
Introduction

Overgrowth is one of the most serious environmental 
problems for inland waters. This process plays a key 
role in the gradual decrease of water surface areas 
and the disappearance of lakes. Traditional monitoring 
of aquatic ecosystems is based on collecting data 
from in situ measurements and laboratory analyses 

[1-9]. Unfortunately, in situ measurements provide 
information limited to point-based representation and 
do not give a spatial overview of water bodies [10-12]. 
Additionally, field sampling has numerous operational 
considerations related to being expensive and time 
consuming [13, 14].

Currently, remote sensing techniques offer the most 
valuable opportunities in water resources monitoring 
and are replacing traditional methods based on field 
sampling [15-19]. Remote sensing data enable detection 
of time and spatial changes in water bodies by repeat 
coverage of satellite sensors [20]. Additionally, remote 
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sensing data have operational and economic advantages: 
satellite sensors provide current imagery with free 
access [21]. Recently, no-cost remote sensing data 
used for environmental monitoring are provided from 
Landsat-7, Landsat-8, MERIS/OLCI, MODIS and 
Sentinel-2 satellites [22]. Satellite data are defined by 
spatial, temporal, radiometric and spectral resolution. 
A significant advantage is spectral resolution, which is 
defined as the number of specific wavelength intervals 
in the electromagnetic spectrum that a satellite sensor 
records [23]. Due to its multi-spectral resolution, 
satellite imagery is used in environmental analyses 
for agricultural, forestry, natural hazard (drought, 
flood) and aquatic applications [24-32]. Identification, 
analysis and mapping of vegetation dynamics is based 
on vegetation indices (VIs). These spectral indices are 
a combination of two-, three- or four-band formulae, 
mainly representing red and infrared wavelengths  
[33-35]. Several indices have been proposed for 
vegetation dynamics monitoring [36]. One of the most 
recognized and widely used indices is the normalized 
vegetation index (NDVI), originally proposed by 
Rouse et al. [37]. NDVI is sensitive to the effects of 
atmosphere, clouds and cloud shadow and requires 
remote sensing calibration [36]. Kaufman and Tanre 
[38] confirmed that the atmospherically resistant 
vegetation index (ARVI) is used to eliminate the effects 
of atmospheric aerosols. Also, the difference vegetation 
index (DVI) [39], enhanced vegetation index (EVI)  
[40], global environment vegetation index (GEMI) 
[41], green normalized vegetation index (GNDVI) 
[42], soil-adjusted vegetation index (SAVI) [43] and 
modified soil-adjusted vegetation index (MSAVI) 

have been used to assess vegetation [44]. According 
to Villa et al. [33], aquatic vegetation is differentiated 
from terrestrial mainly by the difference in vegetation 
substratum and background. Therefore, the normalized 
difference chlorophyll index (NDCI) [45], normalized 
difference aquatic vegetation index (NDAVI) [46] and 
water-adjusted vegetation index (WAVI) [33, 46] were 
proposed. 

According to information from the Sentinel Hub 
website (https://www.sentinel-hub.com/), the values of 
most vegetation indices vary from -1 to +1, depending 
on land cover. Low values (negative or approaching 
zero) represent water, soil and rocks, while higher values 
represent areas of vegetation (in aquatic environments 
there are seasonal algal blooms, emergent and floating 
plants). The relationship between in situ measurements 
and vegetation indices has been described and confirmed 
in many studies [47-51]. In most cases of aquatic 
vegetation studies, VIs have been used for monitoring 
algal blooms [52-54] and water transparency [55-57]. 
There is a lack of data from studies of the overgrowing 
process in water bodies based on satellite remote  
sensing data. According to Zhao et al. [58], satellite 
imagery has good potential for detecting submerged, 
floating leaved and emergent aquatic vegetation. 

Research has been mainly conducted on the basis 
of aerial photographs in previous decades. The main 
problem of this method was low time and spectral 
resolution. Aerial photographs were acquired in large 
time intervals only in visible (RGB) and near-infrared 
(NIR) bands. Free and open access to satellite imagery 
data has increasingly changed the role of remote sensing 
in detecting the overgrowth process. 

Fig. 1. Study site location: Przebędowo a), Jezioro Kowalskie b) and Jeżewo c). 
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The main goal of this study was to assess different 
spectral indices (ARVI, NDVI, NDCI, NDAVI, WAVI) 
for detection of the overgrowing process in reservoirs. 
Additionally, the possibility of using satellite data was 
analyzed in relation to the technical parameters of 
reservoirs (total inundation area, mean width, elongation 
ratio) and the state of emergent plant expansion to the 
reservoirs.

Materials and Methods  

Study Area Description

To assess the possibility of applying satellite 
imagery to identify and map areas of overgrowth, three 
reservoirs located in the western part of Poland were 
selected: Przebędowo, Jeżewo and Jezioro Kowalskie 
(Fig. 1). 

Przebędowo Reservoir is situated on the Trojanka 
River, a right tributary of the Warta that it joins at km 
218.500. The reservoir was built in 2014. The main 
dam is located at km 6.915 of the Trojanka river. The 
reservoir covers a surface area of about 12.03 ha, with 
total capacity equal to 0.162 million m3. Przebędowo 
reservoir is characterized by an elongated shape; the 
value of the elongation ratio is 0.26. Total length of the 
reservoir is 1450 m, mean depth is 0.94 m and mean 
width is 70 m [59]. 

Jeżewo Reservoir is located on the Pogona River,  
a left tributary of Kościański Kanał Obry, which it joins 
at km 82.900 [60]. The reservoir was built in 2003, and 
the main dam is located at km 4.420 of the river. Total 
inundation area of the reservoir is 70.60 ha, and total 
volume equals 2.100 million m3. Jeżewo is 2730 m in 
length, with mean depth of about 2.3 m and mean width 

of 240 m. The value of the elongation ratio is 0.48.
Jezioro Kowalskie is situated on the Główna River, a 

right tributary of the Warta River, which it joins at km 
240.000. The reservoir was built in 1984 as a two-water-
body object with a separated preliminary part [61]. This 
part of the reservoir plays a specific role: it limits the 
inflow of the sediments and biogenic compounds to the 
main part. The main dam of Jezioro Kowalskie is located 
at km 15.423. The second, which splits the reservoir into 
two parts, is located at km 19.888. The inundation area 
of the preliminary part is 40.4 ha, while the area of the 
main reservoir equals 166.58 ha. Total volume of Jezioro 
Kowalskie is 6.580 million m3. Length of the reservoir 
equals 6091 m, mean depth is 3.68 m and mean width is 
280. The value of the elongation ratio is 1.08. 

Satellite Imagery

Sentinel-2 is part of the Copernicus Earth 
Observation mission, previously known as the Global 
Monitoring for Environment and Security (GMES) 
program. The mission was initiated and financed by 
the European Union, and technological supervision 
is carried out by the European Space Agency 
(ESA). Sentinel-2 is a constellation of two identical 
satellites, which provides information for land cover, 
environmental monitoring and emergency applications. 
The launch of the first satellite (Sentinel-2A) occurred 
on June 23, 2015, while the second (Sentinel-2B) was 
launched on March 7, 2017. The main instrument of 
the satellite, Multi-Spectral Imager (MSI), provides 
systematic data from 56°S (South America) to 83°N 
(Greenland) with a 5-day repeat cycle [62]. The MSI 
sensor features 13 spectral bands from the visible and 
near-infrared (VNIR) to the short-wave infrared (SWIR) 
in 10, 20 and 60 m resolution (Table 1). 

Table 1. Sentinel-2 band characteristics.
Band 

number Spectral band Central wavelength 
(nm)

Bandwidth 
(nm)

Spatial resolution 
(m)

1 Coastal aerosol (C) 0.443 20 60

2 Blue (B) 0.490 65 10

3 Green (G) 0.560 35 10

4 Red (R) 0.665 30 10

5 Vegetation Red Edge (V1) 0.705 15 20

6 Vegetation Red Edge (V2) 0.740 15 20

7 Vegetation Red Edge (V3) 0.783 20 20

8 Near-Infrared (NIR) 0.842 115 10

8a Narrow Near-Infrared (NNIR) 0.865 20 20

9 Water Vapour (W) 0.945 20 60

10 Short-Wave Infrared – Cirrus (SWIR1) 1.375 20 60

11 Short-Wave Infrared (SWIR2) 1.610 90 20

12 Short-Wave Infrared (SWIR3) 2.190 180 20
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The remote sensing data were acquired from the 
Sentinel Hub website (https://sentinel-hub.com/). 
Satellite imagery was selected for 2015, which 
corresponded to the acquisition year of the high-
resolution orthophotomap data. The satellite imagery was 
acquired for the same data as the orthophotomap. In the 
case where the remote and orthophotomap sensing dates 
did not correspond, the closest date for satellite imagery 
was selected. In the first step, the image composites for 
each set of Sentinel-2 imagery were calculated. Next, 
atmospheric correction using the dark object subtraction 
(DOS) method was carried out. Atmospheric correction 
was performed in the semi-automatic classification 
plugin [63]. According to Congedo [63] and Chavez [64], 
DOS is based on the assumption that some pixels in the 
satellite image are in shadow and their radiances are 
disturbed by atmospheric scattering. Additionally, many 
targets on the Earth’s surface are absolute black, so 1% 
minimum reflectance is more preferable than 0% [64].

Finally, three Sentinel-2 images were acquired: one 
of Przebędowo reservoir on August 3, 2015 (granule: 
33UXU), the others of Jeżewo reservoir on August 10, 
2015 (granule: 33UXT) and Jezioro Kowalskie reservoir 
on August 10, 2015 (granule: 33UXU). Analysis of 
overgrowth process in this study was carried out for 
pixels that comprised more than 50% of the area of the 
reservoirs. For Przebędowo there were 1002, and for 
Jeżewo 6552 and Jezioro Kowalskie there were 17316 
pixels. The first step of data processing was calculating 
vegetation indices. Five indices were selected: 
atmospherically resistant vegetation index (ARVI), 
normalized vegetation index (NDVI), normalized 
difference chlorophyll index (NDCI), normalized 
difference aquatic vegetation index (NDAVI) and water 
adjusted vegetation index (WAVI). 

ARVI is based on the fact that the atmospheric 
effects are significantly related to the NIR. ARVI 
reduces the atmospheric influence by use of aerosol 
resistance coefficients [38, 40]. ARVI is mainly  
useful in areas of high atmospheric aerosol content.  
It is a combination of NIR(ρNIR), red (ρR) and blue 
(ρB) ρNIR) ρR) ρB)) bands and can be expressed by 
Equation 1:

             (1)

NDVI is the most used spectral index, which is  
often used in studies related to regional and global 
vegetation assessments. According to Xue and Su [36], 
NDVI is very sensitive to the effects of atmosphere, 
cloud, and cloud shadow, and requires remote sensing 
calibration. The Normalized Vegetation Index is 
expressed as a combination of NIR(ρNIR) and red (ρR) 
bands in Equation 2:

                   (2)

NDCI was developed by Mishra and Mishra [65] to 
assess vegetation concentration in inland and coastal 
waters. The normalized difference chlorophyll index 
was primarily used for medium-resolution imaging 
spectrometer (MERIS) imagery using bands with central 
wavelengths of 708 and 665 nm. Additionally, the 
index can be used for areas where ground data are not 
available [65]. NDCI for Sentinel-2 data was developed 
by taking the spectral band difference at the vegetation 
red edge (ρV1) and red (ρR) bands in Equation 3:

                     (3)

Another index proposed for aquatic vegetation 
assessment is the normalized difference aquatic 
vegetation index. NDAVI was first proposed by Villa 
et al. [46] to monitor Phragmites australis beds along 
Lake Garda in Italy. Vegetation areas are detected by 
a combination of NIR(ρNIR) and blue (ρB) bands, as in 
Equation 4:

                  (4)

The second index proposed by Villa et al. [33] 
to monitor vegetation in aquatic environment is the 
water adjusted vegetation index. Firstly, the WAVI was 
used for diagnostics and detection of the main types 
of aquatic vegetation growing in the Mantua Lakes. 
WAVI is expressed in Equation (5) as a combination of 
NIR(ρNIR) band and blue (ρB) bands. Additionally, the 
background signal correction factor was used (L = 0.5) 
to adjust for the influence of the vegetation background 
[33].

    (5)

On the basis of the obtained results, overgrowth 
areas were selected. Each reservoir area was divided 
into two classes: water and emergent plant areas. The 
central value for each index was adopted as the limit 
value dividing reservoirs into two classes. To divide 
areas into two classes, the reclassify tool was used. 
According to the information from the Sentinel Hub 
website, the vegetation areas usually show values from 
0.2, which corresponded with the methodology adopted 
in this study. In the next step, raster data were converted 
into vector data using the raster-to-polygon tool in 
ArcGIS 10.5 software. Finally, overgrowth areas for 
each reservoir were calculated.

Orthophotomap

High-resolution (1x1 m) orthophotomaps were 
acquired from Google Earth Pro in true-color  
(red-green-blue). For the analysis, three images (one for 
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each reservoir) were selected for the vegetation period 
of August 3, 2015. The first step in the data processing 
was detecting water and overgrowth areas. Detection of 
the specified classes was based on visual interpretation 
with respect to the visible vegetation of emergent plants. 
Reclassification of the orthophotomap was carried out 
manually for areas of emergent plants closest to the 
reservoir banks. Due to small, dispersed overgrowth 
areas, validation of classes for Przebędowo Reservoir 
were carried out using ISO cluster unsupervised 
classification, a tool used in ArcGIS 10.5 software to 
determine the characteristics of natural grouping of 
cells using the ISODATA clustering algorithm. In the 
last step, overgrowth areas for each reservoir were 
calculated.

Overgrowing Assessment

To assess the possibility of satellite imagery 
application for identifying the overgrowth process in 
the aquatic environment, vegetation areas detected from 
satellite imagery were compared with orthophotomap 
results. Additionally, for each selected spectral index 
(ARVI, NDVI, NDCI, NDAVI, WAVI), the accuracy 

assessment Kappa statistic was calculated. It is 
expressed in Equation (6) as a combination of the sum 
of frequency in the diagonal of the error matrix (p0) and 
the frequency of a random allocation of observations 
(pC):

                        (6)

The Kappa coefficient compares results from two 
sources – reference data (in this case orthophotomap) 
and classification data (satellite imagery). The values 
of the Kappa statistic show the strength of agreement 
between reference and classification data. If the Kappa 
coefficient has a minus value it means that the strength 
of agreement is poor. For positive values of the Kappa 
index, strength of agreement can be defined as slight  
(0-20), fair (21-40), moderate (41-60), substantial (61-80) 
and almost perfect (81-100) [66].

Finally, on the basis of comparing overgrowth areas 
and the Kappa coefficient value, the most accurate 
spectral index was selected. In order to determine the 
uncertainty of the results, depending on the degree of 
emergent plants’ expansion from reservoir banks, four 

Fig. 2. Flow chart for remote sensing data analysis.
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zones of overgrowth areas were determined. They 
were specified on the basis of orthophotomap data and 
compared with satellite imagery results. The width of 
emergent plants’ expansion was divided into 0-10 m 
(1st zone), 10-20 m (2nd zone), 20-30 m (3rd zone) and 
more than 30 m (4th zone) from the reservoirs banks. 
All calculations were performed in Quantum GIS  
2.18 and ArcGIS 10.5 software. The scheme of the 
applied methodology is presented in Fig. 2.

Results and Discussion

Results

Figs 3, 4 and 5 present analyzed reservoirs in two 
class areas, representing water and emergent plants. 
The figures show reservoirs on the basis of airborne and 
satellite data, performed by vegetation indices (ARVI, 
NDVI, NDCI, NDAVI and WAVI). 

On the basis of results presented in Fig. 3, it can be 
observed that Przebędowo Reservoir is characterized 

by many dispersed overgrowth areas. Most of the 
calculated spectral indices show that the whole reservoir 
is overgrowing, except areas near the dam. Small 
dispersed areas were detected only by the WAVI index, 
while the NDCI index classified to water-only areas in 
the central part of the reservoir – the place of the river 
bed before reservoir construction (Fig. 3). 

Fig. 4 presents spatial distribution of overgrowth 
areas in the Jezioro Kowalskie Reservoir. On the basis of 
the results, it can be observed that most of the selected 
spectral indices show similar areas of emergent plants. 
The most visible differences occur for areas where 
expansion of plants is not advanced. Results obtained 
from the NDCI index show overgrowth areas occurring 
in the whole main part of the reservoir. The areas 
of emergent plants in the smaller, pre-dam reservoir 
are comparable for all of the spectral indices. It could 

Fig. 3. Comparison of overgrowth areas from orthophotomap 
and vegetation indices in Przebędowo Reservoir.

Fig. 4. Comparison of overgrowth areas from orthophotomap 
and vegetation indices in the Jezioro Kowalskie Reservoir.
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mean that the NDCI index is very sensitive to the 
eutrophication process, which occurred during August 
2015 in the Jezioro Kowalskie reservoir.

Fig. 5 shows results obtained for Jeżewo Reservoir. 
Overgrowth areas detected from the orthophotomap 
and satellite data are similar for the reservoir area. The 
most visible differences were detected by the NDCI 
index, which presents more dispersed emergent plant  
areas, especially for the part localized in the south of 
the dam. In the northern part of the reservoir, there is 
located a small water area, visible in Fig. 5. Most of the 
spectral indices do not allow detection of this area; only 
the WAVI index shows this part as water.

On the basis of airborne imagery, total overgrowth 
areas were calculated. It equals 3.36 ha for Przebędowo, 
13.9 ha for Jezioro Kowalskie and 23.23 ha for Jeżewo 
Reservoir (Table 2). Results from satellite data show 
that spectral indices detect different overgrowth areas. 
For most of the indices (ARVI, NDVI, NDCI, NDAVI), 
the overgrowth area calculated for Przebędowo equals  
8 ha, which corresponds to 80.0% of the whole reservoir 
area. In comparison with the results obtained from the 
orthophotomap, only the WAVI index gives similar 

overgrowth areas. It equals 4.04 ha, which represents 
40.4% of the reservoir. Calculated differences between 
reference data and satellite imagery vary from 6.8% to 
51.1%, depending on the spectral index. The results of 
overgrowth areas obtained for Jezioro Kowalskie vary 
from 20.03 to 148.39 ha. Similar areas were detected 
by ARVI, NDVI, NDAVI and WAVI indices. They 
showed differences between orthophotomap equaling 
6.2, 6.9, 8.2 and 3.6%, respectively. According to  
results obtained from the NDCI index, the overgrowth 
area for Jezioro Kowalskie equals 148.39 ha, which 
represents 85.7% of the reservoir. In comparison with 
airborne imagery, the difference equals 77.7%. Spectral 
indices for Jeżewo Reservoirs show the most similar 
results. The values of overgrowth area vary from 
21.11 to 28.35 ha, which represent 32.2% and 43.3% 
of the reservoir area respectively. The NDAVI index 
showed the largest difference in comparison with the 
orthophotomap (7.8%), while the WAVI index showed 
the lowest (0.6%). Additionally, the NDCI and WAVI 
indices detected smaller areas of overgrowth than 
orthophotomaps, giving a difference of 2.12 and 0.39 ha, 
respectively. 

To assess the strength of agreement between 
vegetation indices and orthophotomap results, the 
accuracy assessment Kappa statistic was calculated 
(Table 3). Kappa coefficients for Przebędowo reservoir 
vary from 7.4 to 45.2%, for Jezioro Kowalskie from 0 to 
61.8% and for Jeżewo from 57.0 to 78.7%. In most cases, 
Kappa coefficients for Przebędowo Reservoir showed 
slight and fair agreement with reference data. According 
to the methodology proposed by Viera and Garrett 
[66], only the WAVI index shows moderate agreement. 
Most of the Kappa coefficients for Jezioro Kowalskie 
show moderate agreement (ARVI, NDVI, NDAVI). 
The highest agreement, classified as substantial, is 
shown by the WAVI index. The lowest value, classified 
as slight, was obtained for the NDCI index. Jeżewo 
Reservoir is characterized by the highest values of 
Kappa coefficients. In this case, only the NDCI index 
shows moderate agreement, while values of the other 
analyzed spectral indices are classified as substantial. To 
summarize the obtained results, the highest agreement 
with airborne imagery was shown by the WAVI index, 
while the lowest was found for the NDCI index, 
regardless of the analyzed reservoir. Additionally, 
results obtained for the WAVI index are characterized 
by the smallest difference between the maximum and 
minimum values, as proven by the stability of the index.

The graphical interpretation of the Kappa coefficient 
for the WAVI index is presented in Fig. 6. Most of the 
areas show agreement between satellite imagery and 
reference data. The highest disagreement occurs for 
pixels located near the reservoirs’ shoreline or near the 
boundary between emergent plants and water areas. 
Most of the disagreement is shown by pixels defined by 
WAVI as emergent plants, while according to reference 
data there is water. There are, respectively, 152 pixels 
for Przebędowo, 876 for Jezioro Kowalskie and 294 for 

 
Fig. 5. Comparison of overgrowth areas from orthophotomap 
and vegetation indices in Jeżewo Reservoir.



4206 Jaskuła J., Sojka M.

Jeżewo Reservoir. The opposite situation was observed 
in 92 pixels for Przebędowo, 217 for Jezioro Kowalskie 
and 322 for Jeżewo Reservoir.

According to the results obtained from comparing 
overgrowth areas and Kappa coefficient values, the 
WAVI index was selected for analysis. To assess the 
uncertainty of results obtained from spectral indices, 
each of the emergent plant areas in reservoirs was 
divided into four zones. The zones were specified on 
the basis of reference data (orthophotomap). Results are 
presented in Table 4. 

For Przebędowo Reservoir, the difference varies 
from 0.06 to 0.31 ha, for Jezioro Kowalskie from 0.25 
to 5.97 ha, and for Jeżewo from 0.03 to 1.26 ha. The 
smallest difference occurs in middle zones, which may 
be caused by a similar rate of emergent plant expansion 
in these zones. The highest uncertainty of the results 
occurs in the first zone, where the width of emergent 
plants is between 0 and 10 m from the reservoir  
banks. The highest values of difference in this zone 
could be connected with mixels, which in this case are  
a combination of water and land areas.

Discussion

In recent years, remote sensing techniques have 
enabled wider application for monitoring spatial 
distribution of aquatic vegetation in water bodies [14, 
67]. According to Vis et al. [68], mapping based on 
the multispectral sensor approach shows the highest 
degree of applicability in emergent plant monitoring 
applications. The results obtained in this study confirm 
the conclusion of Zhao et al. [58] that satellite imagery 
has good potential for detecting floating leaves and 
emergent aquatic vegetation. According to Hestir 
et al. [14], past and current satellite missions do not 
provide the data in resolutions needed to monitor 
freshwater ecosystem properties and processes. It is 
mainly limited by sensor technology, especially spatial 
and spectral resolution of the satellite data. Results 
obtained by Hestir et al. [14] show that the Landsat 
satellite has spatial resolution sufficient for aquatic 
monitoring, but the spectral resolution cannot resolve 
single phytoplankton pigments. In turn, MERIS has 
spectral resolution sufficient for an aquatic environment, 
but its spatial characteristics limit the possibility of 
using remote sensing data. The results obtained in this 
study show that spatial resolution is one of the most 
important characteristics of the provided satellite data. 
According to the results, multi-spectral data provided in 
10 m spatial resolution allow aquatic monitoring with 
some limitations connected with technical parameters 
of reservoirs (the value of elongation ratio, width, 
inundation area) and state of the emergent plants’ 
expansion. The results show that satellite data should 
not be used for monitoring reservoirs characterized 
by a small width and a low-value elongation ratio. The 
highest uncertainty of the obtained results occurred 
near the shoreline of the reservoirs, where satellite 
pixels also contain land areas. Based on the analysis, 
it can be conducted that satellite data cause higher 
uncertainty of results for reservoirs characterized by 
a long shoreline. Due to spatial resolution, reservoirs 
characterized by small areas and low width also present 
higher uncertainty, especially at the boundary between 
emergent plant and water areas. Based on the results, 
it was concluded that satellite data could be used to 
detect overgrowing areas, characterized by advanced 
expansion. Dividing emergent plant areas into zones 
provides information not only about the state of the 

Table 2. Comparison of overgrowth areas from orthophotomap 
and satellite imagery.

Specification Przebędowo Jezioro 
Kowalskie Jeżewo

Overgrowth area [ha]

Orthophotomap 3.36 13.9 23.23

ARVI 8.46 24.58 27.52

NDVI 8.21 25.84 27.88

NDCI 8.44 148.39 21.11

NDAVI 8.16 28.06 28.35

WAVI 4.04 20.03 22.84

Overgrowth area [%]

Orthophotomap 33.6 8.0 35.5

ARVI 84.7 14.2 42.0

NDVI 82.2 14.9 42.6

NDCI 84.5 85.7 32.2

NDAVI 81.7 16.2 43.3

WAVI 40.4 11.6 34.9

Difference between orthophotomap and spectral index [%]

ARVI 51.1 6.2 6.5

NDVI 48.6 6.9 7.1

NDCI 50.9 77.7 3.3

NDAVI 48.1 8.2 7.8

WAVI 6.8 3.6 0.6

Spectral 
index Przebędowo Jezioro 

Kowalskie Jeżewo

ARVI 12.9 56.8 76.3

NDVI 32.8 55.7 76.8

NDCI 7.4 0.00 57.0

NDAVI 17.3 53.6 76.4

WAVI 45.2 61.8 78.7

Table 3. Kappa coefficient value for spectral indices.
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reservoir’s degradation and direction of expansion, but 
also about uncertainty of the obtained results, depending 
on the overgrowth width. The width of emergent plant 
areas should be greater than the spatial resolution of 
provided data; in the case of the Sentinel-2 source, the 
width of emergent plants should be greater than 10 
m. Analysis of the Przebędowo Reservoir shows that 
small, dispersed areas are characterized by the highest 
uncertainty, with each spectral index detecting much 
bigger areas compared to reference data. 

The possibility of detection of vegetation areas 
depends on the spectral resolution of satellite data. Most 

of the vegetation spectral indices are a combination 
of red and infrared wavelengths [35]. ARVI and 
NDVI indices were widely used in environmental 
monitoring, mainly to monitor the health and function 
of vegetation for agricultural purposes [40]. According 
to Villa et al. [33], aquatic monitoring is different from 
terrestrial mainly because of the vegetation substratum 
and background. Mapping of the aquatic vegetation 
should be based on different aquatic spectral indices.  
The normalized difference chlorophyll index (NDCI) 
is one of the spectral indices developed for aquatic 
monitoring. According to the authors [65], the index 

Reservoir Zone Orthophotomap [ha] WAVI [ha] Difference [ha]

Przebędowo

1 1.31 1.62 0.31

2 0.68 0.79 0.11

3 0.17 0.23 0.06

4 1.21 1.40 0.19

Jezioro Kowalskie

1 3.94 9.91 5.97

2 6.32 6.57 0.25

3 1.95 1.55 0.40

4 1.69 1.99 0.30

Jeżewo

1 1.09 2.35 1.26

2 4.78 4.75 0.03

3 1.70 1.17 0.53

4 15.67 14.56 1.11

Fig. 6. Kappa coefficient values of each vegetation index for Przebędowo, Jezioro Kowalskie and Jeżewo Reservoirs.

Table 4. Comparison of overgrowth areas from orthophotomap and satellite imagery in the selected zones.
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can be used for areas where ground data are not 
available. Detecting emergent plants in reservoirs 
using this spectral index could lead to uncertainties for 
overgrowth areas near the banks of the reservoirs, where 
satellite pixels also contain land areas. Additionally, 
the results of the present study show that the NDCI 
index is very sensitive to changes in water bodies. It 
was proposed by Mishra and Mishra [65] to predict 
chlorophyll-a concentration. The analysis shows that 
the NDCI can be used to detect emergent plants only 
for reservoirs where the eutrophication process does 
not occur. In cases where water stored in the reservoir 
is eutrophicated (Jezioro Kowalskie), the NDCI detects 
water also as a vegetation area. The results obtained 
from this study confirm that the NDCI seems to 
be better to detect areas of eutrophication than the 
overgrowth process, especially for reservoirs where 
both degradation phenomena do not occur at the same 
time. The results show that in aquatic monitoring, blue 
bands should be used in calculating vegetation indices. 
The present results show that the NDAVI is very 
sensitive for detecting vegetation in aquatic areas but 
does not contain in the equation a background signal 
correction factor (Villa et al. 2014). This may cause 
high uncertainty of results, especially at the boundary 
between vegetation and water areas. According to the 
obtained results, one of the most interesting vegetation 
indices for aquatic purposes seems to be the Water 
Adjusted Vegetation Index (WAVI) proposed by Villa 
et al. [33]. As opposed to other analyzed spectral 
indices, the equation of the WAVI index contains a 
background signal correction factor, which allows one 
to correct for the influence of vegetation background. 
According to Hestir et al. [14] and Villa et al. [69], the 
WAVI can be used for detecting areas of emergent and 
floating plants. For lakes analyzed by Villa et al. [69] 
the Kappa coefficient varied from 79.7 to 86.6% for 
selected sets in validation over the reference dataset. In 
this study, the WAVI was used to detect emergent plant 
areas; the highest Kappa coefficient was 78.7 and was 
obtained for Jeżewo reservoir. According to Villa et al. 
[33], use of WAVI can provide not only spatial but also 
temporal changes of aquatic environments’ seasonality 
characteristics. This was also confirmed in research 
papers by Hestir et al. [14] and Villa et al. [69].

The analysis showed that satellites are a very 
promising source for monitoring aquatic environments, 
mainly because of their multispectral resolution, global 
coverage and homogeneity of the provided data. The 
application of remote sensing data could help not only 
to assess the state of water bodies but also to develop 
a warning system of water degradation on the global, 
regional and local scales. 

Conclusions

The main purpose of the study was to assess different 
spectral indices (ARVI, NDVI, NDCI, NDAVI, WAVI) 

for detecting the overgrowing process in reservoirs. 
The analysis was performed taking into account the 
relationship to the technical parameters of reservoirs 
(total inundation area, mean width, elongation ratio) 
and state of emergent plant expansion to the reservoirs. 
The importance of the presented consideration is 
related to the possibility of using satellite imagery in 
detection of the degradation process in reservoirs, which 
could be applied for current monitoring of the aquatic 
environment.

The obtained results show that:
1. Most of the analyzed indices detect different 

overgrowth areas. The highest agreement with 
reference data (high resolution orthophotomap) was 
observed for the water-adjusted vegetation index 
(WAVI). 

2. The highest uncertainty of results was shown by 
emergent plants characterized by small, dispersed 
areas and localized near the shorelines of the water 
bodies.

3. It was observed that satellite data could be used to 
detect overgrowing areas characterized by advanced 
expansion. Due to its spatial resolution, the Sentinel-2 
satellite should not be used to assess emergent plant 
areas whose width is less than 10 m.

4. The analysis suggests that Sentinel-2 data can be 
used to identify emergent plant areas for reservoirs 
characterized by a high value of the elongation ratio, 
width and inundation area. Reservoirs characterized 
by small areas and low width also present higher 
uncertainty, especially at the boundary between 
emergent plant and water areas.
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