment. 
To sum up all the conclusions, economics, population, 
industrial structure, urbanization level, energy structure, 
and technology are important factors affecting carbon 
emissions.

Conclusions

This paper applies inertial weight and selective 
mutation strategy to improve PSO. Then the parameters 
of traditional SVM are optimized with IPSO. We 
introduce the new model of IPSO-SVM to predict 
the carbon emissions of different scenarios in Hebei 
from 2017 to 2020. Comparing 64 kinds of different 
development scenarios, the main findings can be 
summarized as follows: (1) The rank of key impact 
factors of carbon emissions in Hebei are economic 
growth, resident population, industrial structure, 
urbanization level, energy structure and technical 
level. Population and urbanization have a positive 
effect on CO2 emissions, industrial structure, energy 
structure, and technology have inhibitory effects on 
it. (2) Economic growth is the most important factor 
for carbon emissions in Hebei, and it can change the 
contribution of other factors. (3) The level of technology 
can play a greater role in the period of rapid economic 
development. The better the economic development,  

Fig. 8. Comparison of contributions of main factors in two kinds 
of scenarios.

Fig. 7. Contributions of 5 factors in the low-carbon development 
scenario.
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the greater contribution to carbon reduction the 
technology will be. Based on this, we propose the 
following suggestions.

(1) Taking into account Hebei’s unique location 
advantage in the BTH and the establishment of the 
Xiong’an New District within its territory, the economy 
will continue to develop at a relatively high speed 
in the future. Therefore, economic development that 
does not overly rely on energy consumption becomes 
the path of carbon reduction. According to the analysis, 
“insufficient emerging industries” and “emphasis on 
industrial structure” are the shortcomings of Hebei’s 
economic development. In the future, it is necessary to 
combine the industrial transfer of Beijing and Tianjin, 
appropriately reduce the proportion of the secondary 
industry, vigorously develop tertiary industry, and 
focus on the development of advanced equipment 
manufacturing, “Dazhi Moving Cloud,” a new 
generation of information industry and other seven 
major emerging industrial clusters.

(2) The effect of population and urbanization level 
on carbon emissions is positive. Because the positive 
effect of urbanization on environment in the long term 
is stronger than the short-term impact, in the long run, 
the level of urbanization develops to a certain level 
(generally considered as more than 80%) will inhibit 
the growth of carbon emissions. Therefore, the strategy 
of sustainable development should be reflected in the 
process of promoting urbanization. We can adopt a 
government-led approach to establish a carbon-reducing 
incentive-restriction mechanism so as to enhance 
the environmental protection consciousness of urban 
residents and entrepreneurs. Also, government should 
continue to provide support for the rural population in 
urban areas.

(3) Policy makers should show solicitude for the 
gradually increasing role of technology and strengthen 
human capital to promote imitation innovation. In the 
early stage of low-carbon development, R&D investment 
should be intensified on the basis of active absorption 
and introduction of technology; in the middle period of 
development, the leading role of independent innovation 
in carbon reduction should be emphasized.

(4) Hebei forms an energy structure dominated by 
coal consumption. Reducing the proportion of coal and 
optimizing the energy structure should be the focus of 
emission reduction in the future. Coal is mainly used for 
power generation and heating, so it is imperative to carry 
out “clean heating operations in winter” (gas-power 
generation, district heating, etc.), increase the proportion 
of renewable energy consumption, and actively form 
a scientific and rational multi-complementary energy 
consumption structure.
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